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= Investigation of Dynamic
Behavior of Granular Ceramics

* investigate dynamic compaction behavior of ceramic powders
(WC, sand, Al,O;, etc.)

* develop insight into physics of dynamic behavior of these
materials and the parameters that influence 1t

* explore a variety of techniques (quasi-static experiments,
mesoscale simulations, etc.) to predict dynamic results

* determine suitability of current models within Sandia codes for
simulating dynamic behavior of powders
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Static Die Compaction Experiments
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e Determine compaction curve functional form

e Examine effects of experimental parameters (grain
size, grain size distribution, grain shape, initial density,
loading path, etc.)

e Correlate with dynamic results

(nearly) uniaxial strain
compaction to ~1.6 GPa
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Static Compaction Results

evaluate effects of important variables on loading response

grain size distribution unloading/reloading particle morphology
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f;/,' Planar Impact Experiments

on Granular Materials

& Nz
u.:'.."‘
o5 PMMA fixture
3o ¥l
2%

S
w2 i
powder sample 334!.' 7 hole for fiber i
oy optic probe

et

. PMMA
% Fixture
A2

LiF window

o
AN

15
O
L]
(&)
©
Q.
E
£
=
£
€
=
©

L
S
o
o
Q
E

cover plate

Buffers
multiple sample thicknesses on the same experiment for

accurate shock velocity and uniform powder density;
sealed capsule allows fluid / powder mixtures

Vogler, T.J., Lee, M.Y., Grady, D.E., 2007. “Static and dynamic compaction of ceramic powders.”
International Journal of Solids and Structures 44, 636-658.

Brown, J.L., Thornhill, T.F., Reinhart, W.D., Chhabildas,L..C., Vogler, T.J., 2007. “Shock response of
dry sand.” in Shock Compression of Condensed Matter — 2007, American Institue of Physics, 1363-1366.



Wet Sand Targets
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Target Mounted in Gas Gun

gotcha’s:
uniformity

settling
evacuation
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* seem to be first time-resolved measurements of steady waves
in granular materials

* since waves are steady, Rankine-Hugoniot jump conditions
can be used even though waves have finite rise times
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7 Shock Velocities and Hugoniot States
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» impedance matching to aluminum impactor used to
determine Hugoniot stress and particle velocity (o= p,Uu,)

* density then calculated from p = p U/(U,-u,)



=2 Compaction Response for WC
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e the difference between static and dynamic responses
appears to be due to the relatively thin compaction
front over which deformation occurs



,«.}' Scaling Between Rise

Time of Wave and Stress

for many fully dense materials (Al,
Be, B1, Cu, Fe, MgO, Si10,, U),
rise times of steady waves scale as
¢ ~ o (Swegle & Grady, 1985)
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Effect of Particle Morphology

plasma processing used to create spheres, changing particle morphology
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compaction results indistinguishable, but small differences in VISAR
records; other materials with more significant morphology changes show
greater differences in VISAR (but none in compaction)
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. Continuum P-A Model

more flexible variation on P-otdeveloped by Grady ef al.; allows
multiple materials but maintains simplicity of P-a model
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Grady, D.E., 2007. “Shock wave compression of ceramics with microstructures.”
International Journal of Plasticity (in press).



Continuum Model (P-o and P-\)
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;/..’/ Mesoscale Modeling of

Granular Materials

O
Vv X r i periodic BC’s
— 0: buffer e on top/bottom
e .0

» follow approach of Benson et al. for 2-D simulations
» particles 1dealized as circles (rods) for initial work

e constant velocity boundary condition applied
e run in CTH (explicit Eulerian finite difference code)

* Mie-Gruneisen EOS, elastic-perfectly plastic strength for WC

Borg, J.P., Vogler, T.J., (2008). “Mesoscale calculations of the dynamic behavior of a granular ceramic.”
International Journal of Solids and Structures (in press).

Borg, J.P., and Vogler, T.J. (2008). “Mesoscale simulations of a dart penetrating sand,” Int. J. Impact Eng. (in press).

Borg, J.P., and Vogler, T.J. (2007). “Mesoscale calculations of shock loaded granular ceramics,” in Shock
Compression of Condensed Matter — 2007, American Institue of Physics, 227-230.

get at underlying physics of granular materials
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Computational Dynamic Compaction
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e driver plate velocity
u,=300 m/s

e shock thickness on
the order of ~2-5
particles

e strong force chains
observed

e wave smooths in
aluminum buffer
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> Close-Up of Compaction Process
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¥ Properties of Propagating Wave
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2 Calculated Hugoniot from
Literature Parameters
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 sitmulations provide reasonable estimate for Hugoniot

* shortcomings of model:
-missing physics of granular contact and fracture
-wrong connectivity in 2-D
-spherical particles unrealistic
-inaccurate strength for small particles



P> Reshock Behavior of

Simulations
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reshock behavior of the model agrees well with the experiments



A
al Sensitivity to Simulation Parameters

Material Properties

* Particle size distribution (negligible effect)
e Dynamic yield strength (strong effect)

e Material EOS (negligible effect)

 Spall strength (strong effect but threshold)

Two-Dimensional Properties

« Material distribution (strong effect)
 Variations 1in boundary conditions (small effect)

Hydrocode Behavior
» Mixed cell strength (very strong effect)



;’é*' Initial Mesoscale Calculations
with Peridynamics

* non-local method based on reformulation of governin
equations 1n integral form

* model framework still under development
e includes fracture and contact missing from CTH
e Interaction between fracture and plasticity complicate
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> Validation Experiments:

Attenuating Waves
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Vogler, T.J., and Borg, J.P. (2007). “Mesoscale and continuum calculations of wave
profiles for shock-loaded granular ceramics,” in Shock Compression of Condensed Matter
— 2007, American Institue of Physics, 291-294.



:‘/ 'Attenuating Waves: Comparison
to Experimental Profiles
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* steady wave arrival times good for both models, but amplitudes
more accurate with mesoscale model due to stiffer reshock

e attenuating wave arrivals slightly better with mesoscale

 low stress levels seem to lie between mesoscale and P-A,
sampling regime where there 1s no data
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Attenuating Waves: Wave Shapes
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* shape from mesoscale approx. correct; P-A inaccurate
e rise time seems to depend only on current amplitude



"7}" Validation Experiments:
Ring Compaction

ring compaction experiments provide data for non-planar deformation

10 ps interframe time

Y=0.1 GPa -

Y=0.2 GPa




;*' Mesoscale Simulations of Rings
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Evolution of Particle Size Distribution

[ —— T T

Ipac Sand impacted

Solid Mean Particle
Tap Crystal Particle  Size
Name Density Density SiZ€ St. Dev.
(g/cc) gl/cc _m
Sand 1.53 2.56 298.1 169.8
Sand 28.7 280
Impacted 2.25
WC 7.7 15.7 39.9 11.6
WC 28.0 13.5




> Validation Experiments:
Explosively Loaded Cylinder
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» explosively compacted cylinders to
allow comparison with simulations and
analytic solutions

» more difficult than expected; also late
time effects

 tomographic analysis of compaction
difficult and reveals localizations
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Conclusions

e planar waves in granular ceramics:
- very slow wave speeds
- steady waves observed for several sample thicknesses
- waves have finite rise times; strain rate ~G
- reloading stiffer than loading
- dynamic response significantly stiffer than static response

e validation experiments:
- suggest shortcomings of P-A model
- wave attenuation, shape, and amplitude can constrain models
- additional validation experiments needed
- must rely on real-time diagnostics (VISAR, photography, etc.)

e mesoscale simulations:
- nonuniform stress distribution (force chains) and localizations
- significant lateral motion and distance to reach steady state
- techniques such as peridynamics needed to capture missing
physics
- may be suitable for some macroscopic simulations



X
- Future Work

e further work on validation experiments with
improved diagnostics

e additional study of morphology effects
e probe full compaction region

e characterize comminution of grains in recovered
material

e predictive capability for variations in material

e understand relationship between static and dynamic
behavior

* mesoscale modeling of validation experiments

 3-D simulations with spheres and other shapes

e determine suitability of peridynamics
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