
Learning by Reading RFI – A Swarm Approach

This program will achieve the ability for a computer to process text and 
provide a highly interactive system for a person to interact with

Key Insights Key Aspects of Approach Key Technical Challenges

Natural text is what 
humans have evolved for 
representing deep 
semantic knowledge.  A 
swarm-like approach can 
process data in its native 
format.

Natural text is highly structured
Natural text is the best way 
nature has found to represent 
deep semantic human 
knowledge.  We should learn 
to process it in that form.

Key Testing Approach:

How it works:

Assumptions and limitations:

• Developing a 
Common Platform

• Producing a unified 
output from the 
underlying swarm of 
processes.

The goal is to produce a highly 
interactive system with which a 
person can converse in a reasonably 
natural way about the text the 
computer has processed.

• A swarm of agents, each capable of 
some identifying some simple aspect of 
text, processes a large corpus of 
background information.

• A person presents some textual question 
or statement to the system, perturbing 
the agents in the swarm.

• The swarm processes the new text and 
as the system settles, the system 
responds to the user with a textual 
answer.

• Don’t assume that the computer’s 
representation will be human readable.

• It would be difficult to trace the computer’s 
“reasoning”

A swarm-like approach:
• Is amenable to integration of 

multiple participants
• Naturally supports parallel 

processing
• Naturally leads to the 

creation of emergent 
properties that could be 
hard to reproduce by brute 
force.
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Learning by Reading RFI – A Swarm Approach

Program Constraints Metrics

Appropriate Sequence of Program 
Objectives

Target Input and Output

1. Development of a common platform for processing 
text in a swarm-like manner.

2. Development of problem sets to be processed
3. Development of computational units to be included as 

part of the swarm
4. Testing and iteration

Target Input
• A corpus of natural text
• Statement from some human 

participant
Target Output
• Natural language statements
• Potentially fragments of text from 

original corpus

• Output of the system is natural text, not formal logic 
statements.

• The system is not expected to come to neat, clean 
answers.  It is conversational.

Multiple Metrics:
•Question Answering
•Turing Test-like conversation
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I n f o r m a t i o n  C u s t o m i z a t i o n

Using Document 
Access Sequences 
to Recommend
Customized Information
Travis Bauer and David Leake, Indiana University

Information about a user’s task can greatly enhance automated information cus-

tomization. However, customization agents should learn unobtrusively without requir-

ing users to provide task descriptions. WordSieve, a competitive-learning text analysis

algorithm, identifies context-relevant terms and uses them to construct a model of a user’s

access patterns. WordSieve works in real time, while
the user accesses documents, and requires no explicit
user feedback. Initial tests demonstrate WordSieve’s
ability to identify useful context descriptions.1,2 Word-
Sieve’s competitive-learning component also lets the
algorithm naturally adapt to a user’s shifting interests.

We are developing a personal information retrieval
system, Calvin, which observes users while they
browse the World Wide Web, analyzes the docu-
ments they access, does background searches, and
suggests related pages. During this time, it builds
user profiles that model a user’s document access
patterns. Figure 1 shows a screenshot of Calvin’s
Windows interface.

Calvin uses WordSieve to learn over time the terms
that tend to indicate topics that interest the user. Con-
sider, for example, a person reading a page about
Indonesian cooking. A system that only considers the
current page content might have difficulty determin-
ing how to customize future information presentation:
The person might be interested in oriental cooking or
might be trying to learn information about Indonesia
in general. WordSieve enables Calvin to learn to dis-
tinguish whether the user tends to access documents
about Indonesia or documents about cooking. It dif-
fers from other personal information agents (such as
Letizia3 and Watson4 ) in that it uses a competitive net-
work to characterize topic access patterns over time.

Generating context representations
WordSieve represents users and tasks by term vec-

tors, where the terms’ values indicate their signifi-
cance in describing users or tasks. WordSieve learns
keywords and keyword weightings that characterize
the contexts within which an individual user tends
to access documents. By context, we mean the
sequences of documents a user accesses while pur-
suing a topic. 

Other methods such as TFIDF (term frequency
inverse document frequency)5 and LSI (latent seman-
tic indexing)6 also look at term occurrences in and
among documents. However, unlike WordSieve, they
do not use the sequence of accesses. By looking not
only at whether and how often a term occurs, but also
when it occurs in a sequence of documents, Word-
Sieve can improve indexing and retrieval performance.
WordSieve can extract this sequentially available
information through a competitive network process.

We based WordSieve’s design on our hypothesis
that good indexing terms are terms that occur fre-
quently at some times, but seldom occur at other
times. Terms such as “a” and “the” are not good con-
text terms: They occur frequently, but they occur in
most documents. Likewise, for a user who primarily
reads political news, the terms “political” and “con-
gress” might appear in most documents consulted,
but do not help differentiate the user’s context. 

WordSieve, a text

analysis algorithm,

uses a competitive-

network-learning

approach to learn

topic-relevant

keywords in real time

with no predetermined

corpus. You can use

these keywords to form

search engine queries

to suggest relevant

documents to the user. 



For example, Figure 2 shows a 40-minute
period of Web browsing when a user spent
10 minutes exploring each of four different
topics. The x-axis shows a point for every 75
terms. Each y value represents the number of
times the term “george” occurred in the 75
terms preceding each point. As the figure
shows, “george” occurs frequently during the
Bush query, less frequently during the Gore
query, and not at all elsewhere. Conse-
quently, “george” works well in distinguish-
ing the two contexts.

WordSieve selects terms that mark distinct
document sequences for an individual user.
This personal dictionary, which character-
izes topics the user consults, also serves as a
user profile. You can use this profile to gen-
erate vectors for various contexts and to gen-
erate queries for search engines. Each term
chosen to represent a user serves as a dimen-
sion in a multidimensional vector space.

Other techniques also use the vector space
model for representing documents. In this
model, a term’s weight in a particular context
(a document, for example) is usually expressed
as the product of a local and global weight for
the term. The basic intuition is that a term’s
significance is a function of its significance in
a document (the local weighting) and in gen-
eral (the global weighting). A problem with
TFIDF for information customization is that
the global weights require global information
about a larger corpus. In personal information
retrieval, this global corpus might not be avail-
able and global weights must change as the
user’s interests change. WordSieve does not
require global information to construct global
weightings for term vector production. It learns
global weights by reading user-accessed doc-
uments term by term.

WordSieve architecture
WordSieve capitalizes on document se-

quences through a stochastic, competitive
process. This process can identify which
words occur frequently (for the local term
weight) and which words indicate contexts
(for the global frequency weight).

WordSieve uses a three-layer network (see
Figure 3). WordSieve’s basic model is a
stream of terms passing across a network of
units. Some terms get “caught” in the net-
work, but most pass through. The caught
terms form a user profile of user interests that
you can use to generate queries and indices.

Each layer serves a different purpose. As
a user browses online,

• Layer 1 identifies words that are occurring
frequently in a stream of documents.

• Layer 2 identifies words that often occur fre-
quently, even though they might not be now.

• Layer 3 identifies the words in layer 2 that
tend to occur infrequently.

Each unit in layer 1 is associated with
three different values:

• A term is learned from the documents
passing through WordSieve.

• An activation indicates the unit’s probabil-
ity of becoming bound to a different term.

• A priming determines the rate at which the
activation level changes. We choose this
value to provide hysteresis to help over-
come the effect of noise.

Activation varies between 0 and 1. Priming
varies between –1 and 1.

Each layer has a limited number of units,
and terms effectively compete for the units

in the network. Because of the network’s
updating strategy, you can use the terms that
win this competition and their associated
activation levels to compute the terms that
often vary between frequent and infrequent
occurrence. We use the resulting set of terms
as a profile of topics the user typically
accesses, to generate queries and indices
from documents. All three values persist
across document presentations. The layers
are connected in the following way:

• Layers 1 and 2. Units in layer 1 are con-
nected to any units in layer 2 that are
bound to the same term. Layer 2 units
might not have corresponding layer 1
units, but if a term’s unit has a high acti-
vation level in layer 1, its activation in
layer 2 grows faster.

• Layers 2 and 3. Layers 2 and 3 are cou-
pled together. For every unit in layer 2, a
corresponding unit exists in layer 3. Their
activation and priming values can vary
independently, but if a unit gets bound to
a new term in layer 2, its corresponding
unit in layer 3 gets bound to the same term.
Layers 2 and 3 differ in their update func-
tions, however.

Network processing
WordSieve processes each word individ-

ually, following the order of occurrence in
each document.

Layer 1. For every term presented to layer 1,
WordSieve adjusts a unit’s activation as a
function of the priming so that Ai ← Ai + Pi

× MaxActivationRate, where Ai is the activa-
tion of unit i, Pi is the priming of unit i, and
MaxActivationRate is the activation’s highest
rate of change. If the priming is positive, the
activation will increase. If the priming is
negative, the activation will decrease. If the
unit’s priming is at its extreme values (–1 or 1),
the unit’s activation will change at a rate of
MaxActivationRate per term presented to the
network.

The priming also changes for each term
presented. For each term presented, the prim-
ing decreases: Pi ← Pi – MaxPrimingRate ×
BaseFrequency, where MaxPrimingRate is
the priming’s maximum rate of change and
the BaseFrequency represents a term’s
required minimum frequency in the docu-
ment stream for the priming to remain con-
stant. If a unit is sensitized to the term pre-
sented, WordSieve also increases its priming
by Pi ← P + MaxPrimingRate.
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Figure 1. The Calvin Windows interface.



If the term is not bound to any unit in the
network, it takes over the unit with the low-
est activation.

The effect of this policy is that if the term
occurs at a rate of BaseFrequency per 100
terms, the unit’s priming remains constant. If
it occurs less, the priming will decrease, and
if it occurs more, the priming will increase.

Layers 2 and 3. Layer 2 functions somewhat
differently. If the term is in layer 2 but not in
layer 1, the level 2 unit’s activation decreases
at a constant rate. If the term is in layer 1, the
priming and activation increase. Also, for
layers 2 and 3, the priming values are limited
to 0 or 1.

In layer 3, the opposite happens. If the
term is in layer 1, the corresponding unit’s
activation in layer 3 decreases at a constant
rate. If it’s not in layer 1, the layer 2 unit’s
activation increases as a function of priming.

If the term is not in layer 2 and its activa-
tion in layer 1 is above a predefined constant,
WordSieve removes the term with the low-
est activation in layers 2 and 3 and replaces
it with the new term.

Applying the network
Figure 4 displays snapshots of some of

WordSieve’s units during information access.
In this diagram, each block corresponds to
a unit. The term that unit is associated with
is printed in the block’s center. The back-
ground’s brightness indicates the term’s
weight in this layer. Figure 4a shows part
of layer 1. The brightest terms (those terms
that occur most frequently) include “texas,”
“political,” “george,” “bush,” “son,” “fam-
ily,” and “dynasty.” This first layer com-
prises the local weights, identifying the
words that are currently occurring fre-
quently. This layer changes rapidly corre-
sponding to the changing documents the
user browses.

WordSieve calculates global weights from
the second and third layers. By design, lay-
ers 2 and 3 change more slowly, serving as a
“long-term memory.” Figure 4b shows lay-
ers 2 and 3. The background’s brightness cor-
responds to the term’s activation level in
layer 2. The text’s brightness indicates the
term’s degree of activation in layer 3. This
profile of context-discriminating terms builds
up over time as the system observes docu-
ment accesses. You can see that “texas,”
“political,” and “george” have high activa-
tion levels in both layers 2 and 3 (indicated
by brightly colored text and background).

The term “dynasty,” highly activated in level
1, is not in the second or third layers, indi-
cating that it is not an important term for this
user. Layer 2 records that the term “bush”
occurs frequently during some document
accesses, but not infrequently enough to have
a high global weighting. This is because the
term occurs too frequently in these browsing
sessions to have a high weighting. Ideally,
the system would identify “bush” as a good
indexing term. If the user had a broader range
of interests so that “bush” occurred less over-
all, WordSieve would identify it as a good
indexing term.

Multiplying the values of corresponding
terms in all three layers gives us the context
vector (see Figure 4c). The system deter-
mined that the current context is character-
ized by the terms “george,” “political,” “life,”
“texas,” and “president” and, to a lesser
extent, by the terms “shrub” and “google.”
The fact that the system considered the pres-
ence of “google” and “shrub” to be poten-
tially relevant terms is an artifact of the user’s
search process: Google searches for “Bush”
often return pages about shrubs.

Experiments
We have previously reported on the original

WordSieve algorithm’s ability to identify the
terms in its search task.1,2 This showed that
WordSieve could automatically generate vec-
tors that resembled the subjects’original task
descriptions. The experiment described here
tests a refined version of the algorithm with
more users (16 instead of six) and different
subject domains, and measures a different

property. Although the initial pilot experiment
compared vectors to original task descriptions,
the new experiment aims to measure Word-
Sieve’s indexing and retrieval ability. Having
indexed all documents, we wanted to know
how well it could generate a query from a
given document to retrieve the other docu-
ments accessed in the same context.

In this experiment, we asked 16 paid sub-
jects responding to a public announcement
to browse the Internet for 40 minutes, 10
minutes each on four different topics: George
Bush’s political life, Al Gore’s political life,
traditional Indonesian cooking, and tradi-
tional Thai cooking. We stored the contents
and the order the Web pages were accessed in
a database. We stripped punctuation, HTML
code, and stop words from the Web pages.
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Figure 2. Frequency of the term “george” per 75 terms encountered while browsing
four topics.
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We compared WordSieve to TFIDF and
LSI. Some personal information agents use
TFIDF for indexing and retrieval.3,7,8 LSI oper-
ates on indices produced by techniques such
as TFIDF. It takes a matrix composed of doc-
ument vectors and, by reducing this matrix’s
rank, can typically fine-tune the indices to
achieve higher information retrieval perfor-
mance. The rank reduction effectively reduces
the noise in the vectors and capitalizes on term
co-occurrence to optimize vectors. LSI is use-
ful for extracting information implied in the
combination of document vectors, which can
improve performance in retrieval contexts.

Both of these techniques get their power
from their use of global information about a
corpus: As illustrated in the following exper-
iments, having comprehensive statistics
about a large corpus improves their ability to
generate appropriate vectors. However, the
need for such statistics is problematic for per-
sonal information agents because they might
only have access to limited data. Thus, we
explore in our experiments whether Word-
Sieve, using only local information, can
achieve comparable performance. In these
experiments, we used our own search engine,
which uses the cosine similarity metric to

compare the query to the vectors in the data-
base. We generated queries from documents
accessed by all the users. We used Word-
Sieve, along with TFIDF and LSI, to index
relevant documents accessed by users dur-
ing browsing sessions.

Parameter settings
We individually tuned each algorithm to

achieve the highest-possible performance on
a composite problem, simulating browsing by
taking the pages accessed by the first five users
and treating them as a single browsing ses-
sion. We fed this browsing session into our
implementation of the algorithms and then
conducted the following test: We computed
each algorithm’s quality as a weighted average
of the average precision at a recall of (0.0, 0.1,
0.2, 0.3, and 0.4, respectively). The average
was (2p0.0 + 1.5 p0.1 + p0.2 + p0.3 + p0.4)/6.5.

Optimizing WordSieve. Twelve parameters
must be set to determine WordSieve’s func-
tioning. We tuned the parameters manually.
Once we had a good set of parameters, we
employed a genetic algorithm to achieve
greater performance in the given experiment.
The genetic algorithm significantly increased
the algorithm’s performance (see Figure 5).
The genetic algorithm settled on 130 units in
level 1 and 117 in layers 2 and 3.

Optimizing TFIDF. For TFIDF, the dictio-
nary and vector sizes are the two main set-
tings. The dictionary size is the number of
terms that you could possibly use in a vec-
tor. The vector size is the number of terms
that were actually used to index the docu-
ments. Dictionary size significantly affects
performance. We compared the best perfor-
mance that TFIDF could produce, found by
brute force. Figure 6 shows the tests’ results.
We chose a dictionary size of 50 and a max-
imum vector size of 50.

Optimizing LSI. For our LSI test, we used as
input the TFIDF vectors generated. We then
experimented with different rank reductions.
We found that for these problems, the rank
reduction only slightly affects performance,
although we found that LSI can substantially
increase performance on suboptimal TFIDF
vectors. We chose to reduce the rank to 30.

Performance comparison
We tested the algorithms to see how well

they generated queries from documents the
users accessed. In this experiment, we passed
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Figure 4. A snapshot of WordSieve’s node activation: (a) layer 1, (b) layers 2 and 3, and
(c) the context vector. These images do not show all of the units.

(a)

(b)

(c)



a single user’s browsing through WordSieve
until 1,000 documents has been passed
through to train it. Then, we used each algo-
rithm to generate indices of some of the doc-
uments each user accessed during each search
task. We used these indices as queries in the
search engine, which resulted in 152 queries.
We considered each document in the result
set relevant if a user accessed it during the
same search task as the document that gener-
ated the query. We computed the weighted
averages for all result sets for each user.

We found that these results demonstrated
WordSieve’s promise for providing good per-
formance without global information. We
also found that WordSieve outperformed the
other two algorithms for all users (see Fig-
ure 7). Figure 7 shows the precision-recall
graphs for both users with the greatest and
smallest differences in performance.

Discussion
Although WordSieve outperforms the

other algorithms in these results, we opti-
mized the algorithms for the best perfor-
mance possible on these specific problems.
We have also achieved good results on dif-
ferent data used in previously published
experiments.

Factors influencing performance include
the variety of the vocabulary used in topics of
interest and number of documents accessed
for each topic. Also, other task domains
might require other parameter settings.

We were surprised to find that LSI gener-
ally performed no better and sometime per-
formed worse than TFIDF on these tests. It
seems that, at least for this kind of problem
and data set, LSI cannot improve on the opti-
mal TFIDF parameter settings. We found,
however, that LSI can substantially improve
on the performance of suboptimally gener-
ated TFIDF vectors. We believe that a sig-
nificant factor in LSI’s performance on our
data is the overlapping topics. Both the Gore-
Bush topics and the Thai-Indonesian topic
pairs share significant latent semantic struc-
tures because of the overlapping subject
areas. Using the latent semantic structure
will tend to make the documents from the
different overlapping topics have similar
vectors and thus increase wrong documents’
chances for retrieval across overlapping top-
ics. In Figures 7b and 7c, LSI can improve
over TFIDF for the later recall values.
Apparently, it created more accurate indices
for some outlying documents that TFIDF did
not detect.
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Figure 5. WordSieve’s optimization using a genetic algorithm: (a) change in fitness and
(b) difference in performance.
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A primary issue for future study in-
volves parameter tuning. In this

experiment, we wanted to give each algo-
rithm the best chance possible. Therefore, we
optimized the parameters to give the highest
performance on this particular data set. How-
ever, the preliminary work we have done
with other data sets suggests that other para-
meters will be optimal for other data sets and
that the parameters chosen here might give
poor performance elsewhere. Initial experi-
ments with other data sets having more var-
ied topics suggest that more units are neces-
sary in those situations. Particularly, the
dictionary size needs to be larger for prob-
lems with a more varied vocabulary. In the
future, we plan to work on an autotuning ver-

sion of WordSieve, in which the algorithm
adjusts its own parameters over time to fit the
particular user.

We also intend to study how WordSieve
adjusts to changing user interests. The acti-
vations in the units of each layer slowly
decay over time if repeated term occurrences
do not activate them. If a user’s interests
change, terms associated with the old inter-
ests that no longer occur will slowly decrease
in their activation and eventually be replaced.
We have plans for additional experiments to
show how long it takes the algorithm to learn
a user’s interests. We will need to show how
quickly the system can adjust to changing
user interests and how temporary interest
shifts will affect it.
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