
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

Nightly Software Testing in Acro with
EXACT and FAST

William E Hart Jon Berry

Stef Chakerian Bob Heaphy

Lee Ann Riesen Cindy Phillips

Discrete Math and Complex Systems Dept.

Sandia National Laboratories

wehart@sandia.gov

www.cs.sandia.gov/~wehart

SAND2008-0883P

mailto:wehart@sandia.gov

Slide 2

Outline

• Overview of Acro

• Managing software quality within Acro

• Testing with EXACT

• Distributed testing with FAST

• Ongoing/Future activities

Slide 3

Overview of Acro

Slide 4

The Acro Software Repository

Goal: Integrate management of Sandia optimization libraries

– Consolidation of configuration management

– Easier build management

– Consolidated testing

– Management of third-party solvers

acro - From Greek akros, at the point, end, or top.

acro - A Common Repository for Optimizers

acro - A generic term for warblers
of the genus Acrocephalus,
usually referring to the sedge
and/or reed warblers. It spends
summers in the UK and winters in
Africa, south of the Sahara Desert.

Slide 5

Why Acro? Some history…

• Bill H was supporting configuration systems for a variety of loosely

coupled optimization libraries (Coliny, PICO, UTILIB)

– Required multiple checkouts

– Required explicit installation of third-party software

– Testing was problematic (and thus not done much)

• Why not integrate libraries into DAKOTA?

– Developers focused on libraries

– Developers only wanted to checkout the libraries they needed

• Coliny vs PICO

– Developers not as worried about portability (esp. in initial
phases of development)

Slide 6

Acro Organization

Packages – distinct software libraries

– SNL optimization libraries whose development is managed by
the Acro subversion repository

– Snapshots of third-party libraries that integrated into the Acro
subversion repository

Projects – ensembles of packages

– Acro manages package integration

– Projects can be checked out separately from the subversion
repository

– Includes necessary third-party software

• E.g. A user can checkout, build and run acro-pico without
installing other third-party software

Slide 7

Acro Packages

Note: additional packages are under limited release, which is not

stable enough for distribution right now

Slide 8

Overview of Acro Packages

APPSPACK

– Parallel pattern search

– Tammy Kolda
COLIN

– Optimization interface layer that supports optimization hybridization

– Bill Hart, John Siirola
Coliny

– Global optimization heuristics, derivative-free local search

– Bill Hart
EXACT

– Framework for software testing and experimental analysis

– Jonathan Berry, Bill Hart
FAST

– A framework for distributed test management

– Bill Hart (and Stef Chakerian)
Interfaces

– The ‘acro’ command-line interface, and wrappers for third-party solvers

– Bill Hart

Slide 9

Overview of Acro Projects (cont’d)

OPT++

– Nonlinear programming methods

– Patty Hough
PEBBL

– Parallel branch and bound library (scalable to 10,000s processors)

– Jonathan Eckstein
PICO

– PEBBL-based MILP solver

– Cindy Phillips
SACache

– Annotated caching tool

– Jean-Paul Watson, Bill Hart
Sundry

– Miscellaneous solvers

– Jon Berry
UTILIB

– C++ utility library

– Bill Hart (and many others)

Slide 10

Managing Third Party Libraries

Goal: integrate third party software into a common software

repository

Motivation: need to integrate a diverse range of solvers for

sophisticated optimization solvers

Slide 11

Managing Third Party Libraries (cont’d)

Acro Impact

– Management of build process

• Each TPL has its own build process

• Acro integration enables seamless builds

– TPL version control

• Acro TPL integration enables consistent dependency on
TPLs for Acro developers

• Developers can try out new TPL releases without sacrificing
stable builds

• Acro Versioning of TPLs enables more facile integration

– TPL integration has promoted more direct comparisons of
different sub-solvers (e.g. linear-programming solvers)

Slide 12

Acro Impact: Software Development

Acro integration has encouraged fine-grain software decomposition

– Example: PICO -> PEBBL + PICO

• PEBBL branch and bound library was always generic, but
couldn’t easily be used in other applications

– New applications: Lipshitzian global optimizer, quadratic semi-
assignment solver, GNLP solver

Acro integration has enabled hybridization of Acro solvers

– Example: GNLP solver integrates PEBBL, COIN (w/PICO LP
management), and Coliny

– Example: Coliny includes COLIN solver wrappers for PEBBL
Lipshitzian solver and APPSPACK solver

Slide 13

Acro Impact: Applications

• EPA Water Security

– PICO deployed to optimize MILP sensor placement formulations

– Release to water utilities planned in FY08

• DAKOTA

– Coliny and APPSPACK software integrated to support
engineering design

– Open-source release with broad user base

• Acro

– Command-line optimization tool that recognizes structured
problem instances and supports problem transformations

– Prototype being used within various research efforts

Slide 14

Acro Software Quality Management

Slide 15

Acro SQA Overview

Support for SQA activities has proven critical to ensuring that Acro’s

software is stable

– Software stability is necessary for application impact

– Software stability is necessary to support code integration

SQA Activities

– Subversion revision control

– Bugzilla bug tracking

– Nightly testing

– Analysis of code metrics

– Release checklist

Slide 16

Why SQA? Some history…

• 1/9/2004: Acro CVS repository created

– Initial motivation: integration of CVS repositories

• 04/13/2004: Acro Bugzilla repository goes online

– One of the first bugs submitted is still open… 

• 05/05/2004: The Acro-Regression email list is setup to archive Dakota-Acro

nightly integration tests

• 02/15/2005: Nightly emails updated to summarize Acro tests in a more

Acro-centric format

• 04/26/2006: Bill refuses to fix bugs that are not in Bugzilla

– “If a bug isn't submitted via bugzilla, don't expect me to act on it. If you send
me an email, I'll kindly ask you to submit a bug report ... and then promptly
delete your email.”

Slide 17

Acro SQA? More history…

• 5/2006: Release checklist created for the Acro 1.0 release

• 11/2006: Nightly testing results integrate EXACT software tests

– Used weblinks for test results stored on static web pages

– Includes ‘code checks’ that summarize software metrics

• 1/2007: Bill and Lee Ann converted Acro to subversion

– …, and there was much rejoicing!

• 1/2008: Stef Chakerian sets up database to archive nightly test results

– … and then promptly quits! 

Slide 18

SQA Lessons Learned

What SQA practices have we adapted from other code projects?

What new SQA practices have we developed for Acro?

What other capabilities do we wish we had?

Slide 19

Version Control

LL: Use subversion to integrate multiple software projects

– The physical location of software is not really an issue when
using this type of version control tool

Slide 20

Bug Tracking

LL: Make it easy for users to create and view bugs

Slide 21

Nightly Testing

LL: Provide active reporting mechanisms like email, RSS, etc

LL: Enable quick review of testing results

LL: Make it easy to drill down to get more details

Slide 22

Nightly Testing

Acro tests are summarized in nightly web pages

LL: archive test data in database, and use dynamic web pages

Slide 23

Nightly Testing – Test Data

Acro test summary by machine

Slide 24

Nightly Testing – Test Data

Acro test summary by test target (using target groups)

LL: Support rich target naming conventions

Slide 25

Nightly Testing – Test Data

Acro build/test details for all targets

LL: Enable quick review of testing results

Slide 26

Nightly Testing – Test Data

Acro test details by category

LL: Enable quick review of testing results

Slide 27

Nightly Testing - Other

LL: Do not perform tests if the code has not changed

LL: Maintain artifacts from previous test results

LL: Support “expected failure” of tests

LL: Analyze code performance over time

LL: Extended computational experiments for large-scale

benchmarking

Slide 28

Acro Code Tests

Smoke tests

– Fast tests of functionality

Functional tests

– General functionality tests

Performance tests

– Compare runtime statistics (not well supported)

Memory tests

– Run valgrind and report errors

Integration tests

– Build tests with other codes: Dackota, PDock

– Generic interpretation of config/build logs

Portability tests

– Lightweight distributed build framework (weak support on PCs)

Code coverage tests

– Coverage statistics generated with gcov and lcov

Slide 29

Code Coverage Statistics

Slide 30

Code Metrics – Bugs by Project

LL: summarize bug statistics with active web pages

Slide 31

Code Metrics – Time to Fix Bugs

LL: clear out unfixable bugs

Slide 32

Code Metrics – Issues for Releases

LL: proactively identify issues that need to be resolved

Slide 33

Release Checklist

LL: Need to adapt release process to the software level of formality

– Simple checklist has proven sufficient for Acro

LL: The master checklist should clearly indicate whether other

checklists are needed

– This significantly simplifies the release process

LL: Nightly test artifacts should be archived to support releases

– Acro does this, but not in a convenient manner

Slide 34

Testing with EXACT and FAST

Slide 35

The EXACT and FAST Projects

Tools for doing experimental testing

Overview:

– EXACT supports generic experimental design and analysis

– FAST supports a generic mechanism for nightly testing and data
gathering

History:

– Earlier versions were tightly integrated into Acro’s testing
mechanism

– Recent generalization of EXACT into a separate python module
(based on J. Berry’s earlier work)

– Recent generalization of FAST from Acro, supporting general-
purpose clients and servers for nightly testing and code
evaluations.

Slide 36

EXACT Overview

GOAL: Provide a software framework for defining and analyzing

computational experiments

• Managing computational experiments

– Systematic control is needed for large-scale experimentation

– Design of experiments to limit the cost of experimentation

– Archiving experimental results in a standard manner

– Integration of statistical analysis capabilities

• Applications

– Experimental evaluation of heuristics

– Comparisons between algorithms

– Robust (user) parameter settings (over many problem domains)

Slide 37

Overview (Motivation Continued)

• Software testing

– Automation of tests

– Flexible notion of what a “test” means

– Integration with diagnostic tools (e.g. valgrind, lcov)

– Distributed test management and test summary

Observation: testing of large complex software begins to look like a

computational experiment

Example: integer programming solver

– Lots of algorithmic parameters

– Lots of hard test problems

– Costly tests

Slide 38

XML Description

<experimental-study name=“example1”>

<tags>

<tag> example </tag>

</tags>

<experiment name=“ht”>

<factors>

<factor name=“hashfn”>

<level> Jenkins </level>

<level> FNV </level>

</factor>

</factors>

Slide 39

XML example continued

<controls>

<executable> hash_script </executable>

</controls>

</experiment>

<analysis name=“LoadFactorUB” type=“validation”>

<data experiment = “ht”/>

<options> _measurement = LoadFactor

_value = 0.75

</options>

</analysis>

</experimental-study>

Slide 40

EXACT Measurement File

“Number of Evaluations” numeric/integer 110

“Best Value” numeric/double 0.0001231

“Termination Condition” text/string “Max Evals Limit”

exit_status numeric/integer 0

Slide 41

XML Specification with Experimental Options

<factors>

<factor name="search">

<level> </level>

<level>initialDive=true</level>

<level>initialDive=true integralityDive=true</level>

</factor>

<factor name="problem">

<level>_data=bm23 _optimum=34 _opttol=1e-8</level>

<level>_data=p0033 _optimum=3089 _opttol=1e-6</level>

</factor>

</factors>

Slide 42

The FAST Project

Overview:

– FAST supports a generic mechanism for nightly testing and data
gathering

– Supports general-purpose clients and servers for nightly testing
and code evaluations.

– Uses CVS commits to work around restrictive firewalls

Impact

– General framework for coordinating nightly builds

– Supports “code checks” – analyses that assist in SW
management

• Bugzilla summaries, commit activity, copyright
documentation, analysis of subversion externals

Slide 43

EXACT/FAST Impact

• Software testing

– Being used to manage computational tests for several code
projects: DAKOTA, Acro, SPOT, Zoltan, …

• Interactive experimentation

– Being used to for computational experiments in ongoing
research

• Bug diagnosis

– Has found “bugs” not reported by the previous testing
techniques in Acro and Zoltan

– Nightly archive has been useful for archealogical debugging

Slide 44

Future Directions

Slide 45

Bill’s Wishlist

• Database for experimental results

– Analyze performance over time

• Active web pages based on database results

• Rework or replace FAST

– Use buildbot?

– Explicit promotion of test artifacts for releasee

• Rework of EXACT functionality

– More DOE tools and DOE analysis

– Randomization of experiments, blocking, etc.

– Incremental tests

– Robust DOE that allow for test failures

Slide 46

Thanks!

See http://software.sandia.gov/Acro for more details...

http://software.sandia.gov/Acro

