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- Experimental observations

- Theoretical model

- Linear dispersion relation result

- Implementation in nonlinear Flute code
Numerics: two-step predictor-corrector scheme 
Arakawa method for Poisson brackets modules
Initial conditions

-Nonlinear results

-Future work: more exact formulation easy to implement 
because of modular nature of FLUTE code
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Wire array imploding experiments at NTF
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Global MHD modes in the precursor

Experiment Hybrid simulations



Development of plasma turbulence in the precursor

Shadowgram Dark field schlieren 
diagnostic

Interferometry
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Evolution of the excited wave spectrum

Ivanov et al., TPS IEEE, V 35, N 4, p. 1170, 2007
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Faraday channel        Shadowgraphy        Interferometry      

density wave turbulencemagnetic field

Laser probing and Faraday rotation 
experimental results

Experimental results indicate non MHD 
behavior of excited wave spectrum



Main experimental results

•  Characteristic wavelengths of excited waves ~ 0.1 - 1 mm

•  Typical rise time of excited waves ~ 20 ns

•  Development of large scale cells on nonlinear stage 

•  Wave spectrum cascading towards short scales
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Experimental set-up

Experimental density profile and adjusted magnetic field radial profile

Laboratory Astrophysics Experiments

Presura et al., Astrophys. Space Sci., 2006
Sotnikov et al., Astrophys. Space Sci., 2006
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Flute modes in finite beta plasma

For flute modes the contributions of density fluctuations 
and finite Larmor radius effects are significant.

In high beta z-pinch plasmas contribution due to 
electromagnetic effects should also be included.
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Configuration of excited wave fields
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The viscosity tensor i  contains only gyroviscosity components

Nonlinear equations for flute modes 
in high beta plasma



Nonlinear equations for flute modes in finite beta plasma
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Growth rate and frequency of flute modes 
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Nonlinear wave cascades

Wave energy cascade to large wavelengths and excitation

of large scale structures due to polarization drift nonlinearity

Wave energy cascade to small wavelengths
due to convective nonlinearity

kSource region
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Kodama and Pavlenko, PRL 1988;               Newman et al., Phys. Fluids B, 1993    

Andrushchenko and Pavlenko, PoP 2002;    Sandberg et al., PoP 2005.



 Numerical Solutions of Nonlinear Flute Equations

 Pseudo-spectral spatial representation

 Two-step predictor-corrector time advance

Fluid Model of  2D Flute Turbulence

 Arakawa method used throughout to treat Poisson    
bracket nonlinear terms

 Viscous and biharmonic dissipations advanced                              
explicitly in time



Nonlinear equations in dimensionless form
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FLUTE Code Numerics: Time

• Two-step time integration scheme (Taking density equation as an
example):
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FLUTE Code Numerics:  Space (2D x-y Slab)

• Space-centered derivatives

• Nonlinear advective terms in Poisson brackets handled using 
Arakawa’s conservative method
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FLUTE Code Numerics:  Space (2D x-y Slab)

• Nonlinear advective terms in Poisson brackets handled using 
Arakawa’s conservative method (Continued)
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FLUTE Code Numerics:  Space (2D x-y Slab)

• Fourth order derivative of density in dissipative term of
vorticity equation treated as biharmonic operator

(Abramovitz and Stegun, Handbook of Mathematical Functions, p. 885)
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FLUTE Code Numerics

• Ease of FORTRAN programming facilitated by use of modular
subroutines or templates (e.g. predictor step of density equation).

• These templates are convenient for solving different sets of equations.

c
c  density equation
c

do j=1,ncy
do i=1,ncx
densav(i,j)=0.25*(

1  dens(ir(i),j)+dens(il(i),j)
1 +dens(i,jr(j))+dens(i,jl(j))
1  )
end do
end do

c
c linear terms
c

call derivy(fy,dens,ncx,ncy,1.0)
call add(densp,densav,fy,ncx,ncy,-dth*cofn1)

c
call derivy(fy,pot,ncx,ncy,1.0)
call add(densp,densp,fy,ncx,ncy,-dth*cofn2)

c
c  nonlinear terms
c

if(nonlin.eq.1) then
call arak(fx,dens,pot,ncx,ncy,1.0)
call add(densp,densp,fx,ncx,ncy,dth*cofn3)
end if

c
c  explicit viscosity
c

if(ndisp.eq.1) then
call dlap(fx,dens,ncx,ncy,1.0)
call add(densp,densp,fx,ncx,ncy,dth*cofn4)
end if



Time dependence of energy



Density in linear stage
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Density in nonlinear stage
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Vorticity in nonlinear stage

 cit  4600

0 50 100 150 200 250

250

200

150

100

50

0

col

ro
w

0 50 100 150 200 250

250

200

150

100

50

0

col

ro
w

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
lastem_vort_b1v0_01_162C54_1023_xy_0



Conclusions

• Wave activity experimentally observed in the central region 

of  imploding wire array, where significant part of  the current is 
concentrated, can be connected with excitation of  flute-type 
compressible electromagnetic oscillations in finite beta plasma.

• Flute-type instability can be observed in laboratory astrophysics

experiments on interaction of laser ablated plasma flow with strong
magnetic field. 

• Linear dispersion equation for electromagnetic flute-like mode 

instability has growing solution even in a finite beta plasma.
Typical growth time and spatial scales of  excited waves are 
in agreement with experimental data. 

• Fluid model of  flute turbulence can describe nonlinear 

dynamics of  large scale density and magnetic field structures as 
well as wave energy cascading towards the short scales observed in 
experiment.
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