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Content

Hydrogen storage in calcium borohydride: 
decomposition pathway, reversibility

New bialkali borohydrides:                   
AB(BH4)2: A and B = Li, Na, K, Ca

New transition metal borohydrides

Summary and Future Plans
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Screening for New H-storage Materials

 High-pressure synthesis (<2000bar, 500C) and 
mechanical alloying (E. Rönnebro)

 Theory guidance: Prototype Electrostatic        
Ground State Search (PEGS) provides           
minimum energy  structures for                      
subsequent enthalpy  estimates                                 
(E.H. Majzoub and V. Ozolins, PRB, in press)

 Examples of potential structures:
– Metal borohydrides; Mg(BH4)2 and Ca(BH4)2

– AB(BH4)x (bialkali borohydrides)

– Alkali transition metal borohydrides

PEGS-generated 
Structure
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Predicting Hydride Thermodynamics

Database

• Inorganic crystal structure 
database

• ICSD data base contains 80,000 
inorganic structures

• Looking for AB2X8 yields ~100 
inequivalent test structures

PEGS

• Global optimization

• Simulated annealing

• Electrostatic interactions

• MHx anion is a rigid unit

New Alternative Technique

ICSD

Energy of Structure at T=0K

PEGS

Eric Majzoub
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PEGS Generally Outperforms ICSD Per 
Formula Unit For Bialkali Alanates

E.H. Majzoub, V. Ozolins, 
Phys. Rev. B, In press
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New ICSD and PEGS Predictions for 
Bialkali Alanate Structures And 

Decomposition Reactions

E.H. Majzoub, V. Ozolins, 
Phys. Rev. B, In press

T=0K, no phonon calculations
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Calcium Borohydride
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New Solid-state Synthesis 
of Ca(BH4)2

Notes:  Other recently reported solid-state routes: 

– 2LiBH4+CaCl2 → Ca(BH4)2 + 2LiCl (Nakamori, Orimo et al, J. Alloys Compd)

– MgB2 + CaH2 + 4H2 → Ca(BH4)2 + MgH2 » 8.3 wt% calc (Dornheim, Klassen et al, J. Alloys Compd) 

Motivation: Theory predicts Ca(BH4)2 has promising 
thermodynamics   (∆H ~ 53 kJ/mol), 9.6 wt. %

 Specific solid state reaction route:
 Additive is crucial
 High-energy ball milling (SPEX)
 Heat-treatment under high H2-pressures
 Yield of product: ~75%

CaB6 + 2CaH2 + 10 H2 → 3Ca(BH4)2 @700bar, 400C, 48hours

Ewa Rönnebro and Eric Majzoub, J. Phys. Chem. B, 111 (2007) 12045.
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Alternative Ca(BH4)2 Preparation Route

Aldrich Ca(BH4)2(THF)2 desolvated by heating 
up to ~150C in vacuum

Yield is 100%

Formation of polymorphs α or β is depending on 
reaction conditions and size of sample

 Larger sample and longer reaction time results 
in more β
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Ca(BH4)2 Polymorphs at Room 
Temperature

NMR analysis by Sonjong Hwang, Robert Bowman et al

Samples 
prepared by 

heating Aldrich 
Ca(BH4)2(THF)2

under vacuum

Ratio of α and β forming after ‘desolvation process’ 
depends on sample size, temperature and reaction time.

‘Pure’ α
XRD: α:β 95:5

Mixture α and β
XRD: α:β 50:50

Mixture α and β
XRD: α:β 60:40

Nuclear Magnetic Resonance

α
↓

β
↓

11B MAS NMR

ppm
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Re-hydriding Ca(BH4)2 After Desorption
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Ca(BH4)2 returns!

Ca(BH4)2 made at 700bar and 400C

In-situ synchrotron at Brookhaven, NSLS, beamline X7B

It was possible to re-hydride the sample @ 350°C & 
1600 psi H2 after first quenching the desorbed sample

Job Rijssenbeek et al
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Studies of Reversibility of Ca(BH4)2

Re-hydrided

SPEX milled

Desolvated

α

β

↓

↓

Kinetics studies show ~7wt% 
desorbed and ~5wt% re-hydrided

XRD, Rigaku

Ca(BH4)2 made by desolvating an Aldrich sample

α‘ and β
decompose 
into CaB6, B 
and/or 
CaB12H12

(NMR in 
evaluation)
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Bialkali Borohydrides
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CaLi2(BH4)4 is Unstable w.r.t. 
Separate Borohydrides

 Monte Carlo basin hopping easily beats the ICSD search

 Unfortunately, the lowest energy structure is unstable w.r.t. to   
phase separation to Ca(BH4)2 and LiBH4

-94 -92 -90 -88 -86

Cohesive energy (eV/f.u.)

Ca(BH4)2 + LiBH4

Basin-Hopping Predictions CaLi2(BH4)4 ICSD Search

Cohesive Energy (eV/F.U.)

CaLi2(BH4)4 is not a first choice for synthesis attempts

Eric Majzoub
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Synthesis of NaK(BH4)2

XRD pattern shows decomposition 
to: NaK(BH4)2→ NaBH4 + KBH4

Ball milling: NaBH4 + KBH4 → NaK(BH4)2

Raman Spectroscopy

39K MAS-NMR

↓ ↓

LLNL, Herberg

NaK(BH4)2
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Synthesis of LiK(BH4)2

200 700 1200 1700 2200 2700 3200

Raman shift (cm-1)

In
t

LiBH4

KBH4

LiK(BH4)2

B-H bend B-H stretchB-H overtones

Ball milling: LiBH4 + KBH4 → LiK(BH4)2

XRD (in-house) shows new 
phase plus ~10% KBH4

Structure: unit cell with 
double c-axis as compared to 
LiBH4

TGA did not show weight 
loss before 500C

Raman Spectroscopy

Synthesis of LiK(BH4)2 also reported by P. Edwards et al, ISHE, Richmond, VA, 2007
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Alkali Transition Metal Borohydrides
U. Hawaii (Jensen et al) and Sandia (Rönnebro et al)

Synthesis
– React metal borides with alkali/alkali earth binary 

hydrides (similar to Ca(BH4)2 synthesis)

Experimental
– High-energy ball milling (SPEX)

– High-pressure/temperature treatment (<2000bar, 
<500°C)

Characterization
– XRD: amorphous materials

– DSC and TGA show new phase transitions and H-
weight loss

– FTIR and NMR identifies new species
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Future Borohydride Plans

 Thermodynamics, kinetics and cycle life to be explored

 Optimize re-hydriding conditions at lower pressures

 Explore impact of additives on required T, P for use

 Assess B2H6 release upon H2 desorption

Calcium Borohydride

Bialkali And Other Borohydrides

 Explore bialkali borohydrides guided by MC theory

 Explore reversibility of other metal borohydrides at our 
high-hydrogen pressure facility in collaboration with U. 
Hawaii (Jensen et al) and GE (Zhao et al)
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Future Work

Borohydrides
 Synthesize bialkali borohydrides and explore 
reversibility of (Ca, Mg, Sc, Ti, Al etc) borohydrides based 
on theoretical predictions

Synthesis of New Complex Anionic Materials
 Discover new complex anionic materials from 
theoretical modeling

Nanoengineering
 Design nanostructured high-capacity materials to 
improve reversible performance 
 Extend PEGS model to address nanoparticle 
thermodynamics for complex anionic hydrides                                    
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