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Overview of Acro
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The Acro Software Repository

Goal: Integrate management of Sandia optimization libraries

– Consolidation of configuration management

– Easier build management

– Consolidated testing

– Management of third-party solvers

acro - From Greek akros, at the point, end, or top.

acro - A Common Repository for Optimizers

acro - A generic term for warblers 
of the genus Acrocephalus, 
usually referring to the sedge 
and/or reed warblers. It spends 
summers in the UK and winters in 
Africa, south of the Sahara Desert.
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Why Acro?   Some history…

• Bill H was supporting configuration systems for a variety of loosely 

coupled optimization libraries (Coliny, PICO, UTILIB)

– Required multiple checkouts

– Required explicit installation of third-party software

– Testing was problematic (and thus not done much)

• Why not integrate libraries into DAKOTA?

– Developers focused on libraries

– Developers only wanted to checkout the libraries they needed

• Coliny vs PICO

– Developers not as worried about portability (esp. in initial 
phases of development)
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Acro Organization

Packages – distinct software libraries

– SNL optimization libraries whose development is managed by 
the Acro subversion repository

– Snapshots of third-party libraries that integrated into the Acro 
subversion repository

Projects – ensembles of packages

– Acro manages package integration

– Projects can be checked out separately from the subversion 
repository

– Includes necessary third-party software

• E.g.  A user can checkout, build and run acro-pico without 
installing other third-party software
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Acro Packages

Note: additional packages are under limited release, which is not 

stable enough for distribution right now
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Overview of Acro Packages

APPSPACK

– Parallel pattern search

– Tammy Kolda
COLIN

– Optimization interface layer that supports optimization hybridization

– Bill Hart, John Siirola
Coliny

– Global optimization heuristics, derivative-free local search

– Bill Hart
EXACT

– Framework for software testing and experimental analysis

– Jonathan Berry, Bill Hart
FAST

– A framework for distributed test management

– Bill Hart (and Stef Chakerian)
Interfaces

– The ‘acro’ command-line interface, and wrappers for third-party solvers 

– Bill Hart
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Overview of Acro Projects (cont’d)

OPT++

– Nonlinear programming methods

– Patty Hough
PEBBL

– Parallel branch and bound library (scalable to 10,000s processors)

– Jonathan Eckstein
PICO

– PEBBL-based MILP solver

– Cindy Phillips
SACache

– Annotated caching tool

– Jean-Paul Watson, Bill Hart
Sundry

– Miscellaneous solvers

– Jon Berry
UTILIB

– C++ utility library

– Bill Hart (and many others)
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Managing Third Party Libraries

Goal: integrate third party software into a common software 

repository

Motivation: need to integrate a diverse range of solvers for 

sophisticated optimization solvers
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Managing Third Party Libraries (cont’d)

Acro Impact

– Management of build process

• Each TPL has its own build process

• Acro integration enables seamless builds

– TPL version control

• Acro TPL integration enables consistent dependency on 
TPLs for Acro developers

• Developers can try out new TPL releases without sacrificing 
stable builds

• Acro Versioning of TPLs enables more facile integration

– TPL integration has promoted more direct comparisons of 
different sub-solvers (e.g. linear-programming solvers)
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Acro Impact: Software Development

Acro integration has encouraged fine-grain software decomposition

– Example: PICO -> PEBBL + PICO

• PEBBL branch and bound library was always generic, but 
couldn’t easily be used in other applications

– New applications: Lipshitzian global optimizer, quadratic semi-
assignment solver, GNLP solver

Acro integration has enabled hybridization of Acro solvers

– Example: GNLP solver integrates PEBBL, COIN (w/PICO LP 
management), and Coliny

– Example: Coliny includes COLIN solver wrappers for PEBBL 
Lipshitzian solver and APPSPACK solver
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Acro Impact: Applications

• EPA Water Security

– PICO deployed to optimize MILP sensor placement formulations

– Release to water utilities planned in FY08

• DAKOTA

– Coliny and APPSPACK software integrated to support 
engineering design

– Open-source release with broad user base

• Acro

– Command-line optimization tool that recognizes structured 
problem instances and supports problem transformations

– Prototype being used within various research efforts
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Acro Software Quality Management
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Acro SQA Overview

Support for SQA activities has proven critical to ensuring that Acro’s 

software is stable

– Software stability is necessary for application impact

– Software stability is necessary to support code integration

SQA Activities

– Subversion revision control

– Bugzilla bug tracking

– Nightly testing

– Analysis of code metrics

– Release checklist
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Why SQA?  Some history…

• 1/9/2004: Acro CVS repository created

– Initial motivation: integration of CVS repositories

• 04/13/2004: Acro Bugzilla repository goes online

– One of the first bugs submitted is still open… 

• 05/05/2004: The Acro-Regression email list is setup to archive Dakota-Acro 

nightly integration tests

• 02/15/2005: Nightly emails updated to summarize Acro tests in a more 

Acro-centric format

• 04/26/2006: Bill refuses to fix bugs that are not in Bugzilla

– “If a bug isn't submitted via bugzilla, don't expect me to act on it.  If you send 
me an email, I'll kindly ask you to submit a bug report ... and then promptly 
delete your email.”
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Acro SQA? More history…

• 5/2006: Release checklist created for the Acro 1.0 release

• 11/2006: Nightly testing results integrate EXACT software tests

– Used weblinks for test results stored on static web pages

– Includes ‘code checks’ that summarize software metrics

• 1/2007: Bill and Lee Ann converted Acro to subversion

– …, and there was much rejoicing!

• 1/2008: Stef Chakerian sets up database to archive nightly test results

– … and then promptly quits! 
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SQA Lessons Learned

What SQA practices have we adapted from other code projects?

What new SQA practices have we developed for Acro?

What other capabilities do we wish we had?
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Version Control

LL:  Use subversion to integrate multiple software projects

– The physical location of software is not really an issue when 
using this type of version control tool
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Bug Tracking

LL:  Make it easy for users to create and view bugs
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Nightly Testing

LL: Provide active reporting mechanisms like email, RSS, etc

LL: Enable quick review of testing results

LL: Make it easy to drill down to get more details
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Nightly Testing

Acro tests are summarized in nightly web pages

LL: archive test data in database, and use dynamic web pages
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Nightly Testing – Test Data

Acro test summary by machine



Slide 24

Nightly Testing – Test Data

Acro test summary by test target (using target groups)

LL: Support rich target naming conventions
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Nightly Testing – Test Data

Acro build/test details for all targets

LL: Enable quick review of testing results
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Nightly Testing – Test Data

Acro test details by category

LL: Enable quick review of testing results
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Nightly Testing - Other

LL:  Do not perform tests if the code has not changed

LL: Maintain artifacts from previous test results

LL: Support “expected failure” of tests

LL: Analyze code performance over time

LL: Extended computational experiments for large-scale 

benchmarking
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Acro Code Tests

Smoke tests

– Fast tests of functionality

Functional tests

– General functionality tests

Performance tests

– Compare runtime statistics (not well supported)

Memory tests

– Run valgrind and report errors

Integration tests

– Build tests with other codes: Dackota, PDock

– Generic interpretation of config/build logs

Portability tests

– Lightweight distributed build framework            (weak support on PCs)

Code coverage tests

– Coverage statistics generated with gcov and lcov
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Code Coverage Statistics
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Code Metrics – Bugs by Project

LL: summarize bug statistics with active web pages
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Code Metrics – Time to Fix Bugs

LL: clear out unfixable bugs
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Code Metrics – Issues for Releases

LL: proactively identify issues that need to be resolved
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Release Checklist

LL: Need to adapt release process to the software level of formality

– Simple checklist has proven sufficient for Acro

LL:  The master checklist should clearly indicate whether other 

checklists are needed

– This significantly simplifies the release process

LL: Nightly test artifacts should be archived to support releases

– Acro does this, but not in a convenient manner
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Testing with EXACT and FAST
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The EXACT and FAST Projects

Tools for doing experimental testing

Overview:

– EXACT supports generic experimental design and analysis

– FAST supports a generic mechanism for nightly testing and data 
gathering

History:

– Earlier versions were tightly integrated into Acro’s testing 
mechanism

– Recent generalization of EXACT into a separate python module 
(based on J. Berry’s earlier work)

– Recent generalization of FAST from Acro, supporting general-
purpose clients and servers for nightly testing and code 
evaluations.
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EXACT Overview

GOAL: Provide a software framework for defining and analyzing 

computational experiments

• Managing computational experiments

– Systematic control is needed for large-scale experimentation

– Design of experiments to limit the cost of experimentation

– Archiving experimental results in a standard manner

– Integration of statistical analysis capabilities

• Applications

– Experimental evaluation of heuristics

– Comparisons between algorithms 

– Robust (user) parameter settings (over many problem domains)
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Overview  (Motivation Continued)

• Software testing

– Automation of tests 

– Flexible notion of what a “test” means

– Integration with diagnostic tools (e.g. valgrind, lcov)

– Distributed test management and test summary

Observation: testing of large complex software begins to look like a 

computational experiment

Example: integer programming solver

– Lots of algorithmic parameters

– Lots of hard test problems

– Costly tests
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XML Description

<experimental-study name=“example1”>

<tags>

<tag> example </tag>

</tags>

<experiment name=“ht”>

<factors>

<factor name=“hashfn”>

<level> Jenkins </level>

<level> FNV      </level>

</factor>

</factors>
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XML example continued

<controls>

<executable> hash_script </executable>

</controls>

</experiment>

<analysis name=“LoadFactorUB” type=“validation”>

<data experiment = “ht”/>

<options> _measurement = LoadFactor 

_value              = 0.75

</options>

</analysis>

</experimental-study>
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EXACT Measurement File

“Number of Evaluations” numeric/integer 110

“Best Value” numeric/double 0.0001231

“Termination Condition” text/string “Max Evals Limit”

exit_status numeric/integer 0
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XML Specification with Experimental Options

<factors>

<factor name="search">

<level> </level>

<level>initialDive=true</level>

<level>initialDive=true integralityDive=true</level>

</factor>

<factor name="problem">

<level>_data=bm23 _optimum=34 _opttol=1e-8</level>

<level>_data=p0033 _optimum=3089 _opttol=1e-6</level>

</factor>

</factors>
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The FAST Project

Overview:

– FAST supports a generic mechanism for nightly testing and data 
gathering

– Supports general-purpose clients and servers for nightly testing 
and code evaluations.

– Uses CVS commits to work around restrictive firewalls

Impact

– General framework for coordinating nightly builds

– Supports “code checks” – analyses that assist in SW 
management

• Bugzilla summaries, commit activity, copyright 
documentation, analysis of subversion externals
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EXACT/FAST Impact

• Software testing

– Being used to manage computational tests for several code 
projects: DAKOTA, Acro, SPOT, Zoltan, …

• Interactive experimentation

– Being used to for computational experiments in ongoing 
research

• Bug diagnosis

– Has found “bugs” not reported by the previous testing 
techniques in Acro and Zoltan

– Nightly archive has been useful for archealogical debugging
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Future Directions
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Bill’s Wishlist

• Database for experimental results

– Analyze performance over time

• Active web pages based on database results

• Rework or replace FAST

– Use buildbot?

– Explicit promotion of test artifacts for releasee

• Rework of EXACT functionality

– More DOE tools and DOE analysis

– Randomization of experiments, blocking, etc.

– Incremental tests

– Robust DOE that allow for test failures
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Thanks!

See http://software.sandia.gov/Acro for more details...

http://software.sandia.gov/Acro

