
Chapter 4  
 
Electronic Devices   
4.1 Introduction 
 
Given the semiconducting character of two thirds of carbon nanotubes, their high aspect 
ratio and structural robustness, it is natural to ask if semiconducting carbon nanotubes can 
be used as active elements in nanoscale electronic devices. Indeed, there has now been 
many demonstrations of such devices, ranging from two-terminal rectifiers to field-effect 
transistors. These demonstrations have spurred tremenduous interest in the field of carbon 
nanotube electronics for several reasons. First, for a single nanotube device, the channel 
width is on the order of one nanometer, much smaller than state-of-the-art silicon 
transistors, promising higher device densities. Second, carbon nanotubes have low defect 
density, and electronic transport is expected to be less affected by defect scattering. 
Third, the carrier distribution is not as sensitive to temperature variations due to the van 
Hove singularities at the band edges. Finally, quantum confinement should be easier to 
achieve because of the small channel width, and thus single-electron devices should be 
more readily available. Balancing these advantages is the fact that the knowledge base, 
fundamental understanding, fabrication infracture, and device design are much less 
developed for carbon nanotubes compared to silicon. For example, while some of the 
fabricated carbon nanotube devices bear resemblance with traditional silicon devices, this 
chapter emphasizes the much different physics that governs the operation of the carbon 
nanotube devices. We have already seen in the previous chapter how one part of a carbon 
nanotube electronic device—the contacts—behaves much differently from that in 
conventional materials. The current chapter goes beyond these concepts to address the 
issue of the whole device, building from a discussion of simple two-terminal devices like 
p-n junctions to more complex devices such as transistors. 
 

4.2 Rectifiers 
 
Rectifiers are simple two-terminal devices that essentially allow current to flow for only 
one polarity of the applied voltage, the simplest examples being p-n junction diodes and 
Schottky diodes. While these are simple devices, they are used extensively by themselves 
and as part of more complex circuits; just as important however, is the fact that these 
systems serve as excellent testbeds to study and highlight the differences between 
nanotube-based devices and conventional ones. This section presents experimental and 
theoretical work aimed at realizing carbon nanotube rectifiers, and at understanding their 
basic operating principles. A central result of this section is that the electrostatics of 
carbon nanotube devices is much different than that of bulk devices because of the 
reduced dimensionality, and more specifically because of the weak electrostatic 
screening. We will see in Chapter 7 that this weak electrostatic screening also has an 
important impact on the optical properties of carbon nanotubes. 
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4.2.1 Experimental Realizations of Carbon Nanotube p-n 
Junctions 
 
There are many possible strategies to achieve p-n junctions with carbon nanotubes. 
Examples include substitution of boron and nitrogen in the carbon lattice, doping by 
charge transfer from electrodes, atoms or molecules, or electrostatic control of the band 
bending. Figure 4.1 shows one of the strategies that has been implemented to fabricate 
such a device [Zho00]. The method hinges on the fact that the synthesized carbon 
nanotubes assembled into devices in air are predominantly p-type (this is discussed at 
length in Chapter 8). Thus, it is only necessary to reverse the doping on one side of the 
nanotube to obtain a p-n junction. This can be accomplished by protecting half of the 
nanotube with the photoresist PMMA, and exposing the uncovered half to potassium, 
which is an electron donor. The associated current-voltage curve for such a device 
(Figure 4.1) shows similarities with an Esaki diode, i.e. it shows negative differential 
resistance. 

 
Figure 4.1: Schematic of a chemically doped carbon nanotube p-n junction and the associated I-V 
curve. The sketches labeled B-E show the band-bending along different points of the I-V curve, and 
the different transport regimes.  Figures from, and after Ref. [Zho00].
 
The role of dopants in p-n junctions is to create an electrostatic potential step at the 
junction. In traditional planar devices, doping is essentially the only way to generate such 
a potential step. In nanotubes however, one can take advantage of the quasi-one-
dimensional geometry and use an external electrostatic potential to form the p-n junction. 
An example of this strategy [Lee04] using a buried split-gate structure is shown in Figure 
4.2. The advantages of this technique are that no chemical doping of the nanotubes is 
required, and that the device can be operated in several different modes in a controlled 
manner. Figure 4.2 shows the I-V curve for this device for three regimes of operation, 
allowing the transformation of the device from a p-n diode, to a n-p diode, and to a 
transistor-like device. 
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Figure 4.2: Top left: Split-gate structure to create a carbon nanotube p-n junction without the need 
to chemically dope the nanotube. Top right: Experimental current-voltage characteristics of such a 
device. Figures from Ref. [Lee04]. Bottom: Schematic illustrating the concept of the split gate 
architecture, including a sketch of the band-bending. 
 
To obtain an equation describing the current-voltage characteristics of carbon nanotube 
p-n junctions we consider the equation for the current through a ballistic conductor 

 ( ) ( )
24 ( ) L R
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⎡= − − −⎣∫ dE⎤
⎦  (4.1) 

where the subscripts R and L refer to the right and left leads, respectively. For non-
degenerate doping of the carbon nanotube, the transport across the p-n junction is through 



thermionic emission over the potential step; to model this situation we assume that the 
transmission probability ( ) 1T E =  for electrons (holes) at energies above (below) the 
conduction (valence) band. The current is then 
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where cE∞  is the energy of the conduction band edge on the n-type side far from the 
junction. When the doping is not too large, R

c FE E k∞ − T , the Fermi functions can be 
approximated as 

 
1 exp when 

1 exp

F
F

F

E Ef E E kT
kTE E

kT

− ⎞⎛= ≈ −⎜ ⎟⎞⎛ − ⎝ ⎠+ ⎟⎜
⎝ ⎠

. (4.3) 

Substituting this approximation in the expression for the current gives 
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Assuming that the band edge simply tracks the Fermi levels in the leads (i.e. far away 
from the junction), the difference R

c FE E∞ −  is independent of applied voltage; 
furthermore, since we have R L

F FE E eV− = we obtain 

 0 exp 1eVI I
kT

⎡ ⎞⎛ ⎤
= −⎜ ⎟⎢ ⎝ ⎠⎣ ⎦

⎥  (4.5) 

with 
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Equation (4.5) is the celebrated ideal diode equation describing rectifying behavior, 
except that here it was derived under the assumption of ballistic transport. 
 
Further development of the buried-gate approach has shown that such carbon nanotube 
diodes can achieve this ideal rectifying behavior. Figure 4.3 shows the measured I-V 
curves for a p-i-n diode, with the solid lines in the figure representing the modified diode 
equation 

 0 exp 1eVI I
nkT

⎡ ⎤⎞⎛= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (4.7) 
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where n is the ideality factor. The right panel in Figure 4.3 shows that at low bias, the 
experimental data satisfies this expression with an ideality factor n=1.2, close to the ideal 
diode value n=1. The inverse of the slope of the curve ln( ) /d I dV

 /
ln( )
dV nkT e

d I
α = =  (4.8) 

is plotted in the bottom inset in Figure 4.3 as a function of temperature clearly indicating 
the linear dependence of α on temperature. The inset in the left panel indicates that at 
high bias, the measured values of α does not approach zero at small temperatures as 
Equation (4.8) would suggest; the origin of this effect is unclear. Further analysis of the I-
V curves shows that the transmission probability is about 0.2, indicating that there is 
some amount of scattering in the nanotube. The device behavior can thus be improved by 
reducing scattering; one source of scattering is due to the interaction of the carbon 
nanotube with the substrate, which can cause geometrical deformations of the nanotube 
and also distortions of the nanotube electronic structure. This source of scattering can be 
removed by suspending the nanotube over a trench in the channel region, as shown in 
Figure 4.4. This device is fabricated by first growing a 400 nm thermal oxide on a 
heavily-doped Si substrate, on top of which two Mo split gates are fabricated using 
standard lithography, with a gate spacing between 0.5 micron and 1 micron. These split 
gates are then used as an etch mask to etch 250 nm of oxide. 150 nm of oxide is then 
deposited to form the gate dielectric for the split gates, and lithography is used to define 
source and drain electrodes. Carbon nanotubes were grown by chemical vapor deposition 
from catalyst particles on the electrodes. The current-voltage characteristics of this device 
follow the ideal diode equation with 1.n =  

 
Figure 4.3: Measured current-voltage characteristics of carbon nanotube p-i-n junctions. The left 
panel shows fits of the ideal diode equation with a series resistor (1–6 MΩ) in the high forward bias 
regime at 80, 160, and 240 K (bottom to top, offset for clarity). Inset: α for two different devices. The 
solid line indicates the expected temperature dependence for an ideal diode. The right panel shows 
I-V curves in the low forward bias regime at various temperatures. Top inset: Full I-V curves in 
forward bias at T=240 K (filed squares) and 120 K (filled triangles). Bottom inset: Temperature 
dependence of the inverse slope / (ln )dV d Iα = . Figures from Ref. [Bos06]. 



 

 
Figure 4.4: The inset shows a sketch of a buried-gate carbon nanotube p-n junction where the 
nanotube is suspended over a trench in the channel region. The main figure shows the measured 
current-voltage diode behavior (open symbols) as well as a fit to the ideal diode equation (solid 
line) including a contact resistance of 18MΩ. Figure from Ref. [Lee05]. 
 
 

4.2.2 Theory of Carbon Nanotube p-n Junctions 
 
While the experimens discussed in the previous section indicate that carbon nanotube p-n 
junctions can be fabricated and can behave as ideal diodes, such devices need to be 
examined more carefully to establish commonalities and differences with traditional 
devices.  The behavior of nanotube p-n junctions can be understood by performing self-
consistent calculations of the charge and electrostatic potential along the nanotube. 
Assuming azimuthal symmetry, the simplest model for the charge on the nanotube is 

 ( ) ( , ) ( )e ez f D E z F E dσ
ε ε

= − ∫ E  (4.9) 

where ε is the dielectric constant of the medium in which the nanotube is embedded, is 
the doping fraction, is the nanotube density of states at position  along the tube, 
and is the Fermi function. The density of states can be expressed as 

f
),( zED z
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where is the electrostatic potential along the nanotube. This expression for the 
spatial variation of the density of states is simply a rigid shift with the local electrostatic 
potential; while there are more sophisticated methods to calculate the actual local density 
of states and the occupation of the states that enters in the calculation of the charge, 

)(zV
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Equations (4.9) and (4.10) are sufficient to illustrate the general properties of nanotube p-
n junctions.  
 
The other equation necessary for the computations is the electrostatic potential 
( )V z generated by the charge density ( )zσ : 

  (4.11) ( ) ( ') ( ') 'V z K z z z dzσ= −∫
where σ  is the charge per unit area on the nanotube and )'( zzK − is the free space 
electrostatic kernel for a hollow cylinder: 

 
2

2 2 200
( ')

4 ( ') 2 2 cos
R dK z z

z z R R

π θ
πε θ

− =
− + −∫ . (4.12) 

The procedure is therefore to solve self-consistently Equations (4.9) and (4.11) for a 
given doping on the nanotube. Figure 4.5 shows results of such calculations for two 
doping fractions. Clearly, the band-bending in the nanotube is similar to what is observed 
in planar devices: a potential step at the junction and essentially flat bands away from the 
junction. The behavior is quite different, however, if one looks at the charge distribution. 
In a planar device, there is a region of constant charge near the junction, and no charge 
outside of that so-called depletion region. In contrast, for nanotubes, there is significant 
charging away from the junction. In fact, the charge decays only logarithmically away 
from the junction. This difference between planar and nanotube devices is again due to 
the different electrostatics of dipole sheets and dipole rings (see Chapter 3). In the planar 
device, having a dipole sheet at the junction is sufficient to ensure that the potential stays 
constant far away from the junction. For the dipole ring however, the potential decays 
away from the junction. Since the potential must be constant far away from the junction, 
charge must continuously be added along the nanotube to keep the potential from falling. 
To illustrate this important effect in more detail, we consider mathematically the behavior 
of bulk and nanotube p-n junctions. 
 



 
Figure 4.5: Calculated self-consistent band-bending and charge along a carbon nanotube p-n 
junction. The top two panels show the band-bending for two different doping fractions. The dotted 
line is the Fermi level. The bottom panel shows the charge distribution on the n-type side of the 
junction for different doping fractions, which can be read-off from the value of the vertical intercept. 
The inset in the bottom figure shows a scaling of all of the curves for the different doping fractions. 
Figure from Ref. [Leo99]. 
 
Bulk p-n junction 
 
All derivations of the electrostatics of bulk p-n junctions essentially start with the 
assumption of a depletion region near the junction where the dopants are completely 
depleted and where the charge is a constant. It is usually assumed that this depletion 
region ends abruptly at the depletion width W as illustrated in Figure 4.6. For equal and 
opposite doping on the two sides of the p-n junction, Poisson’s equation for this charge 
distribution is 

 
2

2

0
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d V z W z
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 (4.13) 
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where ρ is the charge density. This second order differential equation is augmented by the 
boundary conditions that the potential reach a value at the depletion edge that gives 
charge neutrality in the semiconductor: 

 ( )V W V±± = . (4.14) 

The difference V V+ −−  gives the so-called built-in potential . Integrating Equation 
(4.13) with this boundary condition leads to the solution 
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The constants are determined from the continuity of the derivative of the potential at 

. Applying this condition gives the solution for the potential 
A±

z W= ±

 

( )

( )

2

2

0
2 2

0
2 2( ) .

2

2

bi

bi

bi

bi

V z W z W

V z W W z
V z

V z W

V z W

ρ
ε
ρ
ε

⎧ − − < <⎪
⎪
⎪− + + − < <
⎪

= ⎨
⎪ ≥
⎪
⎪
⎪ − ≤ −
⎩

 (4.16) 

 
Continuity of the potential at 0z = gives the expression for the depletion width 

 bi
bulk

VW ε
ρ

= . (4.17) 

The spatial variation of the potential is sketched in Figure 4.6. The important point is that 
the assumption of a depletion region with constant charge naturally leads to a potential 
that is constant outside of the depletion region, and thus the semiconductor is charge-
neutral even at long distances from the junction. This result turns out to be entirely 
fortuitous and is a special property of bulk, planar interfaces. Nanotubes, with their 
reduced dimensionality have a much different behavior, as we now discuss. 



 

Figure 4.6: Charge distribution and band-bending for a symmetric bulk p-n junction. Dotted line is 
the Fermi level. 
 
Carbon nanotube p-n junction 
 
We first illustrate the problem that arises when the assumption of a constant depletion 
region is made for a carbon nanotube p-n junction. The critical difference with the bulk 
junction is that we no longer have an infinite dipole sheet, but rather have a nanometer-
size dipole ring. The potential due to a dipole ring can be calculated as 

 ( )
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The potential due to the n-type side is obtained by direct integration 
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Similarly, the potential due to the p-type region is 
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so that the total potential is given by 
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For large z this expression becomes 
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Thus, under the assumption of a finite depletion region with constant charge, the potential 
decays far away from the junction. This is in contrast to the bulk planar junction where 
the potential is constant outside of the depletion region. The decay of the potential far 
from the junction implies that the bands would fall below the charge neutrality position 
and that the nanotube would be charged far from the junction. To prevent this unphysical 
situation from happening, charge must be added to the nanotube outside of the depletion 
region to prevent the potential from decaying. This is the basis of the long-range charging 
in nanotube junctions. To obtain an expression for the charge outside of the depletion 
region, we consider the charge distribution 
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which is essentially a linear response model for the charge outside of the depletion 
region. The electrostatic potential is then 
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where  is the potential due to the finite width depletion regions. Since the potential 
is small in the depletion region, we extend the limits of integration in the integrals to get 

0 ( )V z

 . (4.26) 0( ) ( ) ( ') ( ') 'V z V z V z K z z dzα
−∞

−∞

≈ + −∫

To obtain the asymptotic dependence of this integral equation, we transform the potential 
and the electrostatic kernel to Fourier space. The Fourier representation of the kernel is 

 ( ) ( )0 0( )K q I qR K qR=  (4.27) 

where and are modified Bessel functions. The equation for the potential in Fourier 
space is 

0I 0K
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giving the solution 
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For small q (long distances) the Bessel functions have asymptotic behavior 
and 0 ( ) ~ constantI qR 0 ( ) ~ ln( )K qR qR−  giving the potential 

 0 ( )( ) ~
ln( )
V qV q

qR
. (4.30) 

The real space potential is given by the inverse transform 
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For large z, and because the integrand is dominated by small q, the integral can be 
approximated as 
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where the cut-off wavenumber . The integral gives ~ 1/cq z
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Thus, because the charge is linearly related to the potential through Equation (4.24) the 
charge outside of the depletion region follows the asymptotic behavior 

 1( ) ~ large 
ln( / )

z
z R

σ z ; (4.34) 

this function varies extremely slowly with distance, leading to long range charging of the 
carbon nanotube. This expression is in excellent agreement with the numerical results 
presented in Figure 4.5. 
 
While there is long-range charging of the carbon nanotube, there is still a depletion-like 
region near the junction where the carriers are fully depleted and the charge is constant. It 
is interesting to obtain expressions for the width of this depletion region as a function of 
doping. To do so, we first obtain an equation for the built-in potential by assuming that 
the potential step at the junction is due solely to the charge in the depletion regions: 
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For not too high doping, W and Equation (4.35) can be approximated as R
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giving the expression for the depletion width 
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As indicated by Equation (1.47), the built-in potential depends logarithmically on the 
doping and is therefore a slowly varying function of doping, and the main dependence of 



the depletion width on the doping [Equation (4.37)] comes from the 1/ρ factor in the 
exponential. As a consequence the depletion width is an extremely sensitive function of 
the doping, in constrast to the mild dependence on doping of bulk junctions, Equation 
(4.17). 
 
While we discussed the long distance charging in the context of p-n junctions, Schottky 
junctions between nanotubes and planar metals are also expected to show the same 
behavior, and this has been demonstrated experimentally. Figure 4.7 shows a scanning 
electron micrograph image of a nanotube connecting two Au electrodes, and the 
associated charge distribution away from the contact. The long distance charging is 
observed, as predicted theoretically. 
 

 
Figure 4.7: The left panel shows a scanning electron micrograph image of a nanotube between 
two electrodes. The right panel shows the charge along the nanotube, indicating long-distance 
charge transfer from the electrodes. Figure from Ref. [Bac01]. 
 
The much different charge distribution and electrostatics in nanotube junctions has 
dramatic impact on device design. For example, in traditional devices, the height of the 
potential step can be tailored by changing the doping. The depletion width in such 
devices depends weakly on the doping, thus allowing for precise control of the device 
properties. For nanotubes, however, the situation is quite different. Figure 4.8 shows the 
calculated depletion width for the nanotube p-n junction as a function of doping.  
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Figure 4.8: Calculated depletion width for a nanotube p-n junction as a function of doping. Figure 
from Ref. [Leo99]. 
 
Clearly the depletion width is extremely sensitive to the doping, and thus fluctuations in 
dopant levels from device to device can significantly affect the device characteristics. 
Furthermore, at high doping, the depletion width is so small that tunneling across the 
potential step prevents the device from rectifying. This tunneling phenomenon is the 
basic operating principle behind negative differential resistance devices, and is observed 
in the experimental device of Figure 4.1. It is thus interesting to model the properties of 
such devices. To do so requires computing the I/V curve, and this is done using the 
expression for the current in Equation (4.1) where the transmission probability for 
tunneling is calculated using the WKB approximation. Figure 4.9 shows the results of 
such calculations, which indicate negative differential resistance, with a large ratio of 
maximum to minimum current.  

)(ET

 
Figure 4.9: Calculated current-voltage curve for a nanotube p-n junction with high doping. The 
current-voltage curve shows negative differential resistance between 0.25 and 0.6 Volts. Figure 
from Ref. [Leo00]. 
 



4.2.3 Metal-Nanotube Junctions 
 
Sections 4.2.1 and 4.2.2 described intratube p-n junctions, where rectification comes 
from modulation of the doping within a single nanotube. In addition, we discussed how 
contacts between nanotubes and metals can also act as Schottky diodes. In this section, 
we are concerned with metal-semiconductor rectifiers where both the metal and the 
semiconductor are carbon nanotubes. Such devices can be fabricated by combining two 
different nanotubes: Figure 4.10 shows an experimental realization of one such device, 
consisting of two crossing nanotubes. Measurement of the individual conductance is used 
to determine the semiconducting or metallic character of each of the two nanotubes. 
Figure 4.11 indicates that the current between the metallic and semiconducting nanotubes 
(curve labeled MS) shows rectification. This rectification behavior can be understood 
from the fact that the band gap in a semiconducting nanotube arises from the opening of a 
symmetric gap around the Fermi points of a graphene sheet. Thus, the Fermi level is in 
the middle of the nanotube bandgap, and is at the same energy as the Fermi level in a 
metallic tube. This leads to the presence of a Schottky barrier at the crossing point 
between the two nanotubes equal to half the badgap, as illustrated in Figure 4.11. 

 
 
Figure 4.10: A nanotube device made of two crossing nanotubes. Figure from Ref. [Fuh00]. 
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Figure 4.11: Measured I-V curves for devices like the one in Figure 4.10. The metal-semiconductor 
(MS) junction shows rectifying behavior, due to a Schottky barrier at the junction, as illustrated in 
panel (d). Figure from Ref. [Fuh00]. 
 
The same Schottky barrier concept can be used to create intra-tube metal-semiconductor 
junctions. Figure 4.12 shows an image of a nanotube in a four probe measurement 
configuration, with a kink between the middle electrodes. Two-probe measurements 
show that one end of the nanotube is semiconducting, while the other end is metallic. 
Thus, the two segments of the nanotube correspond to different chiralities, and the angle 
at which they meet is determined by the presence of topological defects which allow a 
seamless junction. This type of p-n junction shows strong rectification, and its working 
principle has been described theoretically in reference [Odi00]. 

 



Figure 4.12: Intra-tube metal-semiconductor junction, and associated rectifying behavior. Figure 
from Ref. [Yao99]. 
 

4.3 Field Effect Transistors 
 
Ever since its invention, the transistor has been the workhorse of the electronics industry, 
with field-effect transistors dominating the mass consumer market. Simple field-effect 
transistors are easier to realize, as compared to other types of transistors, such as bipolar 
junction transistors, in that no intricate doping control is necessary to demonstrate the 
field-effect. It is no surprise then that some of the initial devices made with nanotubes 
have been field-effect transistors [Tan98, Mar98]. Figure 4.13 shows an atomic force 
micrograph image of one of the early nanotube transistors, which consists of a 
semiconducting nanotube bridging two Pt electrodes, and sitting on SiO2 between the 
electrodes. A heavily doped Si substrate serves as a back gate, which controls the 
switching action of the transistor. 

. 
Figure 4.13: Atomic force micrograph image and sketch of original nanotube transistor. The 
transistor action is controlled by changing the voltage on the Si back gate. Figure from Ref. 
[Tan98]. 
 
The drain current versus drain voltage characteristics of this transistor are shown in 
Figure 4.14. In going from a gate voltage of -3 volts to +6 volts, the device changes from 
high to low conductance, which correspond to the ON and OFF states, and thus providing 
the switching action of the transistor. 
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Figure 4.14: Current/voltage characteristics of an early nanotube transistor. Figure from Ref. 
[Tan98]. 
 
Since this original device, there has been much experimental and theoretical progress in 
the understanding of the physics that governs the transistor action, and in improvement of 
the device performance. An important outcome of this work is the fact that the type of 
contact (ohmic or Schottky) has a profound influence on the device behavior. 
 

4.3.1 Ohmic Contacts 
 
As discussed in Chapter 3, ohmic contacts to nanotubes have been reported in the 
literature. Because of the ohmic contacts, the physics governing the transistor action is 
bending of the bands in the channel by the applied gate voltage. Theoretical work 
[Leo02a] to explain this behavior has been presented in the literature. Results of such 
work, based on quantum transport calculations, are presented in Figure 4.15. As 
illustrated in this figure, the device consists of a single-wall, semiconducting carbon 
nanotube, embedded in metal contacts on either side, defining the source and drain. 
Between the source and drain electrodes, an insulating dielectric surrounds the nanotube 
up to a radius of 10 nm. A cylindrical gate of radius 10 nm wraps the dielectric and 
serves to control the device behavior. In the calculations, the nanotube and the metals are 
separated by a van der Waals distance of 0.3 nm. (The insulator has dielectric constant of 
3.9, as for SiO2, and it is also separated from the tube by 0.3 nm.) A zigzag nanotube of 
index (17, 0) is considered, which has a radius of 0.66 nm and band gap 0.55 eV. The 
metal Fermi level is chosen to be 1 eV below the nanotube midgap before self-
consistency. (For the nanotube midgap 4.5 eV below the vacuum level, this corresponds 
to a metal work function of 5.5 eV.) Panel (a) in the figure shows the calculated zero bias 
conductance as a function of the gate voltage. The device shows three regimes: in regime 
I the conductance is high, corresponding to the ON state of the transistor. In this regime, 
the bands are essentially flat [Figure 4.15b] so there is little scattering of electrons at the 
Fermi level. (Even though the transport is “ballistic”, a spatially-varying potential can 



cause scattering of electrons.) Since the conduction band has a degeneracy of two, the 
conductance in this regime saturates to a value close to two quanta of conductance. As 
the gate voltage is increased, the conductance decreases sharply, and the transistor enters 
the OFF regime. This regime is characterized by a large barrier in the middle of the 
nanotube that blocks the electrons (there is a small leakage current due to source-drain 
tunneling). As the gate voltage is further increased, the channel is driven into inversion. 
While for micron-sized channels this inversion would lead to a permanent turn-on of the 
conductance, for nanometer-sized channels the situation is quite different. In this case, 
the band bending creates an electrostatic quantum dot in the middle of the nanotube, 
leading to the appearance of localized energy levels. Thus, the inversion regime in 
nanotube transistors with nanoscale channels consists of resonant tunneling through these 
discrete levels, leading to a peak in the conductance in regime III. This regime is 
expected to have intriguing behavior such as high frequency response and has yet to be 
explored experimentally. 

 
Figure 4.15: Left panel: Schematic cross section of a carbon nanotube field-effect transistor with a 
cylindrical gate. The gray areas are the gate and the metallic source and drain contacts to the 
nanotube. The hatched areas represent the dielectric that surrounds the nanotube, and the cross-
hatched area is the nanotube. The source-drain separation is 10 nm; the cylindrical gate has a 
radius of 10 nm. (a) The calculated zero-bias conductance of the nanotube field-effect transistor. 
(b-d) Band-bending associated with regimes I, II and III of panel (a). Dotted line is the Fermi level. 
Figure from Ref. [Leo02a]. 
 
As we discussed in Chapter 3, ohmic contacts to carbon nanotubes have been realized 
experimentally using palladium as the contact metal. Nanotube field-effect transistors 
with palladium contacts and channel lengths of a few hundred of nanometers have 
achieved ON state conductances close to two quanta of conductance [Jav03]. However, 
increasing the channel length to a few microns severely decreases the ON state 
conductance, consistent with the electron-phonon scattering mean-free path of 1.5 
microns. Thus for ohmically-contacted nanotubes, the ON state conductance is limited by 
scattering in the channel, and channel lengths less than the electron-phonon scattering 
mean-free path are essentially ballistic. 
 



21 
4: Electronic Devices with Semiconducting Nanotubes 

The temperature dependence of the ON state conductance also provides further evidence 
for the presence of ohmic contacts. Indeed, using Equation (2.11) and assuming perfect 
transmission through the contacts and the nanotube, we can obtain the temperature-
dependent ON state conductance as [Leo06b] 
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where v FE EΔ = −  represents the position of the Fermi level in the valence band. The 
monotonically decreases with increasing temperature in agreement with the data 
presented in Figure 3.8. Thus, even in carbon nanotube field-effect transistors without 
electron-phonon scattering it is expected that the conductance will decrease with 
increasing temperature, and can be reduced by as much as a factor of two at room 
temperature compared to its low-temperature value.  

 
Figure 4.16: (a) Transfer characteristics of carbon nanotube field-effect transistors with ohmic 
palladium contacts. The main panel shows that a device with a channel of 3 microns reaches only 
1/100th of the maximum possible ON conductance. However, when the channel length is reduced 
to 0.3 microns, the ON state conductance is within a factor of 5 of the maximum possible value. (b) 
Distribution of ON state conductance for a number of devices illustrates the role of the channel 
length. Figure from Ref. [Jav03]. 
 
The main conclusion of this section is that the behavior of ohmic nanotube transistors is 
determined by changes in the band-bending and scattering in the channel region. As we 
will see in the next section, nanotube transistors with Schottky contacts behave much 
differently. 
 

4.3.2 Schottky Contacts 
 



As we have discussed in Chapter 3, electrical contacts to carbon nanotubes are often 
characterized by the presence of Schottky barriers. Normally, the current across such 
contacts is dominated by thermionic emission, where electrons must be thermally excited 
over the Schottky barrier. However, if the band bending near the contact is very sharp, 
electrons can tunnel through the barrier, leading to a much increased current. This is 
precisely the effect that governs the operation of Schottky barrier nanotube transistors, as 
illustrated in Figure 4.17. 

 
Figure 4.17: Band bending in a Schottky barrier nanotube transistor, for two values of the gate 
voltage. Figure after Ref. [App02]. 
 
In part (a) of this figure, the band-bending is sketched for the OFF state of the transistor. 
At this gate voltage, the band-bending near the contact is small, the tunneling length is 
long, and consequently the tunneling current is small. Increasing the gate voltage as in 
panel (b) raises the bands in the middle of the nanotube, leading to a much sharper band-
bending at the contacts. This reduces the tunneling distance at the contacts and leads to 
larger current. The device operation is thus controlled by modulation of tunneling at the 
contacts, a mechanism that is entirely different form conventional transistors and ohmic 
contact nanotube field-effect transistors. This effect of the gate voltage on the contact 
behavior has been demonstrated using computer simulations [Hei02]. Figure 4.18 shows 
a cross-section of the nanotube transistor considered for the calculations. The calculations 
proceed as described earlier, with the charge and the potential on the nanotube calculated 
self-consistently; the transmission due to tunneling through the band-bending at the 
contact is obtained from the WKB approximation, and the conductance is calculated from 
the transmission using the Landauer formula, Equation (4.1). For a calculated potential 
variation  along the length of the carbon nanotube, the transmission probability 
within the WKB approximation is given by 
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where is the imaginary part of the wavevector as a function of position along the 
carbon nanotube and are the classical turning points. Tunneling through the 
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contact band-bending is illustrated in Figure 4.19, indicating that the imaginary part of 
the wavevector depends on distance along the nanotube because of the band-bending. To 
obtain an expression for the imaginary part of the wavevector as a function of energy and 
distance, we begin by deriving a simple expression for its dependence on energy. As 
discussed in Chapter 1, near the Fermi points the bandstructure is given by 
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and expressing k in terms of E from this equation gives 
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For values of / 2gE E< the wavevector is imaginary; this imaginary value is zero at the  

 
 



Figure 4.18: (a) Sketch of a carbon nanotube transistor with Schottky barriers at source and drain. 
Solid lines are lines of constant electrostatic potential for a gate voltage of 2 V. (b) Room 
temperature conductance as a function of gate voltage for different values of the electron Schottky 
barrier height. (c) Band-bending near the contact for two values of the gate voltage. Figure from S. 
Heinze. 
 
band edges and reaches a maximum at midgap. The dependence of Im(k) on energy is 
shown in Figure 4.19 for a nanotube with 0.6 eV bandgap. For this nanotube, the 
maximum value of the imaginary part of k is about 0.5 nm-1 corresponding to a decay 
length of about 2 nm; one might therefore expect that tunneling will become important 
when the tunneling length is less than about 10 nm. 

 
Figure 4.19: Top panel: Imaginary part of the electron wavevector for a carbon nanotube with a 
bandgap of 0.6 eV. The imaginary part of the wavevector is zero at the band edges and reaches a 
maximum at midgap. Bottom left panel: Illustration of tunneling through band-bending at a 
nanotube/metal contact, with the transmission probability , the imaginary part of the 

wavevector  and the two classical turning points . Bottom right panel: Sketch of 
the imaginary part of the wavevector as a function of distance along the nanotube. The area under 
the curve enters the calculation of the transmission probability. 

( )T E
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To calculate the tunneling probability from Equation (4.39) the spatial dependence of k is 
also needed. We assume that the electrostatic potential  is known and simply shift 
the nanotube bandstructure locally by this electrostatic potential. Therefore, the energy 
and spatial dependence of the imaginary part of the wavevector is 

( )V z
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and the transmission probability is 
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Once the transmission probability is known for the relevant range of energies, the 
conductance is calculated from 
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Figure 4.18b shows the calculated conductance as a function of gate voltage for different 
values of the electron Schottky barrier (the barrier for holes is simply the nanotube 
bandgap minus the electron barrier). The main curve in this figure corresponds to a 
situation where the metal Fermi level is exactly in the middle of the nanotube bandgap. 
The barriers for electrons and holes are equal and the device turns on at both positive 
(electron conduction) and negative (hole conduction) values of the gate voltage. For 
unequal electron and hole barriers, the conductance versus gate voltage curve is 
asymmetric, with much larger current for the side with the smallest barrier (in the case of 
Figure 4.18b the smallest barrier is for electrons). The origin of the conductance 
modulation by the gate voltage is illustrated in Figure 4.18c. There it is shown that an 
increase of the gate voltage leads to a sharper band-bending in the vicinity of the contact, 
substantially reducing the tunneling length at the Fermi level (from 40 nm to 10 nm in 
this particular case). Since tunneling probabilities depend exponentially on tunneling 
length, the device conductance increases very rapidly with increase in gate voltage. 
 
4.3.3 Subthreshold Swing  
 
A key performance parameter of field-effect transistors is the subthreshold swing S 
defined as 
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and is a measure of the effectiveness of the gate in changing the channel conductance. In 
a traditional channel-controlled transistor, the smallest subthreshold swing is achieved 
when a change in the gate voltage leads to the same shift of the bands, i.e. the gate fields 
are unscreened. This corresponds to a situation where 
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The conductance can be calculated from the expression in Equation (4.44), assuming that 
the transmission probability is equal to 1 for energies below the minimum of the valence 
band. Under this assumption, the conductance reads 
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and the subthreshold swing is 
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which is equal to 60 meV/decade at room temperature. 

 
Figure 4.20: Illustration of the ideal subthreshold swing in a p-type field-effect transistor. At finite 
temperature, the small bias conductance is governed by thermal excitation of holes over a potential 
barrier EB in the middle of the channel. The ideal device behavior occurs when a change ΔVG in the 
gate voltage is unscreened and leads to a change -eΔVG in the position of the band edge in the 
middle of the channel. 
 
This traditional derivation of the subthreshold swing assumes that the device 
characteristics are controlled by band-bending in the channel and that conduction is 
determined by thermal excitation of carriers; it applies to carbon nanotube field-effect 
transistors with ohmic contacts. In practice, the gate oxide screens the gate fields, and the 
coupling between the gate and the channel is not perfect, which causes the subthreshold 
swing to be larger than the ideal value given by Equation (4.48). The typical strategy to 
reduce the subthreshold swing is to decrease the oxide thickness to improve the coupling, 
and this will be discussed in the next section. However, because the switching 
mechanism is fundamentally different in Schottky barrier nanotube transistors, the 
geometrical requirements for improving device performance are also quite different. 
Indeed, in the case of the Schottky barrier nanotube transistor the band-bending at the 
contact is the key issue that affects device performance, and enhancing the effect of the 
gate on this band-bending is the key challenge in device design. For example, it is clear 
from the equipotential lines in Figure 4.18a that the contacts significantly screen the gate-
induced electric fields. Two ways have been proposed to improve the impact of the gate 
voltage on the band-bending at the contact [Hei02]. The first approach follows that of 
conventional transistors and consists of decreasing the gate oxide thickness. Figure 4.21 
shows the calculated conductance versus gate voltage curve for the device of Figure 
4.18a, for a fixed contact thickness of 50 nm, but with oxide thicknesses ranging from 60 
to 120 nm.  As expected, this improves the device performance, with a larger ON 
conductance and lower threshold voltage. More importantly, the dash-dotted line in 
Figure 4.21 shows that reducing the thickness of the contact from 50 nm to 5 nm leads to 
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further performance improvement, a mechanism that does not occur in traditional 
channel-controlled devices. From this insight, it is clear that the ultimate behavior is 
obtained for a needle-like contact and a cylindrical gate, as the open circles in Figure 4.21 
indicate. 

 
Figure 4.21: (Top): Influence of transistor geometry on the device characteristics of Schottky 
barrier nanotube transistors. The four right-most curves correspond to different thicknesses of the 
oxide above the nanotube, as labeled, with all other parameters as in Figure 4.18. (The curve for 
100 nm is the same as that in Figure 4.18b for a Schottky barrier height of 0.3 eV.) The dot-dashed 
curve shows the conductance when the contact thickness is reduced to 5 nm. The curve at the left 
corresponds to a needlelike metal electrode and cylindrical gate. Open circles are calculated as for 
the other curves, solid curve uses the exact electrostatic kernel. All calculations are at room 
temperature. (Bottom): The graph shows the same curves, but for each curve the gate voltage is 
rescaled by the voltage at which the conductance is 10-8

 S. (The five rightmost curves cannot be 
distinguished on this scale, forming a single line). Figure from S. Heinze. 
 
The much different physics behind the operation of Schottky barrier nanotube transistors 
has important implications on the scaling of various performance parameters with device 
dimensions. As discussed above, it was predicted that reducing the thickness of the gate 
insulator improves the subthreshold swing because it allows the gate to more effectively 
modulate the band-bending at the contact. Such a behavior has been verified 
experimentally by fabricating nanotube transistors with gate oxide thickness between 2 
and 20 nm. The current-voltage characteristics of these transistors shown in Figure 4.22 
clearly indicate that the devices with the smaller gate oxides have smaller subthreshold 
swings. This behavior is quantitatively plotted in the right panel of Figure 4.22 which 
shows that the subthreshold swing decreases rapidly as the gate oxide thickness is 



reduced, but that the improvement is smaller for reduction of the gate oxide thickness 
below 5 nm.  This can be understood by considering the unscreened band-bending at the 
contact for a double-gate geometry with a vanishingly thin contact[Hei03], as illustrated 
in the top inset in the right panel of Figure 4.22. (By unscreened, we mean that the charge 
on the carbon nanotube is not considered in the calculation. This is a good approximation 
as long as the Fermi level is more than kT away from the band edge.) For this device 
geometry, the potential near the contact is [Hei03] 
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where  is the gate oxide thickness. Substituting this expression in Equation (4.43) 
gives 
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Since the transmission depends on the ratio / gV V , plays the role of a rescaling 
voltage. The conductance is calculated from 
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and 
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These expressions can be simplified by assuming that / 2 1gy E kT= to obtain 
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The conductance increases exponentially with gate voltage and scales with  since V is 
proportional to . The threshold voltage can be defined as the gate voltage at which the 
conductance decreases by a factor of 1000 from its saturation value: 
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Thus the threshold voltage is also zproportional to . The subthreshold swing at the 
threshold voltage is then 
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and is also proportional to . The important point is that this scaling behavior of the 
subthreshold swing with gate oxide thickness is different from that in conventional 
MOSFETS because the switching is controlled by Schottky barriers at the contacts. 
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As the thickness of the oxide becomes quite small, the above analysis breaks down since 
the fields at the contact no longer follow the simple expression used for the calculations. 
But in the limit of very thin oxides, the subthreshold swing must approach the theoretical 
limit of ; a simple empirical expression for S is  ( / )ln10kT e
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The solid lines in the right panel of Figure 4.22 show that such an expression describes 
well the experimental and computational results. It is important to note that the scaling 
with  is a consequence of the particular form of the electrostatic potential at the 
contact. For a different device geometry this functional form may be different giving 
another scaling form. In particular, for an infinitely thick contact [Hei03], the 
electrostatic potential varies as  leading to a scaling . 
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Figure 4.22:  The left panel shows the current vs gate voltage characteristics of Schottky barrier 
carbon nanotube transistors for different gate oxide thicknesses. The right panel shows the 
measured and calculated (see text for detail) subthreshold swing as a function of the inverse gate 
oxide thickness. Figures from Ref. [Hei03] and from S. Heinze. 

 
4.3.3 High-κ Dielectrics  
 
High-κ dielectrics for gate insulators have been the subject of intense research in the 
semiconductor industry. The driving force behind this activity is that reducing the 
channel length in transistors also requires a reduction of the gate oxide thickness to 
maintain the gate efficiency. For SiO2, current technologies utilize a thickness of only a 
few atomic layers, and further reduction of this thickness leads to channel-gate leakage 
current because of tunneling.  For this reason, alternative materials to SiO2 are being 
explored, with the requirement that they have the same or larger gate capacitance and low 
leakage current. Because capacitance is essentially the ratio of the dielectric constant to 
the gate insulator thickness, high-κ dielectrics allow the gate oxide thickness to be 
increased (to limit leakage) while maintaining or even increasing the capacitance. At the 
time of writing of this manuscript, major semiconductor manufacturers are announcing 
that chips using HfO2 ( 25κ = ) as the gate insulator will soon be available. 
 
Integrating new high-κ dielectrics in existing silicon technology is a complex process 
which is very much dependent on the ability to grow high-quality thin oxide layers and 
the ability to form good interfaces with the channel material. The same issues are faced in 
carbon nanotube transistors. While it has been demonstrated that SiO2 is a relatively good 
substrate for carbon nanotubes, it is by no means obvious that high-κ dielectrics will form 
good interfaces with the nanotubes. An example of this is shown in Figure 4.23 [Lu06]. 
There the goal is to coat a carbon nanotube with a thin layer of HfO2 as a gate insulator. 
Unfortunately, the HfO2 has poor wetting properties on bare carbon nanotubes, and it is 
impossible to form a continuous, uniform layer directly on the nanotubes. However, 
Figure 4.23 also shows that coating the nanotubes with DNA allows the formation of a 
good oxide layer. Transistors fabricated with such DNA-coated nanotubes and a 3nm 
HfO2 gate insulator can achieve low subthreshold swings because of the large gate 
capacitance. 
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Figure 4.23:  Left image: Growth of HfO2 by atomic layer deposition on carbon nanotubes with (a) 
and without (b) a DNA coating. Top images in both panels are atomic force microscope images of 
carbon nanotubes with about 5 nm of HfO2. Middle panels are sketches of the expected wetting 
behavior. The bottom panels show transmission electron microscopy images of a 5 nm layer of 
HfO2 on the carbon nanotubes. Good wetting is seen in the case of DNA-functionalized nanotubes. 
Right image: Transfer characteristics of a carbon nanotube transistor with 3 nm of HfO2 as the gate 
dielectric. The subthreshold swing approaches the theoretical room-temperature limit of 60 
mV/decade. Figures from Ref. [Lu06]. 
 
One high-κ material that has been found to form good interfaces with nanotubes when 
grown using atomic layer deposition is ZrO2 [Jav02a]. Figure 4.24 shows that the 
deposition of ZrO2 over a carbon nanotube sitting on SiO2 gives a highly conforming 
interface between the ZrO2 and the nanotube. This property allows the fabrication of top-
gated field-effect transistors with thin layers of high-κ dielectric, which show low 
subthreshold swing and low leakage current (Figure 4.25). 

 
 



Figure 4.24: ZrO2 as a high-κ dielectric for carbon nanotube field-effect transistors. Panel (a) 
shows a sketch of the device with the top gate geometry. (b) Scanning electron microscopy image 
of a carbon nanotube transistor viewed from the top. (c) Tranmission electrom microscopy (TEM) 
image of the interface between ZrO2 and SiO2. (d) TEM image of the ZrO2/SiO2 interface including 
a carbon nanotube (bright circular spot in the image). Figure from Ref. [Jav02a]. 

 
Figure 4.25: Characteristics of a p-type nanotube field-effect transistor with high-κ gate insulator. 
a) Ids–Vgs curves recorded under Vds=–100 mV with bottom Si/SiO2 gate (circles) and top-gate/ZrO2 

(solid curve) respectively.The bottom-gate was grounded during top-gate operation. b)Ids–Vgs curves 
recorded with top-gate/ZrO2 at bias voltages of Vds=–10 mV,–0.1 V and –1 V,respectively. c) Ids–Vds 

curves of the transistor recorded for various top-gate voltages at 0.1 V steps. d) Gate leakage 
current versus top-gate voltage. The leakage current is negligible (at the pA level) until Vgs > 3 V. 
Figure from Ref. [Jav02a]. 
 
4.3.4 Logic Circuits  
 
The discovery of transistor behavior in carbon nanotubes was critical in demonstrating 
their potential for future electronic devices. The next step in this progress is to 
demonstrate that combining several devices can lead to logic function. While this may 
appear relatively simple at first glance, it requires the ability to control and combine the 
properties of p-type and n-type devices, and carbon nanotube devices are typically p-type. 
One strategy to form n-type nanotubes is to utilize the strong effects of gases on the 
nanotube electronic properties (this will be discussed in more detail in Chapter 8). For 
example, Figure 4.26 shows that vacuum annealing or exposure to potassium of initially 
p-type carbon nanotube transistors converts them to n-type devices. For the vacuum 
annealed nanotubes, this conversion to n-type behavior can be reversed by exposing the 
nanotube to oxygen, as indicated in Figure 4.27.  
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Figure 4.26: Conversion of p-type carbon nanotube transistors to n-type by (a) vacuum annealing 
at 700K for 10 min, (b) exposure to potassium. Figure from Ref. [Der01]. 
 
Therefore, one strategy to make both p-type and n-type devices for logic circuits is to first 
convert the nanotubes to n-type by vacuum annealing. The nanotubes that are to stay n-
type are protected by PMMA, while the others are exposed to oxygen and converted to p-
type. The two types of transistors are then electrically connected to form an inverter 
circuit (illustration Figure 4.27c). An example of the measured Vin versus Vout 
characteristics of such devices is shown in panel (d) of Figure 4.27, indicating that a 
positive Vin gives a negative Vout, and vice-versa; the device thus inverts the input 
voltage. 
 



 
Figure 4.27: Fabrication of a voltage inverter (“NOT” logic gate) using two nanotube field-effect 
transistors. Initially the two transistors are p-type. One of them is protected by PMMA, the other is 
not. (a) After vacuum annealing both transistors are converted to n-type. (b) The two devices are 
exposed to oxygen (10-3 Torr of oxygen for 3 min). The unprotected transistor (black curve) 
converts back to the original p-type, while the protected nanotube (red curve) remains n-type. (c) 
The two complementary transistors are wired as shown in the schematic. (d) Characteristics of the 
resulting intermolecular inverter are shown. Figure from Ref. [Der01]. 
 
More complicated logic circuits using a larger number of individual nanotube transistors 
have also been demonstrated. Figure 4.28 shows the operation of NOR, OR, NAND, and 
AND gates, as well as an oscillator, utilizing up to six individual nanotube transistors. 
While the frequency of the ring oscillator is rather low, this is a consequence of the 
simple connection of the transistors through coaxial cables, and the performance can in 
principle be significantly improved by direct interconnects on the chip. 
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 Figure 4.28: Several types of logic circuits using several carbon nanotube transistors. (a) NOR; (b) 
OR; (c) NAND; (d) AND gates. The bottom figure shows a ring oscillator. Figure from Ref. [Jav02b]. 
 
Recent progress in carbon nanotube logic circuits is the fabrication of these circuits on a 
single carbon nanotube. Figure 4.29 shows a single bundle of carbon nanotubes making 
contact to three electrodes, producing two p-type transistors in series. This nanotube is 
then covered with PMMA, and a window is opened between two of the electrodes. 
Exposure of this channel to potassium causes a transformation from p-type to n-type, and 
a common back gate to the two channels is used to operate the device as an inverter. 
 



 
Figure 4.29: a) Atomic force microscope image showing the geometry of a carbon nanotube 
inverter. A single nanotube bundle is positioned over the gold electrodes to produce two p-type 
nanotube field-effect transistors in series. The device is covered by PMMA and a window is opened 
by e-beam lithography to expose part of the nanotube. Potassium is then evaporated through this 
window to produce a n-type field-effect transistor, while the other nanotube remains p-type. (b) 
Characteristics of the resulting intramolecular voltage inverter. Open red circles are raw data for 
five different measurements on the same device (V = ± 2 V). The blue line is the average of these 
five measurements. The thin straight line corresponds to an output/input gain of one. Figure from 
Ref. [Der01]. 
 
Extension of this idea of making a circuit entirely on a single carbon nanotube has 
recently shown that multistage ring oscillators can be fabricated using long carbon 
nanotubes. Figure 4.30 shows a scanning electron microscope image of an 18 micron 
carbon nanotube with multiple source, drain and gates. The arrangement actually consists 
of 10 nanotube transistors (5 p-type, 5 n-type) arranged in goups of two (1 p-type, 1 n-
type) to form 5 inverters in series. Interestingly, the approach to make the p-type and n-
type transistors is different from what we have already discussed. Here, two different 
metals (Pd and Al) are used as the gate material to make the two types of transistors. The 
idea is that the large workfunction difference between Pd and Al (about 1 eV) effectively 
acts like an extra gate voltage, shifting the I-V curve on the Vg axis. Thus, one takes 
advantage of the ambipolar nature of the transport, and brings the positive Vg turn-on in 
the window of the negative Vg turn-off: as one device turns-off the other turns on giving 
the inverter characteristics. This is illustrated in Figure 4.30b which shows about a 1 V 
shift of the Pd I-V curve to the left when Pd is replaced with Al. 
 
The frequency dependence of the signal is shown in Figure 4.30d for different values of 

 showing resonance frequencies in the range of 13 to 52 MHz.  The magnitude of the 
resonant frequency and dependence on  can be understood as follows: the expected 
frequency for a N-stage ring oscillator is [Che06] 

ddV

ddV

 1
2

f
Nτ

=  (4.60) 

where τ is the stage delay time given by the RC constant 
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I

τ = =  (4.61) 

Therefore, the resonance frequency can be expressed as 

 .
2

If
CVN

=  (4.62) 

The capacitance per stage in the oscillator is estimated to be 1.8 fF, while for 
the DC current in a single transistor is about 1 A0.92 VddV = .μ  For a 5 stage oscillator 

this gives a frequency 59 MHzf = in good agreement with the experiment. The point is 
that this measured resonance frequency is due to the parasitics and not to the intrinsic 
properties of the nanotube. The increase of the resonance frequency with increasing  
is a consequence of the increase in the current through a single transistor as  is 
increased (i.e. the current is not saturated with 

ddV

ddV

gsV ). Another consequence of this effect 
seen in Figure 4.30d is the increase of the signal power with increase in  The signal 
attenuation is due to the impedance mistmatch between the output of the ring oscillator 
and the spectrum analyzer. 

.ddV

 
Figure 4.30: Multistage ring oscillator fabricated on a single carbon nanotube. (a) Scanning 
electron microscope image of the five-stage ring oscillator, as well as test inverter. (b) Current-



voltage characteristics of the p-type transistors with Pd gate, and the n-type transistors with Al gate. 
(c) Characteristics of the test inverter. (d) Frequency response of the ring oscillator. The different 
colored curves correspond to different values of Vdd equal to 0.5 V and 0.56 V to 0.92 V (in 0.04 V 
imcrements) from left to right. Figure from Ref. [Che06]. 
 
4.3.5 Mobility  
 
While carbon nanotubes are lauded for their promise as ballistic conductors, for long 
enough channel lengths, scattering with defects, phonons, etc. eventually leads to 
diffusive behavior, and the introduction of a mobility μ. 

 
Figure 4.31:  Behavior of long-channel carbon nanotube transistors, indicating extremely large 
field-effect and intrinsic mobilities. The scale bar in A is 100 μm long. Figure from Ref. [Dur04]. 
 
The mobility of the charge carriers is defined through the relation 

 / nμ σ=  (4.63) 

where σ  is the conductivity and is the carrier concentration. For diffusive transport, 
the conductivity is related to the conductance as 

n
G

 GLσ =  (4.64) 

where  is the length of the nanotube. For a p-type channel near threshold, the charge 
density is proportional to deviations of the gate voltage from the threshold voltage: 

L

 ( )th gn C V V= −  (4.65) 

and the mobility is therefore 
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Another quantity of interest when evaluating device performance is the field-effect 
mobility defined as 

 FE
g

L G
C V

μ ∂
=

∂
. (4.67) 

Figure 4.31 shows the measured field-effect mobility, which attains a value of 79 000 
cm2/Vs at room temperature, almost two orders of magnitude larger than that typically 
achieved in Si MOSFETs. The intrinsic mobility exceeds the highest reported mobility in 
bulk materials, 77 000 cm2/Vs, the Hall-mobility of InSb. (It should be noted that 
subsequent experiments [Zho05] have obtained field effect mobilities in the range 1500-
20 000 cm2/Vs and have suggested that the very large mobilities could origininate from a 
non-uniform response of the nanotube to the gate field.) 
 
Without a detailed atomistic study of the particular nanotube used in the experiments, it is 
difficult to ascertain the role of defects in causing the diffusive behavior. However, 
phonons undoubtedly cause electron scattering, leading to diffusive behavior. Theoretical 
work has addressed this issue by considering electron-phonon scattering in 
semiconducting carbon nanotubes [Per05]. The approach is similar to what was presented 
in Chapter 2 for electron-phonon scattering in metallic carbon nanotubes: the scattering 
time and scattering length are calculated using Fermi’s Golden rule for the electron-
phonon interaction and the Boltzman equation is solved in the presence of an electric 
field to obtain the carrier velocity and mobility as a function of the electric field from the 
non-equilibrium carrier distribution. The essential difference here is the much different 
band structure of semiconducting and metallic nanotubes. 
 
The results of such calculations are presented in Figure 4.32 for a (25,0) semiconducting 
carbon nanotube. We first note that the binding energy, representing the distortions of the 
bandstructure due to the electron-phonon interaction, tends to be small and relatively 
independent of energy. This effect was discussed in Chapter 1 in the context of the 
bandgap renormalization by phonons, and will not be discussed further here. Instead, we 
focus on the scattering time as a function of energy in the conduction band, as shown in 
the panels of Figure 4.32. It is clear from this picture that the scattering time is sensitive 
to both energy and temperature. The scattering time can be as small as a few hundreths of 
picoseconds, but can also reach picoseconds for energies not too far from the conduction 
band edge. Thus, for devices where injection of carriers is a fraction of an eV in the 
valence or conduction bands, ballistic transport should be possible in defect-free 
nanotubes over long distances. It turns out that almost all of the scattering is from 
phonons near the Г and K points of the graphene Brillouin zone. The lowest energy 
phonon band gives negligible scattering. The second lowest energy phonon mode is an 
acoustic mode that gives large scattering near the band edge, and correspondingly small 
scattering time. For the (25,0) nanotube, the third lowest energy phonon mode is the 
radial breathing mode with energy of 15 meV, leading to a dip in the scattering time at 
about 0.02 eV above the conduction band edge. The next phonon mode with important 



electron-phonon scattering is a longitudinal acoustic mode which gives a scattering 
length of about 5 microns (the scattering length is simply the scattering tim e times the 
Fermi velocity). Longitudinal optical phonons at the Г and K points give the strongest 
scattering, significantly reducing the scattering length to the 20-40 nm range.  
 
For device applications and comparison with experiment, what matters is the total effect 
of all of the phonon modes on the conductivity, as captured by the mobility. Figure 4.33 
shows the calculated drift velocity and mobility as a function of the electric field. The 
maximum drift velocity for this particular nanotube is  which is about a 
factor of five larger than silicon. The mobility obtained from the saturation velocity is 
plotted in Figure 4.33b, which attains values of at fields of 1V/μm. More 
importantly, the graph indicates that a simple relation exists between the mobility and the 
electric field: 

75 10  cm/s×

3 25 10  cm /Vs×

 
Figure 4.32: Electron-phonon scattering time vs electron energy relative to conduction band edge, 
for a (25,0) tube. Solid curves are for T = 300 K, dotted curves are for T = 10 K. Figure from V. 
Perebeinos. 
 

  (4.68) 1 1 1
0 sv Eμ μ− − −= +

where sv is the saturation velocity and E is the electric field. The zero-field 
mobility 0μ takes a wide range of values depending on the diameter of the nanotube: from 
15 000 cm2/Vs for a (13,0) nanotube to 65 000 cm2/Vs for a (25,0) nanotube. Indeed this 
dependence on diameter is plotted in Figure 4.33 for different temperatures. The behavior 
can be captured by the phenomenological relation 

 ( )0 1
300,
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K dt d

T

α
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⎝
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 (4.69) 

with  and 2
1 12000 cm /Vsμ = 2.26.α =  
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Figure 4.33: Left frame: (Top) Drift velocity vs electric field at T = 300 K (solid curve) and T = 10 K 
(dotted curve) in a (25,0) nanotube. (bottom) Inverse mobility at T = 300 K vs electric field for a 
(25,0) nanotube (triangles); (19,0) nanotube (squares); and (13,0) nanotube (circles). Right frame: 
Zero-field mobility vs tube diameter, for tubes of many different chiralities. Solid lines are from 
analytical model, Equation (4.69). Figures from V. Perebeinos. 
 
Since the mobility due to electron-phonon scattering is sensitive to the presence or 
absence of available states, carrier concentration can have a strong impact on the mobility 
because states in the conduction or valence bands become occupied by the carriers. These 
carriers may originate from doping, or from capacitive coupling to an external gate (see 
for example Equation 4.65 and the experimental results of Figure 4.31). To explore this 
effect, theoretical calculations have used a Boltzman transport approach with electron-
phonon interactions to calculate the mobility as a function of the carrier density [Per06]. 
Results of such calculations at low fields are presented in Figure 4.34. The mobility 
initially increases with an increase in the carrier density, reaches a maximum and 
decreases at high carrier concentrations. To understand the origin of this behavior, we 
consider the classical relationship between the mobility, the scattering time and the 
average effective mass 

 
av

e
m
τμ = . (4.70) 

The introduction of an average effective mass is because states in the bands are occupied 
over an energy range that reflects the carrier density, so this leads in principle to an 
energy-dependent effective mass. Introducing an energy-averaged effective mass allows 
for a simple analysis using Equation (4.70). This average effective mass is obtained from 
the equation 
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where FE  is the position of the Fermi level for a given doping level. At zero temperature, 
it is obtained from the expression 
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or 

 ( ) ( )22
0/FE f D E= + / 2g . (4.73) 

In these equations, f is the doping fraction in electrons/atom and 2
0 3 /D a Rπ γ= . To 

calculate the average effective mass we use the expression for the subband energy 
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and the average effective mass is 
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For typical nanotubes, the product 0 gD E is small, and the above equation simplifies to 
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where  is the effective mass at the band edge. The important point here is that the 
average effective mass monotonically increases with the carrier concentration (see Figure 
4.34b), and is only weakly dependent on temperature, so that the non-monotonic behavior 
of the mobility with carrier density and its temperature dependence arise from the 
scattering time. Indeed, from the mobility calculated using the Boltzman transport 
approach and average effective mass from Equation (4.77), the scattering time can be 
obtained from Equation (4.70). Figure 4.34c shows the scattering time as a function of 

0m
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the carrier density. The scattering time initially increases with increasing carrier density 
since the number of available states for scattering decreases as the Fermi level is higher 
in the conduction band. At a certain carrier concentration f, the Fermi level reaches the 
second subband, opening up additional channels for scattering; this leads to a decrease of 
the scattering time. Additional calculations [Per06] show that the scattering time is 
essentially proportional to the diameter of the carbon nanotube. 
 
The high field behavior is studied by calculating the drift velocity  from the 
occupation function in the Boltzman equation [Per06]. Figure 4.34d shows the field-
dependence of  for different values of the carrier concentration. In the absence of 
carriers, the drift velocity reaches a maximum at a field of 1 V/μm and then decreases at 
larger fields. In contrast, at high carrier concentrations the drift velocity increases 
continuously. It is tempting to invoke the occupation of the second subband as the reason 
for the non-monotonic field dependence of the drift velocity. However, comparisons of 
the results with those of a single-band model (Figure 4.34e) indicate that when the single 
band is described by a hyperbolic band profile, the Boltzman results are well reproduced. 
A parabolic model for the single band does not match the full numerical calculations, and 
fails to give a maximum in . Therefore, the non-parabolicity of the first subband is 
responsible for the non-monotonic behavior. 

dv

dv

dv

 
Figure 4.34: Left frame: (a) Electron mobility at low fields for a (19,0) carbon nanotube as a 
function of the carrier density. (b) Contribution to the mobility of the inverse effective mass. (c) 
Contribution to the mobility of the scattering time. Temperatures from top to bottom in each panel 
are 150, 200, 250, 300, 350, 400 and 450 K. The vertical dashed line indicates the doping density 
at which the second subband becomes occupied. (d) Drift velocity at room temperature as a 
function of electric field for different carrier densities for a (19,0) nanotube. Curves from top to 
bottom correspond to carrier densities of 0, 0.25, 0.5, 0.75, 1.0, 1.5 and 2.0 electrons/nm. (e) 
Results for 0ρ =  are compared with single band models: single hyperbolic band (dotted line) and 
single parabolic band (dashed line). Figures from Ref. [Per06]. 
 



4.3.6 Short-Channel Effects 
 
Short channel effects in transistors can lead to serious degradation of the device 
characteristics as the different length scales (channel length, gate insulator thickness, etc.) 
are reduced to smaller and smaller dimensions. In conventional transistors made with 
silicon or other bulk semiconductor materials, short channel effects have been extensively 
studied, and the basic physics is well understood. In contrast, short channel effects in 
carbon nanotube transistors has received relatively little attention, despite the obvious 
importance for applications. The key issue here is that, because of the reduced 
dimensionality of carbon nanotubes, the Coulomb interaction has different implications 
than for bulk devices. In this section we discuss modeling work aimed at studying short 
channel effects in carbon nanotube field effect transistors with ohmic contacts [Leo06b]. 
 
Figure 4.35 shows a sketch of the device under consideration: it consists of a 
semiconducting carbon nanotube embedded in source and drain electrodes made of 
palladium. In the channel region, the nanotube is surrounded by SiO2, and the SiO2 is 
itself wrapped by a cylindrical gate of radius GR . The simulations use a (17,0) zigzag 
nanotube, which has a bandgap of 0.55 eV in the tight binding model used for the 
calculations. The calculations proceed by obtaining self-consistently the charge and the 
potential on the carbon nanotube. The potential is calculated by solving Poisson’s 
equation in three-dimensions, with the charge on the nanotube and the boundary 
conditions at the source and drain contacts, the gate, and at the dielectric/air interface. 
The charge and ultimately the current are calculated using the non-equilibrium green’s 
function technique, allowing for a quantum description of the system in the ballistic 
transport regime. The metal Fermi level in the contacts is taken to be 1 eV below the 
nanotube midgap before self-consistency. Results of these calculations for the current as 
a function of gate voltage are shown in Figure 4.36, for a gate radius of 3 nm. For a 
channel length of 10 nm, the ON/OFF ratio is about 1000, and the subthreshold swing is 
160 mV/decade. An increase of the source-drain voltage from -0.1 V to -0.3 V causes a 
shift of the threshold voltage by 310 mV, a signature of drain-induced barrier lowering 
(DIBL), as will be discussed below. Increasing the channel length to 20 nm significantly 
improves both the subtreshold swing and the DIBL, which become 69 mV/decade and 
11.5 mV/decade, respectively. It is worth mentioning that at 0gV = , the nanotube is 

significantly hole-doped due to the long-range charge transfer from the contacts (left inset 
in Figure 4.36). 
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Figure 4.35: Sketch of the nanotube transistor used for device simulations. The nanotube is 
embedded in metals at its two ends, and in a dielectric in the channel region. The dielectric is 
wrapped by a cylindrical gate. In the left panel, the separation between the contacts and the central 
dielectric region is to illustrate the structure in the channel; in the calculations, the contacts touch 
the dielectric as shown in the right panel. Figures from Ref. [Leo06b] and [Leo02a]. 
 

 

 
Figure 4.36. Current as a function of gate–source voltage for channel lengths of (a) 10 nm and (b) 
20 nm. The gate radius is 3 nm. The insets in (b) show the band bending for Vgs = 0 (left) and Vgs = 
1 V (right). Figure from Ref. [Leo06b]. 
 
The short channel effects are also seen in the current versus source-drain voltage, as 
indicated in Figure 4.37. The 20 nm channel device shows saturation of the current for 
large values of the source-drain voltage, but the 10 nm device shows no saturation at all. 
The origin of this effect is DIBL, and plots of the band-bending along the carbon 
nanotube confirm this behavior (Figure 4.38). At 0.8V and 0gV Vds= = there is a barrier 

of 93 meV that significantly impairs hole conduction; as the source-drain voltage is 
increased, the barrier is reduced, causing an increase in the current and a lack of current 
saturation at large source-drain voltages. This voltage-dependent barrier is also at the 
origin of the DIBL in Figure 4.36. 
 



 
 

Figure 4.37: Current as a function of drain–source voltage for the carbon nanotube transistor of 
Figure 4.35 for (a) 10 nm channel length and (b) 20 nm channel length. In both panels the gate 
radius is 3 nm. Figure from Ref. [Leo06b]. 
 
 

 
 
Figure 4.38: Calculated self-consistent band bending for the 10 nm channel device with a 3 nm 
gate radius, for a gate–source voltage of 0.8 V. The solid lines are the valence and conduction 
band edges; horizontal dotted lines are the metal Fermi levels in the contacts. Figure from Ref. 
[Leo06b]. 
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One can expect that for longer channel lengths the source and drain contacts will have 
less impact on the barrier in the middle of the channel, and that the gate will be more 
effective at modulating the height of that barrier. This is indeed the case, as Figure 4.39 
indicates. There it is shown that both the DIBL and the subthreshold swing decrease 
rapidly with an increase of the channel length. Typical device requirements are that DIBL 
be less than 100 mV/V and for the subthrehold swing to be less than 80 mV/decade. For 
the cylindrical nanotube device with a 3 nm radius SiO2 gate insulator and a (17,0) 
nanotube, this requires the channel to be larger than 15 nm. This constraint depends on 
the thickness of the gate insulator. The inset in Figure 4.39 shows that scaling of the 
DIBL is obtained if the channel length is scaled by the factor 

 .gR lα = +  (4.78) 

For the particular device geometry and nanotube discussed here, it is found that  
It is important to point out that electrostatic analyses for cylindrical gate transistors 
[Oh00, Joh03] predict a scaling quantity proportional to the oxide thickness. This type of 
scaling relation does not lead to collapse of the data onto a single curve. It is thought that 
the unusual dielectric response of the nanotube [Leo02a], strong charge transfer from the 
contacts and the actual device geometry render the conventional analyses inapplicable; 
more work is needed to address these issues. 

1 nm.l =

 
 

Figure 4.39: Panels (a) and (b) show the variation of DIBL and subthreshold swing on channel 
length, respectively. Shaded areas are regions where the short channel effects are larger than 
typical device requirements. The inset in panel (a) shows collapse of the data for several devices of 
different channel lengths and gate radii upon scaling of the channel length. The horizontal dotted 
line in panel (b) is the theoretical limit for the subthreshold swing. Figure from Ref. [Leo06b]. 
 

4.3.7 Crosstalk 
  
 
Ever increasing computing power not only requires devices with short channels, but also 
a large density of these devices on a single chip. At high density, interactions between 
neighbor devices (crosstalk) can become significant, even more so for carbon nanotubes 
since all of the carriers are constrained to a surface shell and can be impacted by 
electrical fields. Thus, it is important to assess the role of interactions between nearby 



carbon nanotube devices, a topic that is also important for multi-nanotube devices that are 
becoming more common (an example is shown in Figure 4.40). Computer simulations 
[Leo06c] are addressing this issue by considering the impact of nanotube density on the 
characteristics of carbon nanotube transistors, including both semiconducting-
semiconducting and semiconducting-metallic interactions. Figure 4.40 shows sketches of 
planar carbon nanotube transistors with multiple parallel nanotubes in the channel. The 
key question is how the spacing d between nanotubes influences the ON and OFF states 
of the transistor, as well as the properties of the contacts. 
 

 
Figure 4.40: Panel (a) shows a scanning electron micrograph image of a carbon nanotube device 
containing multiple nanotubes. Panel (b) shows a sketch of the device used in the calculations, with 
the distance L indicating the channel length and d the nanotube separation. Panel (c) shows a side 
view of the device, while panels (d) and (e) show top views of the unit cells used to study 
semiconducting–semiconducting and semiconducting–metallic interactions, respectively. Figure 
from Ref. [Leo06c]. 
 
Figure 4.41 shows the results of self-consistent quantum transport calculations for the 
conductance of a single semiconducting nanotube in the array. The results indicate that 
the overall conductance decreases as the separation between nanotubes decreases. This 
behavior has two origins: the first is that in the ON state, there is significant charge on the 
nanotubes, which interacts with the nearby charge due to other nanotubes. This is 
energetically costly, and to lower its energy, the system lowers the charge on the 
nanotubes, effectively decreasing the conductance. The second cause is that because of 
the charge repulsion, the band alignment in the contact is modified such that the charge 
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on the nanotubes is decreased; this leads to the metal Fermi level being in the bandgap, 
and the resulting Schottky barrier decreases the current in the ON state. 
 
To quantify the impact of the nanotube density on the conductance, Figure 4.42 shows 
the conductance at 0gsV =  as a function of the nanotube spacing for different channel 
lengths. Irrespective of the channel length, the conductance follows a dependence 

( )1 exp /A d β⎡ − −⎣ ⎤⎦  indicating that it is exponentially sensitive to the nanotube 
separation. From the figure, it is clear that the parameter β depends on the length of the 
channel, with a larger value of β for larger channel lengths. Indeed, if one defines a 10% 
reduction in the conductance as the onset of crosstalk, then plotting the separation d at 
which this reduction happens as a function of the channel length gives the diagram of 
Figure 4.42. Clearly, very short channel devices can have very high packing densities, 
while long channel devices are limited to tube separations of 15 nm. A notable aspect of 
the results of Figure 4.42 is that the value of d is independent of the channel length for 
large L. At first glance, one would expect that a larger channel length leads to larger total 
charge on the nanotubes and thus larger interaction energy. However, screening of the 
Coulomb interaction by the planar gate leads to a different behavior, as we now discuss. 
 

 
Figure 4.41: Conductance of a (17, 0) nanotube transistor as a function of gate–source voltage, for 
different separations of the nanotube from other semiconducting nanotubes (left) or metallic 
nanotubes (right). In each figure, the inset shows the collapse of the data after rescaling and 
shifting of the gate voltage. Figure from Ref. [Leo06c]. 



 
Figure 4.42: The left figure shows the conductance at Vgs = 0 versus nanotube separation, for 
different channel lengths. Solid lines are fits of the form A[1 − exp(−d/β)]. The figure on the right 
shows the nanotube separation below which crosstalk becomes important. Figures from Ref. 
[Leo06c]. 
 
To understand the role of interactions between semiconducting carbon nanotubes, we 
consider the simplified geometry of Figure 4.43. There, two uniformly charged 
semiconducting nanotubes of length L are separated from each other by a distance d, and 
both are at a distance  from an infinite metallic plane held at potential . GL GV
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Figure 4.43: Sketch of situations considered for analytical calculation of interactions between (a) 
semiconducting nanotubes, (b) semiconducting and metallic nanotubes. Figures from Ref. 
[Leo06c]. Panel (c) illustrates the conformal mapping procedure to solve the electrostatic problem 
associated with (b), see text for details.  
 
The electrostatic potential on one of the nanotubes due to the other can be calculated 
using an image potential construction (Figure 4.43a) to be 
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 (4.79) 



where λ is the charge per unit length on the nanotubes. In the long channel limit 
L d the last equation becomes 
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Thus in this limit the potential is independent of the channel length, and the length scale 
that competes with the nanotube separation is the gate insulator thickness, due to 
screening of the fields by the gate. Taking a potential of VΔ as a criterion for the 
importance of intertube effects gives the nanotube separation below which crosstalk 
becomes important: 
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Thus the gate insulator thickness  sets a length scale for , but is exponentially 
reduced due to the screening by the dielectric insulator. Since  is only 15 nm for 
uncovered nanotubes on SiO

GL *d
*d

2, very high device densities should be possible by 
embedding the nanotubes in the insulator and using high-κ dielectrics. 
 
The general behaviour of interactions between semiconducting nanotubes can be 
understood from further analysis of Equation (4.80). Near threshold, the charge on the 
nanotube can be written as ( )0 g thV Vλ λ= − , where  is the threshold voltage. 

Substitution of this expression in Equation  (4.80) gives 
thV
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Hence, the gate voltage is rescaled and shifted by the interaction between nanotubes. This 
behavior is indicated in the inset of Figure 4.41, showing good collapse of the data after 
appropriate rescaling and shifting of Vg.  
 
As mentioned above, interactions between semiconducting and metallic nanotubes are 
also important for multi-nanotube devices, and may also be important for all-nanotube 
devices where metallic nanotubes are used as interconnects. Figure 4.41 plots the 
conductance of a semiconducting carbon nanotube in close proximity to metallic 
nanotubes. The same qualitative behavior observed for semiconducting-semiconducting 
interactions is seen here as well. This behavior can be understood by considering the 
situation of Figure 4.43b: a semiconducting nanotube carrying charge density λ is at a 
distance d from a metallic nanotube. Both nanotubes are at distance  from an infinite 
metallic plane held at potential . The metallic nanotube plays a different role than the 
semiconducting nanotube in the case of semiconducting-semiconducting interactions in 

GL

GV
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that the metallic nanotube has plenty of charge to screen the electric fields; thus, the 
metallic nanotube can be approximated has a line of constant electrostatic potential, equal 
to . To calculate the electrostatic potential on the semiconducting nanotube due to the 
metallic nanotube we solve Laplace’s equation 

0V

  (4.83) 2 0V∇ =

with the boundary conditions 
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The solution to this problem can be obtained using conformal mapping. The general idea 
behind conformal mapping is to take advantage of the properties of complex functions to 
transform a complicated differential equation problem to a simpler problem in a new 
coordinate system. In the particular case of Equations (4.83) and (4.89), we will show 
that this problem can be transformed to one consisting of coaxial cylinders held at 
constant potential, for which the Laplace equation has a simple solution. Once that 
solution is obtained, it can be converted back to the original coordinate system using 
coordinate transformations. 
 
 We consider the complex function ( ) ( )1 ,w p x y iq x y= + , which satisfies the Laplace 
equation by virtue of the Cauchy-Rieman relations between the real and imaginary part.  
We first perform a conformal mapping  

 1 1
1( )w f z
z

= =  (4.85) 

 where  This transforms the straight line .z x iy= + gy L=  into a circle of diameter  

touching the origin in the 

1
GL−

( ),p q  plane, and transforms the circle 2 2 2x y R+ = into the 

circle 2 2 2p q R−+ = as illustrated in Figure 4.43. From Equation (4.85) we can obtain 
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Furthermore, a second mapping ( ) ( )2 , ,w u p q iv p q= +  
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 with and z p iq= +
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shifts the center of the circle obtained from the straight line gy L= to the origin, and 
rescales its radius to 1. This mapping leaves the circle centered at the origin undisplaced, 
but rescales its radius to the value  The relationships between .a ( ),u v  and ( ),p q are 
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Note that the sequence of mappings has created a boundary value problem of two coaxial 
circles, and Laplace’s equation can be easily solved for this problem. The solution is 
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The potential in the original ( ),x y space is obtained with the use of Equations (4.86) and 
Equation (4.89). Since we are interested in the potential caused on a nanotube parallel to 
the nanotube held at potential  and at the same distance from the gate, we focus on the 

potential 
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This gives the solution at a distance d 
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Much like the situation for semiconducting-semiconducting interactions, the interaction 
of semiconducting nanotubes with metallic nanotubes leads to a rescaling and shift of the 
gate voltage as shown in the inset of Figure 4.41. 
 

4.3.7 Noise 
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Noise in electronic devices can have many sources, including 1/ f noise, thermal noise, 

shot noise, random-telegraph-signal (RTS) noise, etc. Of these, 1/ f noise has raised the 
most scientific interest because it is ubiquitous in many systems but yet its origin is 
unclear.  The name “1/ f noise” originates from the dependence of the current power 

spectrum  ( )P f on the frequency f 

 ( )
2

2( ) ( ) (0) .ift IP f I t I I e dt A
f

= − =∫  (4.93) 

In traditional semiconductor electronic devices, two origins for this behavior have been 
proposed: (1) fluctuations in carrier density due to fluctuations in charge trapping at 
surface states [McW57]; and (2) mobility fluctuations [Hoo69]. In the case of mobility 
fluctuations, the power spectrum takes the form 
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where Hα is known as Hooge’s constant and is the total number of carriers in the 
system. This expression is also utilized as an empirical equation describing 1/

cN
f noise in 

general. Central to this equation is the assumption that fluctuations in the number of 
carriers are responsible for the current fluctuations; as we now discuss, this hypothesis is 
valid for long carbon nanotubes where the transport is diffusive but breaks down for 
ballistic carbon nanotube transistors. 
 
Figure 4.44 shows the inverse of the noise power in carbon nanotube transistors with long 
channel lengths  such that the transport is diffusive.  It is clear from the power spectrum 
that the main component of the noise is a 1/ f behavior, with some additional noise 
component observed in some devices (Figure 4.44b). This additional noise component is 
well described by adding a small contribution from RTS noise to the total noise: 
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More importantly however is the dependence of the noise power on the number of 
carriers in the nanotube. To extract this dependence, note that the number of carriers in a 
field-effect transistor is equal to 

 /c g g thN C L V V e= −  (4.96) 

and the noise power is given by 
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Figure 4.45 shows the measured value of 1/ A as a function of g thV V− indicating a linear 

relationship; this behavior is consistent with an inverse dependence on the number of 
carriers. Equation (4.97) is further supported by measurements on devices with different 
channel lengths, which show a linear dependence of the noise power spectrum on the 
channel length (Figure 4.45). 
 
 

 
Figure 4.44: Noise behavior in single nanotube transistors. Panel (a) shows a 1/ f noise behavior. 

Panel (b) shows that in addition to the 1/ f behavior, an additional noise component is seen in 
some devices. Figure from Ref. [Ish06]. 
 

 
Figure 4.45: The left panel shows the dependence of the coefficient of the noise spectrum on the 
gate voltage. The right panel is the dependence on the length of the carbon nanotube channel. 
Figure from Ref. [Ish06]. 
 

The above discussion focused on long carbon nanotubes where the transport is diffusive. 
For such diffusive transport, a body of work has established the fundamental aspects of 
the 1/ f noise in terms of mobility fluctuations. For carbon nanotubes shorter than the 
scattering mean-free path, the transport is ballistic, and not much is known about noise in 
ballistic systems. To address this gap, recent experiments and theory have begun to look 
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at this situation for both Schottky barrier and channel-controlled carbon nanotube 
transistors [Ter07].  

Figure 4.46 shows the measured current-gate voltage characteristics of a Schottky barrier 
carbon nanotube transistor with a 600 nm channel as well as the amplitude of the power 
spectrum A from Equation (4.93). Because the channel length is less than the electron-
phonon scattering mean-free path, this device is believed to operate in the ballistic 
regime. Clearly, the amplitude of the power spectrum is much larger near the threshold 
voltage. To explain the origin of this behavior we consider the impact of fluctuating 
charge traps in the gate oxide on the current. It is well known that such charge 
fluctuations lead to 1/ f noise because the charge state is thermally activated [Dut81].  

 
Figure 4.46: Measured and calculated noise in a Schottky barrier (left) and a channel-controlled 
(right) carbon nanotube transistor. Solid and dashed lines are theoretical fits, see text for details. 
Figure from Ref. [Ter07]. 
 

For a Schottky barrier device with ballistic transport, the current is a function of the 
electric field at the contact which in turn depends on the gate voltage and the device 
geometry. The geometrical factors can be captured in a parameter gS  and the electric 

field at the contact is then equal to /g gV S . The current is then a function of /g gV S : 

 ( )/g gI I V S= . (4.98) 

Fluctuating charge traps lead to fluctuating electric fields in the vicinity of the carbon 
nanotube, including near the contact. These fluctuating electric fields can be modeled as 

( )F tγ  where γ is the strength of the fluctuations and  is a dimensionless function of 
time with 1/

( )F t
f power spectrum. The total electric field at the contact is / ( )g gV S F tγ+  

and the current will be 
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where the last expansion assumes a small electric field due to the noise. From this 
expression, we can calculate the current power spectrum as 
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Therefore, the amplitude of the power spectrum is 
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This immediately shows that the amplitude of the noise is related to the term ln / gd I dV  

which is largest in the subthreshold regime, explaining the general behavior of the 
experimental measurements of Figure 4.46. By fitting the experimentally measured 
current with a smooth function, the noise can be calculated from Equation (4.100); the 
dashed line in Figure 4.46 shows very good quantitative agreement with experiment near 
the threshold voltage.  

Deviations from the theoretical model arise when the current is large, corresponding to a 
larger transmission probability through the contact Schottky barrier. In that case, the 
fluctuations in the channel become important and can no longer be ignored. To model 
this situation, we consider the transmission probability through two scattering regions in 
series, corresponding to the Schottky barrier (transmission ) and the channel 

(transmission ). The procedure for calculating the total transmission probability for 
scatterers in series is illustrated in Figure 4.47.  

SBT

chT
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Figure 4.47: Illustration of the procedure to calculate the total transmission probability across two 
scatterers in series. 

The total transmission is given by summing each of the scattering paths 
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In terms of the transmission probabilities for the Schottky barrier and the channel, we 
have 
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Assuming that both the transmission probabilities are small this equation simplifies to 
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and from the Landauer formula the total transmission translates into the conductance 
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and the resistance 
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Thus the transmissivities in series lead to a total resistance that consists of two series 
resistances due to the Schottky barrier and the channel. For series resistors with 
fluctuations chRδ  and SBRδ , the total noise amplitude is given by 
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Re-arranging this equation leads to a noise amplitude that is the sum of the Schottky 
barrier and channel fluctuations 
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where  and ( )2/ch ch ch sdA R Vα = ( )2 2/ch ch cA R Rδ=  is the noise amplitude of the channel 
resistance. The important point is that the additional series resistance due to the channel 
increases the noise, with an amplitude that is proportional to 2I . In regions where the 
current changes little with the gate voltage (as in the ON state) this contribution to the 



noise dominates. Indeed, a numerical fit of Equation (4.108) to the experimental data 
shows an improved agreement in the large current regime (solid line in Figure 4.46). 
 
For carbon nanotube transistors with ohmic contacts, the current is controlled by the 
height of the barrier in the middle of the channel. Still in that case the current can be 
written as ( )/g gI I V S=  where the parameter gS now describes the effectiveness of the 

gate at changing the barrier height in the middle of the channel. Charge trap fluctuations 
cause fluctuations in the height of the barrier which can again be written in the form 

( )F tγ . Therefore the analysis presented above for the Schottky barrier transistor carries 
directly over to the case of channel-controlled devices. Such channel-controlled devices 
can be achieved by fabricating ohmic contacts or by using a double-gate approach: the 
back gate is used to modulate the contacts in a Schottky barrier transistor to increase their 
transparency while a top gate is used to modulate the channel conductance. Figure 4.46 
shows the measured current as a function of the top gate voltage for such a device. The 
noise is well described by the ballistic noise theory including both the near and far 
threshold behavior.  
 
 
 



 


