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Investigation of DynamicInvestigation of Dynamic
Behavior of Behavior of Granular CeramicsGranular Ceramics

WC

• investigate dynamic compaction behavior of ceramic powders
(WC, sand, Al2O3, etc.)

• develop insight into physics of dynamic behavior of these
materials and the parameters that influence it

• explore a variety of techniques (quasi-static experiments,
mesoscale simulations, etc.) to predict dynamic results

• determine suitability of current models within Sandia codes for
simulating dynamic behavior of powders

sand



Static Die CompactioStatic Die Compaction Experimentsn Experiments

(nearly) uniaxial strain
compaction to ~1.6 GPa

Objectives
• Determine compaction curve functional form
• Examine effects of experimental parameters (grain

size, grain size distribution, grain shape, initial density,
loading path, etc.)

• Correlate with dynamic results



StaticStatic Compaction  Compaction ResultsResults
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Planar Impact ExperimentsPlanar Impact Experiments
on Granular Materialson Granular Materials

cover plate

sample plate

LiF window

powder sample

PMMA fixture

hole for fiber
optic probe
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multiple sample thicknesses on the same experiment for
accurate shock velocity and uniform powder density;
sealed capsule allows fluid / powder mixtures

Vogler, T.J., Lee, M.Y., Grady, D.E., 2007. “Static and dynamic compaction of ceramic powders.”
International Journal of Solids and Structures 44, 636-658.

Brown, J.L., Thornhill, T.F., Reinhart,  W.D.,  Chhabildas,L.C., Vogler, T.J., 2007.  “Shock response of
dry sand.”  in Shock Compression of Condensed Matter – 2007, American Institue of Physics, 1363-1366.
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Wet Sand Targets

Air Gun

STAR
Facility

06/07
Wet Sand Target

Aluminum Target Plate

Tilt Pins (4.)

Velocity 
Pins (3)

VISAR
spots (3-4)



Target Mounted in Gas Gun

velocity
pins (3)

Tilt pins (4)

VISAR probes (5)

~1 km/s
~30 GPa

 

Single Stage Gun 100mm

gotcha’s:
uniformity
settling
evacuation
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• seem to be first time-resolved measurements of steady waves
in granular materials

• since waves are steady, Rankine-Hugoniot jump conditions
can be used even though waves have finite rise times

gotcha’s:
attenuation
edge release
steadiness



ShockShock Velocities and  Velocities and Hugoniot Hugoniot StatesStates

• impedance matching to aluminum impactor used to
determine Hugoniot stress and particle velocity (σ = ρoUsup)

• density then calculated from ρ = ρoUs/(Us-up)
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Static Compaction (WC-SA5)

CompactionCompaction Response for  Response for WCWC
and Wet/Dry Sandand Wet/Dry Sand

• first reshock state lies above Hugoniot suggesting
elastic response of compacted material

• the difference between static and dynamic responses
appears to be due to the relatively thin compaction
front over which deformation occurs
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ScalingScaling Between Rise Between Rise
Time of Wave and StressTime of Wave and Stress

for many fully dense materials (Al,
Be, Bi, Cu, Fe, MgO, SiO2, U),
rise times of steady waves scale as
ε ~ σ4 (Swegle & Grady, 1985)•
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data on three granular ceramics
suggest a linear scaling between
stress and strain rate

Sand



Effect of Particle Morphology

Al2O3

plasma processing used to create spheres, changing particle morphology

compaction results indistinguishable, but small differences in VISAR
records; other materials with more significant morphology changes show
greater differences in VISAR (but none in compaction)
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Continuum P-λ Model

Material Compression  (ρ/ρoo)
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more flexible variation on P-α developed by Grady et al.; allows
multiple materials but maintains simplicity of P-α model

Grady, D.E., 2007.  “Shock wave compression of ceramics with microstructures.”
International Journal of Plasticity (in press).



Continuum Model (P-α and P-λ)
Calibration for Sand
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Mesoscale Modeling of
Granular Materials

V buffer LiF
window

get at underlying physics of granular materials

periodic BC’s
on top/bottom

• follow approach of Benson et al. for 2-D simulations
• particles idealized as circles (rods) for initial work
• constant velocity boundary condition applied
• run in CTH (explicit Eulerian finite difference code)
• Mie-Gruneisen EOS, elastic-perfectly plastic strength for WC

Borg, J.P., Vogler, T.J., (2008).  “Mesoscale calculations of the dynamic behavior of a granular ceramic.”
International Journal of Solids and Structures (in press).

Borg, J.P., and Vogler, T.J. (2008).  “Mesoscale simulations of a dart penetrating sand,” Int. J. Impact Eng. (in press).

Borg, J.P., and Vogler, T.J. (2007).  “Mesoscale calculations of shock loaded granular ceramics,” in Shock
Compression of Condensed Matter – 2007, American Institue of Physics, 227-230.



Computational Dynamic CompactionDynamic Compaction

• driver plate velocity
up=300 m/s

• shock thickness on
the order of ~2-5
particles

• strong force chains
observed

• wave smooths in
aluminum buffer
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Close-Up of Compaction Process
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(Benson et al., 1997)
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Calculated Hugoniot from
Literature Parameters

• simulations provide reasonable estimate for Hugoniot
• shortcomings of model:

-missing physics of granular contact and fracture
-wrong connectivity in 2-D
-spherical particles unrealistic
- inaccurate strength for small particles
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Reshock Behavior ofReshock Behavior of
SimulationsSimulations

reshock behavior of the model agrees well with the experiments



Sensitivity to Simulation Parameters

Material Properties
• Particle size distribution (negligible effect)
• Dynamic yield strength (strong effect)
• Material EOS (negligible effect)
• Spall strength (strong effect but threshold)

Two-Dimensional Properties
• Material distribution (strong effect)
• Variations in boundary conditions (small effect)

Hydrocode Behavior
• Mixed cell strength (very strong effect)



Initial Mesoscale Calculations
with Peridynamics

• non-local method based on reformulation of governing
equations in integral form

• model framework still under development
• includes fracture and contact missing from CTH
• interaction between fracture and plasticity complicated



Validation Experiments:
Attenuating Waves

V
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window

periodic BC’s
on top/bottom

• P-λ model calibrated to WC data
• mesoscale strength set to 8 GPa

to match data
• duplicate geometry of

experiments for 1 mm wide slice
• velocity averaged at nine points

along buffer/window interface

WC Powder Hugoniot
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Vogler, T.J., and Borg, J.P. (2007).  “Mesoscale and continuum calculations of wave
profiles for shock-loaded granular ceramics,” in Shock Compression of Condensed Matter
– 2007, American Institue of Physics, 291-294.
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Attenuating Waves:  Comparison
to Experimental Profiles

• steady wave arrival times good for both models, but amplitudes
more accurate with mesoscale model due to stiffer reshock

• attenuating wave arrivals slightly better with mesoscale
• low stress levels seem to lie between mesoscale and P-λ,

sampling regime where there is no data
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Attenuating Waves:  Wave Shapes

• shape from mesoscale approx. correct; P-λ inaccurate
• rise time seems to depend only on current amplitude
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Validation Experiments:Validation Experiments:
Ring CompactionRing Compaction
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2-D CTH continuum calculation
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Mesoscale Simulations of Rings
(movie)



Mesoscale Simulations of Rings
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ValidationValidation Experiments Experiments::
Explosively Loaded CylinderExplosively Loaded Cylinder

 

 
 

• explosively compacted cylinders to
allow comparison with simulations and
analytic solutions

• more difficult than expected; also late
time effects

• tomographic analysis of compaction
difficult and reveals localizations



ConclusionsConclusions
• planar waves in granular ceramics:

- very slow wave speeds
- steady waves observed for several sample thicknesses
- waves have finite rise times; strain rate ~σ
- reloading stiffer than loading
- dynamic response significantly stiffer than static response

• validation experiments:
- suggest shortcomings of P-λ model
- wave attenuation, shape, and amplitude can constrain models
- additional validation experiments needed
- must rely on real-time diagnostics (VISAR, photography, etc.)

• mesoscale simulations:
- nonuniform stress distribution (force chains) and localizations
- significant lateral motion and distance to reach steady state
- techniques such as peridynamics needed to capture missing

physics
- may be suitable for some macroscopic simulations



• mesoscale modeling of validation experiments
• 3-D simulations with spheres and other shapes
• determine suitability of peridynamics

• probe full compaction region
• characterize comminution of

grains in recovered material

Future Work

Silbert, Ertas, Grest, Halsey and Levine,
Physical Review E, 65, 031304, 2002Jensen et al., 2001

• further work on validation experiments with
improved diagnostics

• additional study of morphology effects
• probe full compaction region
• characterize comminution of grains in recovered

material
• predictive capability for variations in material
• understand relationship between static and dynamic

behavior
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