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Chapter 8
Chemical and Biological Sensors

Chemical and biological sensors are found across a broad range of application areas. An
ideal sensor is one with high sensitivity, fast response time, selectivity, and compactness.
Achieving this goal is difficult, and current sensor technologies utilize a variety of
approaches. As progress in the miniaturization of electronics components is continued,
the feasibility of small and inexpensive massive arrays of chemiresistors is a promising
approach that might rival more established sensing technologies. Chemiresistors are
simple devices where the resistance of a material changes upon exposure to analytes. One
aspect of chemiresistors that can benefit from nanomaterials is the sensitivity, because
nanomaterials, carbon nanotubes in particular, have a large surface-to-volume ratio.
Indeed, a carbon nanotube is entirely a surface material, and its circumference is
comparable to the size of many small analytes. Thus, even a single analyte that attaches
on the surface of a carbon nanotube can significantly impact the nanotube conductivity.
This “single-molecule” detection capability would be difficult to achieve with bulk or
thin film materials.

In this chapter, we present the progress that has been made in developing chemical and
biological sensors based on monitoring the conductance of carbon nanotubes when
exposed to analytes. There are several different physical mechanisms that can lead to
changes of the nanotube conductivity in the presence of analytes: charge transfer,
changes in electron scattering, contact effects, and capacitance changes. Carbon nanotube
field-effect transistors are often utilized as sensitive electronic devices to probe these
mechanisms, but sensing with metallic carbon nanotubes has also been explored. One of
the first examples demonstrating modulation of the electrical response of carbon
nanotubes in the presence of analytes studied the transfer characteristics of carbon
nanotube field effect transistors when exposed to NO, and NH;. These gas-sensing
experiments were performed by placing a nanotube field effect device in a glass flask
with electrical feedthrough, and flowing diluted NH; and NO, in Ar or air through the
flask while measuring the conductance of the nanotube device. Figure 8.1 shows an
atomic force microscope image of one device, and the results of the controlled exposure
experiments. Clearly, exposure of the device to ammonia significantly decreases the
conductance, by a factor of one hundred in this case. Exposure to nitrogen dioxide gives
the opposite effect, significantly increasing the conductance when the nanotube device is
initially in the OFF state. This behavior is confirmed by measuring the transfer
characteristics of the device before and after exposure. As Figure 8.1 indicates, the
transfer curve is shifted to more negative values of the gate voltage upon exposure to
ammonia, while nitrogen dioxide causes a shift to more positive values of the gate
voltage. Thus for ammonia, the large initial conductance at a gate voltage of 0 volt is
considerably decreased. For nitrogen dioxide, the small initial conductance at
Vs =+4 Volts is considerably increased after exposure. These initial experiments clearly

demonstrated the potential of carbon nanotubes for chemical sensing, and have spurred



fundamental work to identify the mechanisms that lead to such a large electrical response
in carbon nanotubes. We note that the reader will have encountered related mechanisms
at the end of Chapter 7 on optoelectronic devices, in the context of optical detection with
functionalized carbon nanotubes.
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Figure 8.1: Left panels: (1) Atomic force microscope image of a single carbon nanotube in a field-
effect device. (B) Current versus gate voltage measured before and after exposure to NHs. (C)
Current versus voltage measured before and after exposure to NO,. Right panel: Transfer
characteristics of the carbon nanotube field-effect transistor before and after exposure to NH; and
NO,. Exposure of the device to these analytes leads to a shift of the threshold voltage in the
positive or negative direction. Figures from Ref. [Kon00].

8.1 Sensing Mechanisms

8.1.1 Charge Transfer

Near the threshold voltage V,,, the charge in the channel of a carbon nanotube field-

effect transistor depends linearly on the gate voltage, but the dependence of the
conductance is exponential. Thus, the conductance is extremely sensitive to the charge in
the channel, and this is the basis for utilizing carbon nanotube field-effect transistors as
ultrasensitive sensors. The concept is illustrated in Figure 8.2. Wether the field-effect
transistor is p-type or n-type, addition of negative charge in the channel leads to a shift of
the threshold voltage to more negative values, while addition of positive charge leads to a
positive threshold voltage shift. The transfer of positive charge to the carbon nanotube is
detected with a p-type device by working in the OFF state, with the added positive charge
causing a turn-on of the device. Similarly, negative charge is detected when a p-type
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device initially in the ON state turns off upon addition of negative charge to the nanotube.
(These are simply reversed for a n-type device.) This general mechanism applies
regardless of wether the device consists of a single nanotube or a network of nanotubes,
as long as it has a clear gating effect.
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Figure 8.2: Sketch of the impact of charge transfer on the characteristics of carbon nanotube field-
effect transistors, for p-type and n-type devices. AV, is the shift of the threshold voltage upon
transfer of charge AQ to the carbon nanotube.

Near the threshold voltage, the charge in the channel is proportional to the gate voltage
according to

en=C(V,~V,) (2.1)

where C is the capacitance per unit length between the gate and the nanotube and 7 is the
number of electrons per unit length. In the presence of analytes on the nanotube surface,
this equation is modified to

en+eafa’'d=C(V,~V,) (2.2)

where o is the number of electrons transferred per molecule, a is the area that a molecule

occupies on the nanotube surface, d is the nanotube diameter, and & is the surface

coverage. By writing V,, = V,Z +AV,, we obtain

AV, =eafC'a’\d. (2.3)

The largest change in the nanotube field-effect transistor conductance will occur when
the device is operated near the threshold voltage. In this regime, the relative change in
conductance is

% =S'AV, =5"ea8C'a"'d (2.4)

where S is the subthreshold swing as discussed in Chapter 4. Using the expression for the

capacitance per unit length C = we can obtain an expression for the maximum

2re
In(4h/d)
relative change in conductance
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This expression is valid for complete coverage of the nanotube with analytes, in a device
with the mimimum possible subthreshold swing. As an example, for a nanotube of 1 nm
diameter with a SiO, gate oxide thickness of 100 nm and an analyte occupying a surface
area of 1 nm?%, we obtain a maximum ratio of about 75 decades. Of course, this value is
unphysically high because the device conductance saturates, but the estimate drives the
point that the change in nanotube conductance can be extremely large. At the other end of
the spectrum, one can consider the impact of a single analyte on the nanotube
conductance. Under the assumption that the transferred charge is delocalized over the
entire channel length, we can estimate the relative change in conductance to be

(AGJ _aln(4h/d) 1

— decades. (2.6)
G 27ckTIn10 L

The appearance of the channel length is made explicit in this expression. With the same
parameters as above, we estimate a value for the ratio of a(75 nIn/L) decades; for an

analyte that transfers a full electron, a change of a factor of two in the conductance
requires a channel length of less than 125 nm.

For detection of analytes of concentration ¢ in a gas or liquid phase, it is useful to relate
the surface coverage 6 to the analyte concentration [Tal06b, Qi06]. This can be
accomplished by considering equilibrium surface coverage with analyte binding energy
E, and analyte chemical potential in the gas or liquid . The partition function is then

given by
Z =14z, W B 2.7)
where z,,, is the vibrational contribution. The chemical potential can be written as
M=ty +kTInx (2.8)

where x is the mole fraction of the analyte, and 4, is the chemical potential of the pure

substance. For small mole fractions, the nanotube surface coverage is calculated to be
[Bla75]

9=—F (2.9)
c+c,
with
¢y =Tz be Mo BT, (2.10)

The expression for the concentration dependence on the coverage can be combined with
that for the threshold voltage shift, Equation (8.3), to obtain
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From this equation and measurements of the threshold voltage shift as a function of the
analyte concentration, the amount of charge transfer can be calculated. An example of the
application of this approach is shown in Figure 8.3. There, experimental data [Qi03] for
the relative conductance change of carbon nanotube network transistors when exposed to
NO, is plotted as a function of the partial pressure of NO,. Assuming that the
concentration is proportional to the partial pressure, Equation 8.11 can be used to obtain a
relatively good description of the experimental data, as the solid line in the figure
indicates.
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Figure 8.3: Relative conductance change of carbon nanotube transistors when exposed to NO..
The symbols were extracted from Ref. [Qi03] and the solid line is the best fit using Equation (8.11).

o

The best fit gives a value for the prefactor eaS™'C™'a"'d equal to 0.56. For this device,
the channel is 4 microns long, the oxide is 500 nm thick, and there are 20 to 30 nanotubes
in the channel separated by ~4 microns. Using Equation (7.49) with N =25 and assuming

a nanotube diameter of 2 nm, we obtain a device capacitance C =7.5x107"° F/m. From
the device transfer characteristics, a subthreshold swing of S =14.2 V/decadecan be

extracted, and for a molecular size a =10""" m”a charge transfer of 0.07 electrons per
molecule is obtained.

One of the early experiments that supported the charge transfer model consisted in
measuring the resistance of networks of carbon nanotubes in vaccum and in oxygen-rich
environments. The time-dependence of the resistance during such an exposure to air is
shown in Figure 8.4, where one can see that the resistance of the nanotube network
decreases in air, with a full recovery observed as the device is returned to ultrahigh



vacuum conditions. Based on the above discussion, the reduction in the resistance could
arise from charge transfer if the nanotubes are n-type in vacuum and positive charge is
transferred to them, or if the nanotubes are p-type and negative charge is transferred.
While the simplest way to distinguish between these two possibilities is to sweep the gate
volgate and obtain the transfer characteristics, a complementary method is to measure the
Seebeck coefficient S. In thermoelectric materials, the Seebeck coefficient, defined as
s=dV /dT,is a measure of the voltage generated across the material when a temperature
difference is applied across it. The sign of s depends on the type of charge carrier: for a p-
type (n-type) material s is positive (negative). Thus, concomitant measurements of the
resistance and the Seebeck coefficient can provide evidence for the type of doping in the
carbon nanotubes. Figure 8.4 shows the measured Seebeck coefficient for a nanotube
network device, indicating that in vacuum, the nanotubes are n-type, but that exposure to
oxygen gives p-type doping. The implication is that oxygen transfers positive charge to
the carbon nanotubes.
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Figure 8.4: Measured resistance (left, from Ref. [Col00]) and Seebeck coefficient (right, after Ref.
[Col00]) of carbon nanotube films in vacuum and when exposed to air.

First principles calculations have been performed to study the properties of single carbon
nanotubes with oxygen adsorbates [Gru03, Tch06]. The central result of these
calculations is that oxygen molecules bind weekly to pristine zigzag and armchair
nanotubes, wether they are semiconducting or metallic. The calculated binding energies
for these situations are on the order of 0.05 eV, indicating physisorption on the nanotube
wall. Furthermore, it is found that charge transfer from the nanotube to the oxygen
molecule is weak, on the order of 0.01 electrons. The same calculations have found,
however, that defects in the carbon nanotube lattice can have a profound effect on oxygen
absorption. For example [Gru03], the binding energy of an oxygen molecule to a so-
called 7-5-5-7 defect is on the order of 0.3 eV, with 0.4 electrons transferred from the
nanotube to the oxygen molecule. As will be discussed in a later section, experiments
have suggested that oxygen may have a profound impact on the properties of the
nanotube/metal contacts [Der02], which may dominate the sensor response.

The shift in the threshold voltage of carbon nanotube transistors when exposed to
analytes has been observed in a number of experiments. Support for the charge transfer
model can be obtained by studying analytes with differing electron donating properties
[Sta03a]. For example, monosubstituted benzenes such as aniline, phenol, toluene,
chlorobenze, and nitrobenzene are believed to bind non-covalently to carbon nanotubes,
but posses much different electron donating properties. A measure of this property is the
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Hammett parameter o, , which was introduced by Hammett [Ham37] to describe the

relationship between reactlon rates and equilibrium properties of organic reactions. This
parameter is related to the electron donating or withdrawing properties of the substituents
on the benzene ring. The parameter is defined as zero for benzene, is positive for electron
withdrawing species, and negative for electron donating species.
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Figure 8.5: Left: Impact of aromatic compounds on the transfer characteristics of carbon nanotube
network transistors. Panel B shows the definition of the threshold voltage shift taking into account
hysterisis. Middle: The monosubstituted aromatic compounds studied. Right: Measured threshold
voltage shift of carbon nanotube field-effect transistors when exposed to aromatic compounds as a

function of their Hammet parameter O, Figures from Ref. [Sta03a].

Figure 8.5 shows the transfer characteristics of carbon nanotube network transistors when
exposed to solutions of cyclohexane, and solutions of cyclohexane with 0.1M aniline and
nitrobenzene. (The conductivity of these liquids is low, and the device conductance is
dominated by the carbon nanotube.) The general behavior is for the transfer
characteristics to be shifted to the left or right, with the conductance in the ON state
unaffected by the presence of the aromatic compounds. This behavior suggests that the
analytes do not cause additional scattering in the carbon nanotube, while possibly causing
a charge transfer that shifts the transfer characteristics. The devices show hysterisis; an
average threshod voltage shift can be calculated using the procedure depicted in Figure
8.5. From this procedure, the threshold voltage shift is found to depend linearly on the
Hammett parameter of the different substituents, as shown in Figure 8.5.

Charge transfer effects can also arise when the workfunction of metal clusters on carbon
nanotubes is modified by analytes [KonOlb]. For example, it is well-known that
hydrogen diffuses readily into palladium, which can lead to a change in its workfunction.
Indeed, this mechanism forms the basis of hydrogen gas sensor technologies. It is
possible to take advantage of this mechanism in carbon nanotube devices by decorating
the nanotube surface with nanoparticles of Pd. This is accomplished by first assembling a
carbon nanotube electronic device, followed by electron beam evaporation of Pd on the
whole device, leading to Pd nanoparticles decorating the nanotube sidewalls (Figure 8.6).
(The nanoparticle layer is not continuous, and the electronic transport is through the
nanotube.)
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Figure 8.6: Upper left: Schematic of the nanotube device with Pd nanoparticles coating the
nanotube. Middle left: Atomic force microscopy image of an individual carbon nanotube decorated
with Pd nanoparticles of diameters ranging from 2 nm to 3.5 nm. (b) Conductance of nanotube
device when exposed to 400 ppm of hydrogen in air. (c) Conductance of nanotube device when
exposed to 40 ppm of hydrogen in air. (d) Conductance of nanotube device when exposed to 40
ppm of hydrogen in Ar, and them switched to air. Figure from Ref. [Kon01b].

The conductance of the Pd-decorated nanotube device decreases substantially when it is
exposed to 400 parts-per-million of hydrogen in an air flow (Figure 8.6b), with a
response time on the order of 5 to 10 seconds. Device recovery upon turn-off of the
hydrogen gas is complete and occurs on a time scale of 400 seconds. It is believed
[KonO1] that the sensing mechanism is electron transfer from the Pd nanoparticles to the
carbon nanotube due to a lowering of the Pd workfunction, which reduces the hole carrier
concentration and decreases the conductance. It is interesting to note that competing
hydrogen reactions can lead to an overshoot of the conductance reduction at low
hydrogen concentrations. For example, Fig, 8.6¢ shows that for 40 parts-per-million of
hydrogen in air, the initial large drop of the conductance on the 5 to 10 second timescale
is followed by a partial recovery of the conductance while the hydrogen is still flowing in
the chamber. Experiments with the same concentration of hydrogen in Ar show that this
behavior is not present, but that switching to air gives a full device recovery (Figure
8.6d). A likely scenario is that the hydrogen dissolved in the Pd reacts with oxygen in air,
causing the hydrogen to leave the Pd in the form of water.

8.1.2 Scattering

The impact of analytes on the conductance of carbon nanotubes can also occur through an
increased scattering of electrons in the channel. In this case, and in the absence of charge
transfer and contact effects, the transfer characteristics of carbon nanotube transistors are
expected to be modified according to Figure 8.7. The figure shows that the threshold
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voltage is unaffected by the analytes, but that the ON state conductance, and hence the
subthreshold swing, is reduced because of increased scattering.
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Figure 8.7: lllustration of the impact of increased scattering on the transfer characteristics of a p-
type carbon nanotube field-effect transistors. The threshold voltage is unchanged, but the
conductance in the ON state and the subthreshold swing decrease.

The simplest model to describe the impact of analytes on the nanotube conductance is
one where each analyte is treated as a point scatterer for coherent carrier scattering. In
Equation (4.102) and Figure 4.47, we considered the transmission probability for an
electron in the presence of two scatterers in series. Generalization to NN scatterers in series
each with transmission probability 7; gives the expression for the total transmission

probability
Ty

TN T (2.12)

For a single scatterer (N =1) the total transmission 7' =7, while in the limit of large N

T 1 T,
such that N> —%—we have 7 ~——2

0 0
(including N =1) if the transmission probability of an individual scatterer is small.

. This last expression is also valid at any N

The time-dependence of the conductivity can be obtained by considering the number of
analytes on the surface of the nanotube as a function of time. For analytes that attach to
the surface of the nanotube with probability 4, the number of analytes depends on time as

N(t)= ﬂ(l —e ) (2.13)
a

where @ is the number of analytes impinging on the nanotube per unit time per unit area,
a is the area that the analyte occupies on the surface of the nanotube, L is the length of the
nanotube, and d its diameter. The ratio Ld/a, representing the maximum number of
analytes that can attach on the surface, is somewhat approximate, but reflects the fact that
nanotubes typically sit on a substrate, so only a portion of the nanotube surface is
available for attachment. Combining Equations (8.1) and (8.2) with the Landauer
expression for the conductance G [Equation (2.11) at zero temperature for a single,
degenerate transmission channel], we obtain the time-dependent conductance as
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By fitting to experimental data, this formula can be utilized to extract the transmission
coefficient of a single scatterer 7, as well as the sticking probability A.

More detailed theoretical work has been performed to understand the role of analytes on
nanotube conductance [Lat05]. For example, the impact of benzene (C6H 6) and azulene

(C)oHy ) on the nanotube electronic structure and electronic transport has been studied by

calculating the distortions of the nanotube electronic structure in the presence of analytes,
mapping this distortion into a tight-binding parametrization, and calculating the scattering
mean-free path. It is found that these simple molecules do not disturb the nanotube
electronic structure significantly, especially around the Fermi level. Thus the scattering
mean-free paths are found to be larger than 7 microns for azulene, and larger than 100
microns for benzene even at coverages up to 20% by mass. This indicates that surface
functionalization of carbon nanotubes with molecules through n-stacking interactions will
not appreciably distort the electronic structure or the transport properties. It also indicates
that sensing through monitoring of the ON state conductance is more effective with
molecules that chemisorb on the nanotube surface rather than physisorbed species like
aromatic hydrocarbons.

L m T T _1 J
C . ]
S L., -
)= E <
] l § .
E E
2 W S I
= -
32
E 1 -
E - —
= - 4
g b E
g Sr ]
E 4 + =
A =
I o E= 007, E
E=—1:I.1‘|r|.J
L 1 I [ T I 1 1
1'% 2% % 4% 5% 0% NFE MR

Coverage density of nzulene moleculss (% mass)

Figure 8.8: Calculated mean-free path for electron scattering with physisorbed azule molecules. At
the Fermi level (open circles), the mean-free path is longer than 7 microns, even at the highest
coverages. Figure from [Lat05].

8.1.3 Contacts

As we have seen in previous chapters, contacts play an important role in carbon nanotube
devices. In particular, the band alignment at nanotube/metal contacts depends strongly on
the metal workfunction. Thus, analytes can have a serious impact on the conductance of
nanotube devices if they modify the metal workfunction at the contact. Experiments
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using Kelvin probes have shown that the band alignment at nanotube/Au interfaces can
be changed by as much as 0.1 eV upon exposure to oxygen [Cui03].

Initial evidence for the importance of contacts in carbon nanotube sensors was provided
by the study of single-nanotube field-effect transistors with Au contacts first annealed in
vacuum and then exposed to various doses of oxygen [Der02]. Contrary to as-prepared
devices, annealing the devices in vacuum leads to n-type field-effect transistors, as we
have discussed in the context of logic circuits in Chapter 4. Exposure of these devices to
oxygen leads to a recovery of the p-type behavior, as illustrated in Figure 8.9.
Importantly, it is found that the threshold voltage of the nanotube transistor is essentially
unaffected by the presence of oxygen; instead, a gradual reduction of the conductance for
positive voltages and a gradual increase of the conduction for negative gate voltages is
observed. This behavior indicates modification of the Schottky barriers at the contacts.
As the sketches of Figure 8.9 illustrate, a device in vacuum initially has a metal Fermi
level aligned close to the conduction band edge, leading to n-type behavior. As the
oxygen dosage is increased, the Au Fermi level moves deeper into the bandgap, leading
to ambipolar behavior. Finally, at the highest oxygen dosage, the Schottky barrier for
holes is smaller than that for electrons, and the device behaves as a p-type transistor.
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Figure 8.9: Left: Sketch of the impact of a change in metal workfunction due to analytes on the
transfer characteristics of carbon nanotube transistors. Right: Measured transfer characteristics in
vacuum and at different doses of oxygen, indicating a gradual change from n-type to p-type
behavior. Right figure from Ref. [Der02].

To further explore the role of contacts, recent experiments have looked at the sensing
properties of carbon nanotube transistors with contacts protected by polymeric layers



[Zha06] or self-assambled monolayers [Che04]. Figure 8.10 shows the transfer
characteristics of a carbon nanotube transistor with unprotected top Pd contacts of 75 nm
thickness upon exposure to NO,. In this experiment, the concentration of NO; in the

chamber depends on time according to n(r)=n, (l—e"” ’0) where 7, =23 min.

Measurement of the transfer characteristics of the nanotube transistor shows that the
current in the ON state increases with exposure time, and can be as much as a factor of
three larger than for the device before exposure. A comparison of the time dependence of
the conductance shows that it correlates with the time dependence of the NO,
concentration in the chamber (Figure 8.10). Similar experiments with a SU-8/PMMA
polymeric protective layer of 2 micron thickness over the contacts (but leaving the
nanotube channel unprotected) gives a different result: it is found that the time
dependence of the conductance no longer correlates with the time dependence of the NO,
concentration in the chamber, but instead varies much more slowly with time.
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Figure 8.10: Transfer characteristics of a carbon nanotube field-effect transistor upon exposure to
NO,. The left and right panels show the results without and with a SU-8/PMMA protective layer on
the contacts. The panels labeled (b) in both figures compare the measured time-dependence of the
conductance with the expected time dependence of the concentration inside the chamber (solid
line). The bottom right panel shows a comparison of the measured conductance with the calculated
concentration of NO, from diffusion across the SU-8/PMMA layer. Figures from Ref. [Zha06].

This observation can be explained by considering the concentration of NO, that diffuses
through the protective layer and reaches the metal/nanotube interface. The situation is
illustrated in Figure 8.11. There, a protective layer of thickness L sits on top of a carbon
nanotube. At the outer surface, exposed to the chamber, there is a time-dependent
concentration of NO, given given by that in the chamber. The time dependence of the
concentration throughout the layer is obtained by solving the diffusion equation for the
concentration
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Oc(x,t) _D o%c(x,1)

= 2.15
ot ox’ @13
with the boundary condition at the surface
c(0,)=c,(1-¢""") (2.16)

which corresponds to the concentration in the chamber. We assume that there is no flux
of NO, through the bottom surface of the polymer layer, so that the boundary condition
there is

ac

=0. 2.17
= (2.17)

The initial condition is n(x,O)zO. The diffusion equation in the presence of time-
dependent boundary conditions can be solved with the change of variables

u(x,t)=c(x,t)=c,(1-¢'") (2.18)
leading to the non-homogeneous differential equation

au(xs t) -D qu(x,t) — C_Oe—t/to
ot o’ I

(2.19)

with the boundary conditions u(O,t)zO and GXM(L,t):Q The original differential

equation has been transformed to a non-homogeneous differential equation but with
homogeneous boundary conditions. The solution of this equation can be obtained by
following standard procedures [Boy86], leading to the full solution for the concentration:

Dr*m?

Y
¢ sin(;r—};jxj. (2.20)
1

® 2 e
c(x,t)zco(l _’/’0) Z

mel3s.. 7T Dr*m?
41°

0

Figure 8.11 shows the time evolution of the concentration profile for a film thickness of 2

microns, a diffusion constant D=1.8x10""" m*/s, and t, =23 min. Because the

diffusion constant leads to a characteristic diffusion time ~/L/D ~1500 min much longer

than the time necessary to achieve the steady-state concentration in the chamber, the
concentration at the nanotube/metal interface lags behind that in the chamber, and is
typically about 50% less for the parameters used here. The calculated concentration at the
nanotube/metal interface correlates well with the time dependence of the conductance as
shown in Figure 8.10c. Furthermore, experiments where the whole device was covered in
SU-8/PMMA showed the same behavior as the devices where only the contacts were
protected, providing further evidence that for NO, the sensing mechanism is due to
changes in the contact properties.
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Figure 8.11: Top: Schematic of the protective layer sitting on top of a carbon nanotube. Bottom left:
Calculated concentration profile for diffusion through a 2 micron thick layer, with a time-dependent
boundary condition at the surface exposed to the chamber. Because of the finite diffusion
coefficient, the concentration at the unexposed end of the layer (x=L) lags behind the

concentration at the surface. Bottom right: Calculated time dependence of the concentration at the
nanotube surface (solid line) compared to that at the exposed surface (dashed line).

The change in the transfer characteristics due to diffusion of NO, to the nanotube/metal
interface is most likely due to a decrease of the Schottky barrier. This is consistent with
the increase of the ON state conductance with increased exposure. An alternative
mechanism that could also apply to sensors with metallic carbon nanotubes arises if there
is a tunneling barrier at the nanotube/metal interface. In this case, the presence of analytes
can change the height of the tunneling barrier, causing an increase or decrease of the
conductance. To explore this possibility, we consider tunneling across a thin vacuum
layer at the interface between the metallic carbon nanotube and the metal contact,
forming a metal/insulator/metal device, as illustrated in Figure 8.12.

Tunnel
Metal |barrier| NT

b

Figure 8.12: lllustration of a metal/metallic-nanotube interface with a thin tunneling barrier, and the
band alignment defining the thickness of the tunnel layer b, the tunnel barrier heights on the metal

@,, and nanotube sides @, the metal workfunction @, and tunnel barrier electron affinity .

The tunneling current in such a system is given by [Sze81]
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I :IO[(¢—V/2)exp(— GV I2IV")=(p+V I 2)exp(-Ag+V ]2 /V*)] 2.21)
where ¢ is the height of the tunnel barrier, and

Ay (2.22)
eb\m*

In this last equation m *is the effective mass of the tunneling electrons, and b is the
tunneling distance. For simplicity we assume that ¢=(¢NT +¢m)/ 2 where @, is the

height of the tunnel barrier on the nanotube side, and ¢,, is the height of the tunnel barrier
on the metal side. For small bias voltages, the current depends on the barrier height as

I=1 exp[—zb— “2;”**/5] (2.23)

where the voltage dependence has been included in the prefactor /. We assume that the
height of the tunnel barrier depends linearly on the concentration of analyte at the contact
(for example, through a change in the metal workunction). For an unprotected contact, or
for fast diffusion of the analyte through the protective layer, we have

#(1)= ¢, +A¢(1—e‘mL‘”) (2.24)

where A¢ is the change in barrier height with concentration, A is the sticking coefficient,

Ld is the nanotube area available to analytes, and ®is the flux of analytes on the
nanotube surface. This sensing mechanism therefore gives a unique signature in the time-
dependence of the conductance which allows to distinguish it from other mechanisms.

8.1.4 Capacitance

While this chapter has focused mainly on changes of the nanotube conductance due to
analytes, an alternative approach to detect the presence of analytes is through the
measurement of the capacitance. This approach has so far been demonstrated using
networks of carbon nanotubes, and applied to sensing of various chemical species and
agents [Sno05, Ese07]. Figure 8.13 illustrates a device utilized to perform these
measurements. It consists of a network of carbon nanotubes, with a mixture of
semiconducting and metallic nanotubes. An interdigitated array of Pd electrodes is
patterned on top of the nanotube network, which sits on SiO,. An AC voltage is applied
between the nanotube network (through the Pd electrodes) and a backgate, and the
capacitance is measured by detecting the out-of-phase AC current with a lock-in
amplifier. Figure 8.13 shows the results of such capacitance measurements when the
nanotube network is exposed to dimethyl formamide of varying vapor concentrations.
The figure clearly indicates a noticeable change in the capacitance on a short time scale,
both for the turn-on and the recovery (the response time is less than 4 seconds, limited by
the vapor-delivery system). A broad range of analytes have been shown to give a
capacitance response, and notably, a minimum detectable level of 50 parts per billion has



been achieved for dimethylmethylphosphonate (DMMP), a chemical used in the
synthesis of the nerve agent sarin [Sno05]. Comparisons with commercial
chemicapacitors are quite favorable. For example, commercial chemicapacitors can
detect acetone with a minimum detection limit of 2 parts-per-million and detection time
of 228 seconds. This can be compared with the values of 0.5 parts-per-million and
detection time of less thatn 4 seconds for the nanotube network capacitor. Similar
conmparisons for the detection of DMMP are equally favorable.
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Figure 8.13: Left: Optical micrograph and cross-sectional sketch of a carbon nanotube network
capacitor used for sensing experiments. The capacitance is measured by applying an AC voltage
between the nanotube film and the gate. Right: Relative change in capacitance when the device is
exposed to dimethyl formamide (DMF). Figures from Ref. [Sno05].

It has been proposed that the change in capacitance is due to the dipole moments of the
analytes, which can change the effective dielectric constant of the capacitor [Sno05].
While some polar molecules have shown increased capacitance sensitivity compared to
non-polar molecules, measurements across a broad range of molecular dipole moments
do not show a strong correlation. This has lead to controlled experiments [Ese07] to
further explore the sensing mechanism in these types of measuments, as we now discuss.
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Figure 8.14: Comparison of the measured relative changes in capacitance and resistance for
carbon nanotube networks exposed to acetone, water and argon. Figure from Ref. [Ese07].

The proposed concept is that the nanotube network device (channel width w and channel
thickness f) behaves like a transmission line with resistance per length r», back-gate
electrostatic capacitance ¢, =&w/¢, inductance /= yt, and oxide conductance g. The

impedance of such a transmission line is given by

7= |rriol (2.25)
g+imc,

Assuming that the oxide conductance and nanotube network inductance are negligeable,
(at frequencies @ < r/!) the nanotube network device can be modeled as a transmission

line with a characteristic length
Iy = / 2 . (2.26)
ra)cel

For channel lengths much larger than this characteristic length scale, the impedance is

(1-i) | r
Z= . 2.27
7 Vo, 2270
This can be compared with the impedance of a RC circuit
Z=Ry ———, (2.28)

oC\yp

to obtain the effective capacitance of the nanotube network as

2
Cur = |~ = l,. (2.29)
wr

Note that this equation indicates that there is an intimate connection between the
-1/2

resistivity of the nanotube network and its capacitance, C,, ~r °. Because of this

relationship, the relative sensitivies of the capacitance and the resistance to analytes
follows a relation
AC 1 Ar

- 2.30
C 2 r ( )

This equation indicates that the relative change in capacitance can be entirely due to a
relative change in the resistivity of the nanotube network. This relationship is confirmed
by measurements comparing the capacitance and resistivity changes of carbon nanotube
networks in ultra-high vacuum and upon exposure to acetone, water, and argon. As
shown in Figure 8.14, in all of these cases the relationship (8.30) is satisfied, indicating
that resistivity changes are the most likely mechanism for sensing of these analytes.
While the ratio of -1/2 has also been seen by other researchers [Sno07], deviations from
this relation also occur [Sno07].



8.1.5 Liquid Gating

“Liquid gating” is not a sensing mechanism per se, but is a technique to achieve strong
field-effect behavior in carbon nanotubes when the nanotube is immersed in solution.
This is important because many sensing applications require the ability to detect analytes
or to monitor reactions occuring in the liquid phase. In this section, we derive an
expression for the capacitance of an electrolyte-gated carbon nanotube by adapting the
Gouy-Chapman theory of the double-layer capacitance.

The system under consideration is illustrated in Figure 8.15. There, a carbon nanotube of
radius R with linear charge density A is immersed in a charge-neutral electrolyte, and a
reference electrode sets the potential at ¥, where the subscrip “Ig” stands for “liquid

gate”. For simplicity, we will assume that the reference potential is set infinitely far from
the nanotube surface. In the electrolyte, Poisson’s equation is
av 1o _ el

2.31
o’ r or £ @3D)

where p(r) is the charge distribution in the electrolyte, and ¢ is the dielectric constant of

the electrolyte.
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Electrolyte

Electrolyte
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Figure 8.15: Cross-section of the system for calculation of the capacitance of a liquid gate. A
carbon nanotube is immersed in an electrolyte, and a reference potential Vlg is set far from the

nanotube. The grey shading represents the distribution of charge in the electrolyte that screens the
charge on the nanotube.

In the Gouy-Chapman theory, it is assumed that the excess concentration c¢(7) of ions in
the solution is given by a Boltzman distribution

c(r)=c,—cyexp {—%} (2.32)
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where ¢, is the concentration in the neutral solution and E(r) is the energy required to
bring an ion from the reference potential to position 7. In our case that energy for an ion
of valence z is simply E (r) = Z€5V(r) and we have

(2.33)

ze5V(r) ~ze5V(r)
kT | kT

c(r)=c,—c, exp{—

where the last approximation assumes that the potential is small. Using the relation
p(r)=—ezn0c(r) with n,the number of ions per unit volume, we obtain Poisson’s

equation as

2 2 2
OOV L0V _ZeMm sy (p). (2.34)

ot r or ekT
The solution of this equation with the boundary conditions that /' =V},as r — o and
V=0at r=Ris

K, (r/1)
V(r)=V,|1-——=% 2.35
(r) 1{ KO(R/I)} (2.35)
where K, (x)is the modified Bessel function of order 0. The parameter
ekT
z"e’n,

has units of length and represents the screening length in the electrolyte. Indeed, for
r>> [ the potential can be approximated as

- _ 1 ll —r/l
V(r)d/l{l &0 (R/Z)\/; e } (2.37)

so the potential decays over a distance /.

To obtain the capacitance we calculate the charge induced on the nanotube from

ZﬂzzeznongLT K,(r/1) 2wl L

= rdr ~ 2.38
Qoo kT <Ko (R/T) K (R/I) (2:3%)
where L is the nanotube length. The capacitance per unit length is then
R (2.39)

LK, (RID) W(20/Ry)

In this last equation y is Euler’s constant and we assumed that R < /. This expression for
the capacitance can be compared with that of a backgate



Cbg _ 2re
L In(2n/R)

(2.40)

While both have the same functional form, there are two crucial differences. First, the
dielectric constant of electrolytes is typically much larger than that of gate insulators
(water has a dielectric constant of 80 for example). Second, the gate-oxide thickness is
replaced with the length scale 2//y and for water this is on the order of 1 nm. The

combination of these two factors leads to a liquid-gate capacitance per unit length on the
order of 10 aF/nm, two orders of magnitude larger than a typical backgate capacitance.

An important implication of this result is that the intrinsic capacitance of the nanotube,
which is usually neglected because it is much larger than the backgate capacitance,
becomes the dominant capacitance. As will be discussed below, liquid-gating has been
utilized to detect protein binding [Che03] and enzymatic reactions| Bes03].

8.2 Functionalized Nanotubes

From the discussion in the previous sections, it is quite clear that carbon nanotubes are
quite sensitive to their environment. While this can be advantageous for sensing
applications, the extreme sensitivity to the environment also implies that analyte
specificity is more difficult to achieve. To this end, functionalization of the nanotube
surface has been explored to target specific chemical and biological agents. The
functionalization schemes fall into two classes: selective schemes where the
functionalization reacts only with a limited range of analytes, and blocking schemes
where a surface layer allows only a few analytes to reach the carbon nanotube.

8.2.1 DNA Functionalization

Single-stranded DNA (ssDNA) was initially utilized in the carbon nanotube arena as a
surfactant to isolate individual nanotubes in solution [Zhe03]. Electrical measurements
subsequently showed that the ssDNA does not alter the conductance of individual
nanotubes appreciably [Tal04]. Because of this preservation of the high nanotube
conductance and the unique recognition capability of ssDNA, sensors with ssDNA-
functionalized carbon nanotubes have been explored [Sta05, Sta06, Tan06].

In one example [Sta05], a carbon nanotube field-effect transistor made of a single carbon
nanotube is fabricated, with ssDNA applied to the carbon nanotube by deposition of a
drop of distilled water with diluted ssDNA. Two different sequences of ssDNA were
applied to the carbon nanotube: a 21-mer sequence (5 GAG TCT GTG GAG GAG GTA
GTC 3’, sequence 1) and a 24-mer sequence (5° CTT CTG TCT TGA TGT TTG TCA
AAC 3’, sequence 2). These sequences are chosen because previous experiments in the
context of artificial noses demonstrated their sensitivity to small, vapor-phase molecules.
Atomic force microscopy of the same nanotube before and after application of the
ssDNA solution indicates an increase in the apparent height from 5.4 m. to 7.2 nm,
indicating the presence of a 1-2 nm thick layer of ssDNA on the surface of the nanotube.
Support for the formation of ssDNA/carbon nanotube hybrids has also been provided by
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other experiments where the nanotubes were functionalized with ssDNA in solution, with
subsequent heating of the solution above 80 °C leading to precipitation of the carbon
nanotubes, indicating dissociation of ssDNA from nanotube surface [Tal04].

The mild effects of ssDNA sequence 1 on the conductance of carbon nanotubes is
illustrated in Figure 8.16, which plots the measured transfer characteristics of the
nanotube device before and after functionalization. A small reduction in the ON state
conductance is observed, accompanied by a shift of the threshold voltage from 10 V to 5
V. The threshold voltage shift may be an indication that ssDNA of this sequence transfers
electrons to the carbon nanotube. Exposure of the ssDNA/nanotube hybrid device to
trimethylamine (TMA) by flowing a mixture of air/analyte over the device shows a very
strong shift of the threshold voltage by about 10 V. We note however that the bare carbon
nanotube also shows a response to TMA, although as discussed further below, the
response is not as strong. Since TMA has a large pK value of 9.8, it is proposed that
TMA is protonated by residual water. This would be consistent with the presence of
residual water on bare nanotubes, and is also expected after exposure to the ssDNA
diluted in distilled water. The presence of the ssDNA may enhance the protonation of
TMA.
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Figure 8.16: (a) Schematic of the carbon nanotube field-effect transistor functionalized with single-
stranded DNA of two different sequences. The devices were exposed to the analytes in (b). (c)
Transfer characteristics of the bare nanotube device, the device upon functionalization with sSSDNA
of sequence 1, and the functionalized device exposed to trimethylamine (TMA). Figures from Ref.
[Sta05].

The enhanced response in the presence of ssDNA is not unique to TMA. Indeed, an
enhanced response has been seen for several chemicals. In the case of methanol, the bare
nanotube device shows essentially no response, but a strong decrease of the current is
observed when the nanotube is functionalized with sequence 2; in addition, the response
is reversible and repeatable. Similar experiments with TMA show that the presence of
sequence 2 also enhances the response. The magnitude and sign of the current change is



specific to each analyte: a nanotube functionalized with sequence 1 shows a current
reduction for methanol, and a current increase for propionic acid (Figure 8.17).
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Figure 8.17: Current change of carbon nanotube field effect transistor when exposed to methanol,
trimethyamine (TMA), and propionic acid (PA), with and without DNA functionalization of the
nanotube. Figure from Ref. [Sta05].

The nanotube/ssDNA hybrids are also useful for the detection of chemicals used as
simulants of explosives and nerve gas. (Detecting explosives is difficult because their low
vaor pressure requires highly sensitive sensors.) Figure 8.18 shows the response of the
nanotube device to dimethyl methylphosphonate (DMMP) and dinitrotoluene (DNT),
simulants for explosives and nerve gases, respectively. As can be seen in the figure, the
functionalized nanotubes show a strong response to each of these agents, while the bare
nanotubes show no response. Moreover, the response is sequence-specific: at a
concentration of 25 parts-per-million, DMMP gives a 7% reduction of the current with
sequence 1, and a 14% reduction with sequence 2. Similar results are obtained with DNT.
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Figure 8.18: Change in current through a carbon nanotube field-effect transistor when exposed to
dimethyl methylphosphonate (DMMP) and dinitrotoluene (DNT). The bare nanotube device shows
no response to either agent, but functionalization with different ssDNA sequences gives a response
for each gas. Figure from Re. [Sta05].

Other experiments with DNA-functionalized carbon nanotubes have focused on carbon
nanotube network transistors [Sta06], with the aim of detecting single-nucleotide
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mismatches in target DNA sequences. To demonstrate this ability, a combination of
fluorescent imaging and electronic transport measurements were first performed to
demonstrate the functionalization of the carbon nanotubes and the preferential attachment
of a matched DNA sequence. Figure 8.19 shows a series of fluorescent microscopy
images taken after functionalization with the capture DNA and after subsequent exposure
to the target DNA. First, a DNA sequence of 5’-CCT AAT AAC AAT-3’ labeled with a
small fluorescent molecule was applied to the carbon nanotube network followed by a
thorough washing to remove unbound DNA. The image in Figure 8.19A indicates that
the DNA sequence attached predominantly to the carbon nanotubes (including over the
electrodes), but not on the silicon dioxide substrate. The unlabelled capture sequence
does not show any fluorescence (Figure 8.19B). Exposure of the carbon nanotube
network functionalized with the unlabelled sequence to the fluorescent-labelled
complimentary DNA sequence shows that the target DNA binds primarily to the carbon
nanotube network (Figure 8.19C). When a different capture probe with little homology
with the target probe is used, little fluorescence is observed from the carbon nanotube
network (Figure 8.19E). These results indicate the ability to functionalizae the nanotube
network, and the strong recognition capabilities of the ssDNA on the nanotube surface.
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Figure 8.19: Fluorescence microscopy images of networks of carbon nanotubes between
interdigitated electrodes after DNA incubation for one hour and removal of the unbound DNA
oligomers. Image (A) was taken after incubation with 12-mer capture probes that were labeled with
a fluorescent dye. Image (B) is for the same functionalization but without the dye. (C) Image taken
after functionalization with the unlabelled capture sequence and exposure to the target sequence
labeled with a fluorescent dye. (D) Image of the nanotube network functionalized with a different
fluorescent-labelled DNA sequence. (E) A device functionalized with the non-labelled sequence of
(D) has very low binding affinity to a mismatched fluorescent-labelled sequence. The graph in (F)
shows the difference in the fluorescence intensity for capture of the complementary and non-
complementary strands. Figure from Ref. [Sta06].
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The binding of ssDNA to its complimentary strand can be observed by monitoring the
changes in the transfer characteristics of the carbon nanotube network transistor. When
functionalized with the capture probe, it is found that the ON state conductance is
somewhat decreased from its value for the bare network, and that the threshold voltage is
reduced by 2-5 V, consistent with the results presented earlier for the single nanotube
devices. While exposure of the device to the non-complimentary ssDNA makes little
difference in the transfer characteristics (Figure 8.20B), exposure to the complimentary
strand gives a further shift of the threshold voltage by 1-2 V. These experiments
demonstrate the ability to discriminate between two different DNA sequences using a
rapid, label-free technique. Such approaches are currently being explored to enable the
rapid diagnostic of diseases. As an example of the applicability of the carbon nanotube
sensor for this purpose, it was utilized to detect single-nucleotide mutation in the HFE
gene, which is responsible for hemochromatosis [Sta06]. In these experiments, the
nanotubes were functionalized with 17-mer sequences of wild-type and mutant ssDNA
which differ only in a single nucleotide. Hybridization with a 51-mer sequence
containing the target sequence complimentary to the wild-type was conducted on devices
with only the wild-type or the mutant capture probes. Measurement of the transfer
characteristics (Figure 8.21) and fluorescence microscopy after washing show that little
wild-type hybridization occurred on the mutant-functionalized nanotubes, while
significant hybridization occurred on the wild-type-functionalized nanotubes, leading to a
reduction of the ON state conductance and a reduction of the threshold voltage.
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Figure 8.20: Transfer characteristics of a carbon nanotube network field-effect transistor when
functionalized with ssDNA. Panel (A) shows the response to the complementary strand, while panel
(B) is the response to a mismatched strand. Figure from Ref. [Sta06].
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Figure 8.21: Response of ssDNA-functionalized carbon nanotube network transistor showing

single-nucleotide discrimination between the wild-type (wt) and mutated (mut) forms of a target
DNA sequence. Figure from Ref. [Sta086].

Many aspects of sensing with DNA-functionalized carbon nanotubes remain to be
explored. The properties of the nanotube/ssDNA hybrid itself require further study to
better understand the structure of the ssDNA, its impact on the nanotube electronic
structure, the role of buffers, the importance of salts in the solution [Sta06], the
differences between solution and on-chip functionalization, etc. Modeling work has been
performed to address some of these issues [Lu05, Eny07]. Recent experiments [Tan06]
have proposed that DNA hydridization at the contacts is the dominant sensing
mechanism, with the changes in the transfer characteristics due to an increase of the
Schottky barrier at the contact. In these experiments, Au was utilized as the contact
material, and the increase in the Schottky barrier is believed to originate from a reduction
of the Au workfunction upon hybridization on the Au surface. This conclusion is
supported by quartz crystal microbalance and X-ray photoelectron spectroscopy on
ssDNA-functionalized nanotubes dispersed on a substrate, which showed little binding of
the complimentary strand.

8.2.2 Enzyme Coatings

In the first section of this chapter, we discussed liquid-gating of carbon nanotube
transistors. By taking advantage of this approach, research has shown that enzyme-coated
carbon nanotubes can serve as pH sensors, as well as to detect enzymatic activity
[Bes03]. As shown in Figure 8.22, enzymes can be immobilized on carbon nanotubes
through a linker molecule that binds non-covalently to the surface of carbon nanotubes. A
particular example is the enzyme glucose oxidase which catalyses the oxidation of
glucose. Attachment of this enzyme to the surface of carbon nanotubes results in a strong
decrease of the conductance of the nanotube device (Figure 8.22B) when the conductance
is measured in deionized water. Thus, this device is a good sensor for glucose oxidase in
liquid. It was originally proposed that the sensing mechanism is the disruption of the



double-layer near the nanotube and the decrease of the capacitance of the liquid gate
[Bes03]. However, rescaling of the gate voltage to represent this effect does not make the
current-voltage curves overlap. Instead, a simple shift of the gate voltage gives excellent
data overlap (inset in Figure 8.22B). Thus, it appears that charge transfer, as discussed in
Section 8.1.1 is a likely mechanism to explain the experimental data.
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Figure 8.22: (A) Sketch of a carbon nanotube functinalized with the enzyme glucose oxidase. (B)
The sequences of data from top to bottom correspond to the bare nanotube, the nanotube after
soaking in DMF solution for 2 and 4 hours, after 2 hours in DMF with the linking molecule, and
finally, after immobilization of glucose oxidase. The inset shows the collapse of the data for the
bare nanotube and the enzyme-coated nanotube when the gate voltage is shifted. (C) Sensitivity of
the enzyme-coated device to pH. Inset shows the response of the nanotube before immobilization
of glucose oxidase. Figures adapted from Ref. [Bes03].

The enzyme-functionalized carbon nanotube field-effect transistors can be utilized to
perform sensing in the liquid environment. For example, these devices are sensitive to the
solution pH, with a decrease of the pH leading to a decrease of the conductance (Figure
8.22C). The impact of decreasing the pH on the transfer characteristics is a shift of the
threshold voltage to more negative values, and it is proposed that charged groups on the
glucose oxidase become less negatively charged in decreasing pH [Bes03]. It is also
interesting to note that addition of glucose to the solution produced an increase of the
device conductance, allowing the real-time detection of enzymatic activity.

8.2.3 Polymer Coatings

One strategy to impart specificity to carbon nanotube sensors is to cover the nanotube
device with a polymeric layer that blocks most analytes except the targeted ones [Qi03,
Star03b]. This strategy has been employed to achieve multiplex sensing of ammonia and
nitrogen dioxide on a substrate containing multiple polymer-coated devices [Qi03]. An
optical image of one of these devices is shown in Figure 8.23. There, three different
carbon nanotube field-effect transistors have been microspotted with two different
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polymers: polyethyleneimine (PEI) and Nafion (a polymeric perfluorinated sulfonic acid
ionomer). Ammonia has a low affinity to PEI because of the high density of amines.
Likewise, Nafion blocks species that do not contain —OH groups, such as nitrogen
dioxide, but is permeable to molecules such as NH; which forms NO,OH. These
attributes were combined to selectively detect ammonia and nitrogen dioxide on separate
devices. Figure 8.23 shows a time trace of the current flowing through two of the devices,
one coated with PEI and the other coated with Nafion. Simultaneous exposure of both
devices to NH; and NO, indicates that the PEI-coated device responds to NO, but not to
NHj;; the reverse situation is observed for the Nafion-coated device.
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Figure 8.23: Multiplex detection of ammonia and nitrogen dioxide with carbon nanotubes coated
with polymeric blocking layers. The optical image on the left shows three nanotube devices after
each device is microspotted with droplets of different polymer solutions. The three devices are then
simultaneously exposed to ammonia and nitrogen dioxide vapors. The right graph shows that the
Nafion-coated nanotube device responds to ammonia but not to nitrogen dioxide, with the reverse
response for the PEI-coated devices. Figures from Ref. [Qi03].

This strategy can be taken a step further by adding functionalization to the blocking layer
[Sta03b, Che03]. In these cases, experiments to detect protein binding on carbon
nanotubes indicated non-specific binding to the carbon nanotubes. To prevent this non-
specific binding [Sta03b], a coating of polyethyleneglycol (PEG) and PEI was deposited
on the nanotubes by submerging them in solution. The nanotube devices exhibited
marked changes in their transfer characteristics after functionalization with these
polymers. However, the initial p-type behavior can be recovered by adding a biotin
functionalization to the polymeric layer. Biotin is a receptor molecule for the protein
streptavidin, and the biotin-streptavidin system is often used as a model system for
studies of protein binding. Functionalizing the polymeric layer with biotin allows
streptavidin to bind covalently to the polymeric layer without disturbing the nanotube
electronic properties. Demonstration of the viability of this approach is shown in Figure
8.24. In these figures, the transfer characteristincs of the carbon nanotube network
transistor is shown for different functionalizations upon exposure to streptavidin. Panel b
in this figure indicates that the bare nanotube device shows a response to streptavidin
consisting of a reduction of the ON current and a shift of the threshold voltage. This type
of behavior has been discussed above and is not specific to streptavidin. Coating the
nanotube device with PEI/PEG completely blocks streptavidin (panel c) and the device



shows no response. However, when the PEI/PEG is functionalized with biotin, a large
decrease of the current is observed, as indicated in Figure 8.24a. The actual mechanism
that causes this strong sensing response is unclear. Increased scattering could certainly
cause such an overall decrease of the current. However, the impact of the contacts has not

been fully explored, and the modulation of Schottky barriers at the contacts could also
play a role.
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Figure 8.24: Schematic of a carbon nanotube field-effect transistor with a functionalized polymeric
blocking layer. The bottom panels show the measured transfer characteristics of several nanotube

devices with different functionalization before and after exposure to streptavidin. Figures from Ref.
[Sta03b].
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