

Using Visualization for Relevancy Feedback Tuning of Text Analysis Algorithms

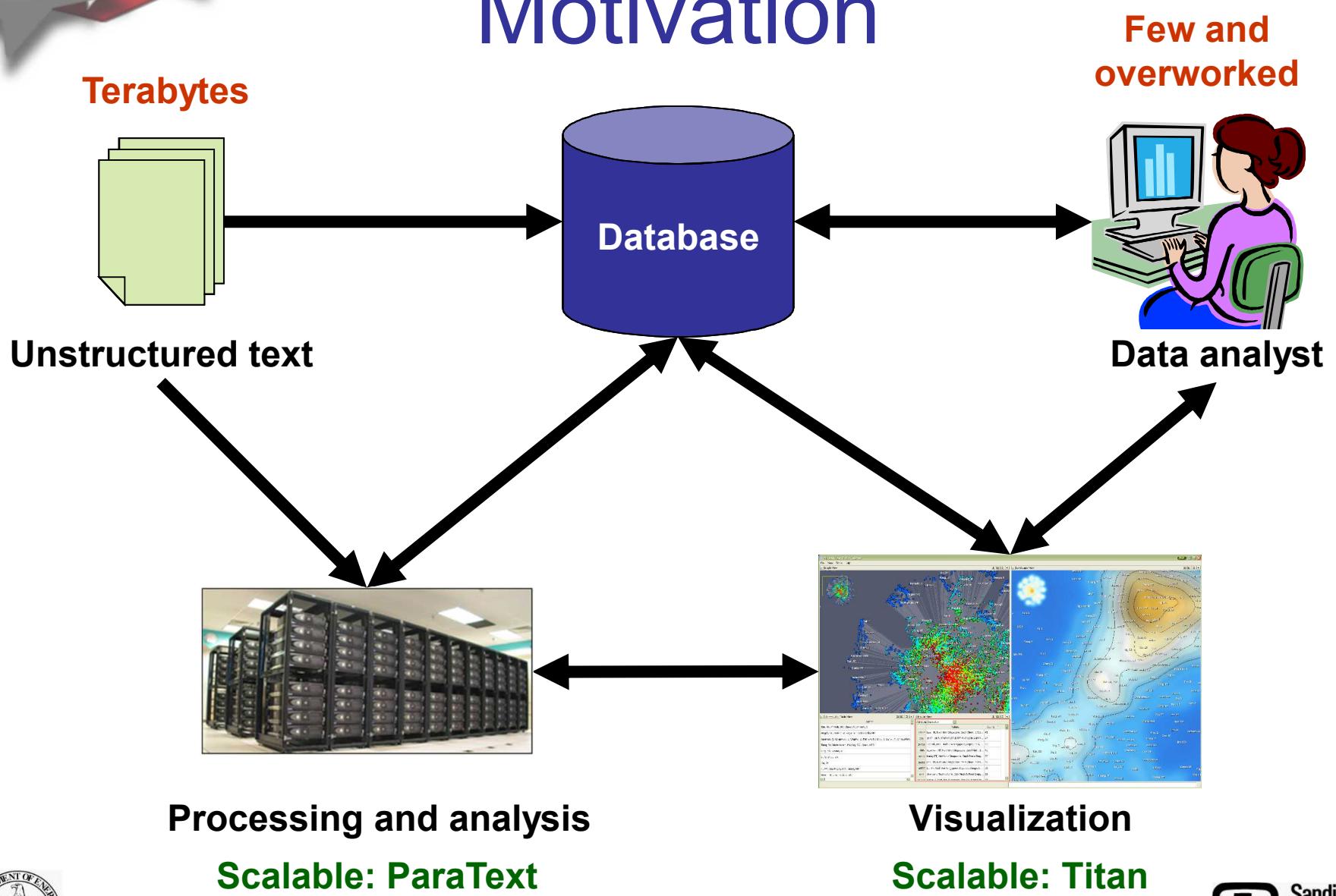
Patricia Crossno
Danny Dunlavy
Tim Shead

April 4, 2008

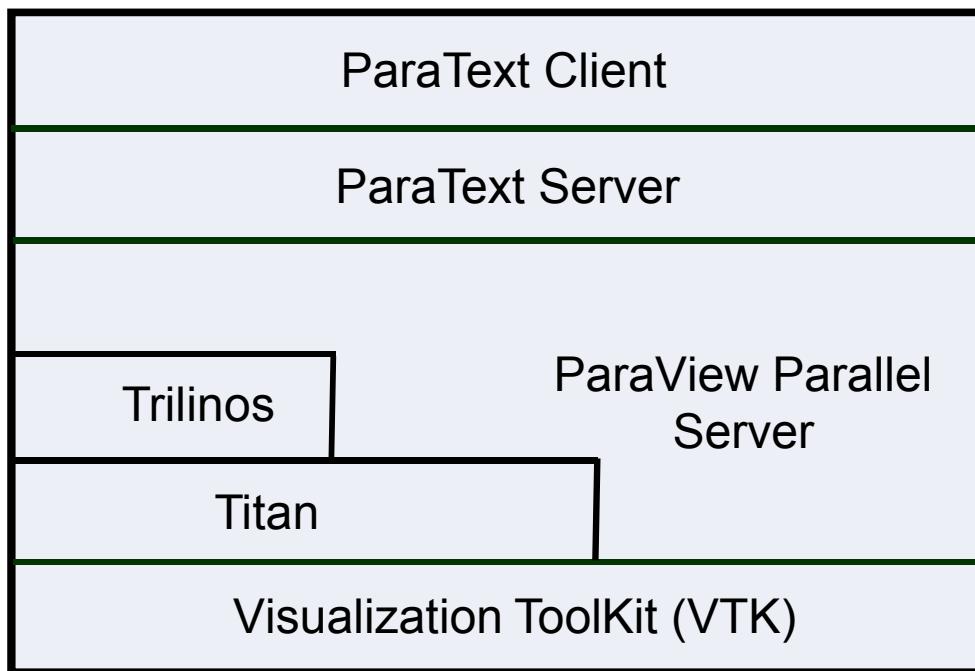
Outline

- Motivation
- ParaText
- Latent Semantic Analysis (LSA)
- LSALIB
- Sensitivity Analysis
- Relevancy Feedback

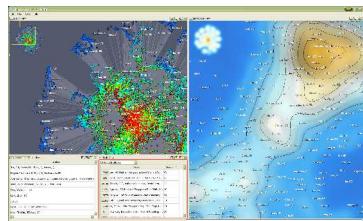
Motivation



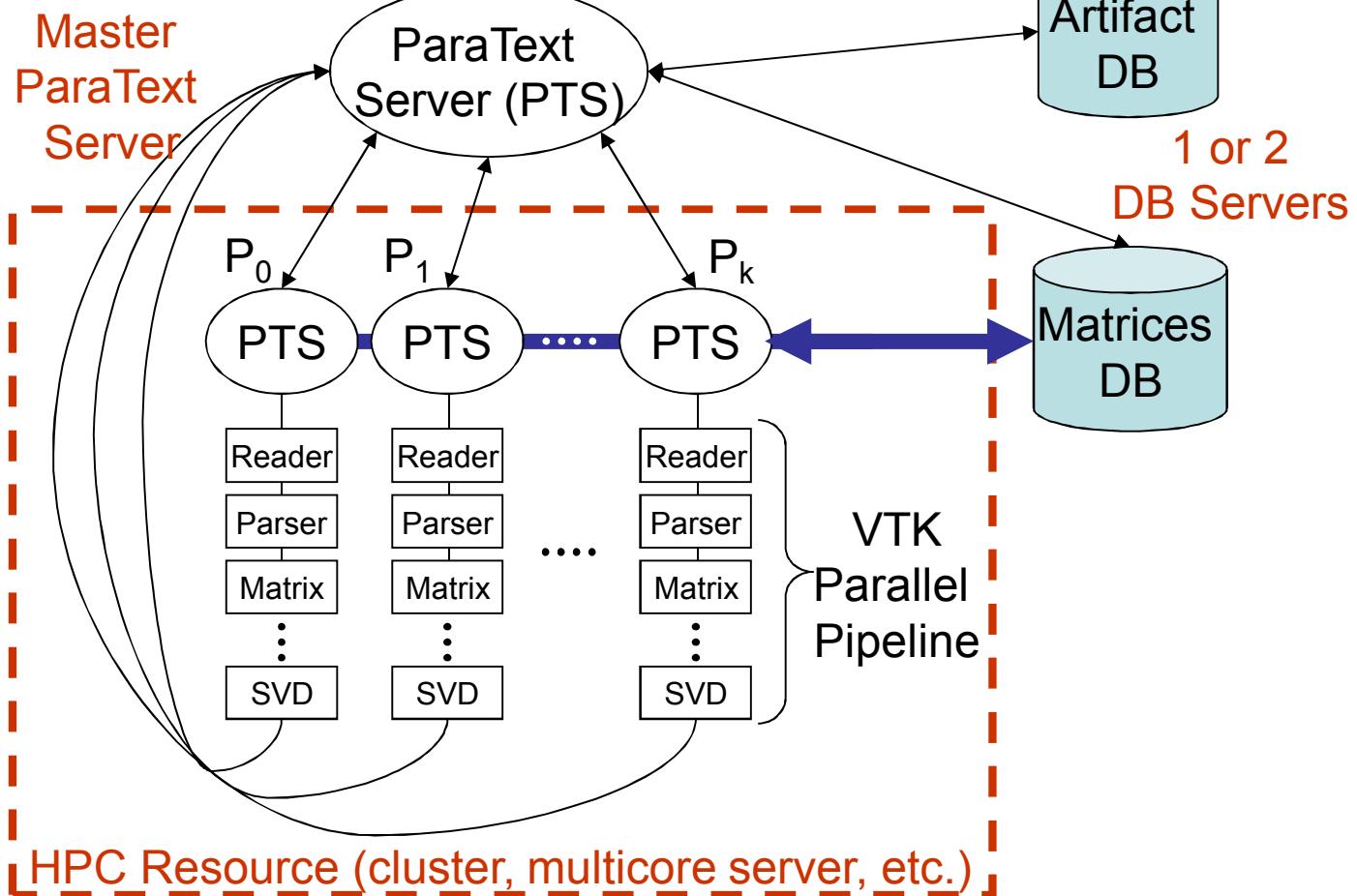
Scalable Solutions for Processing and Searching Very Large Document Collections (ParaText)



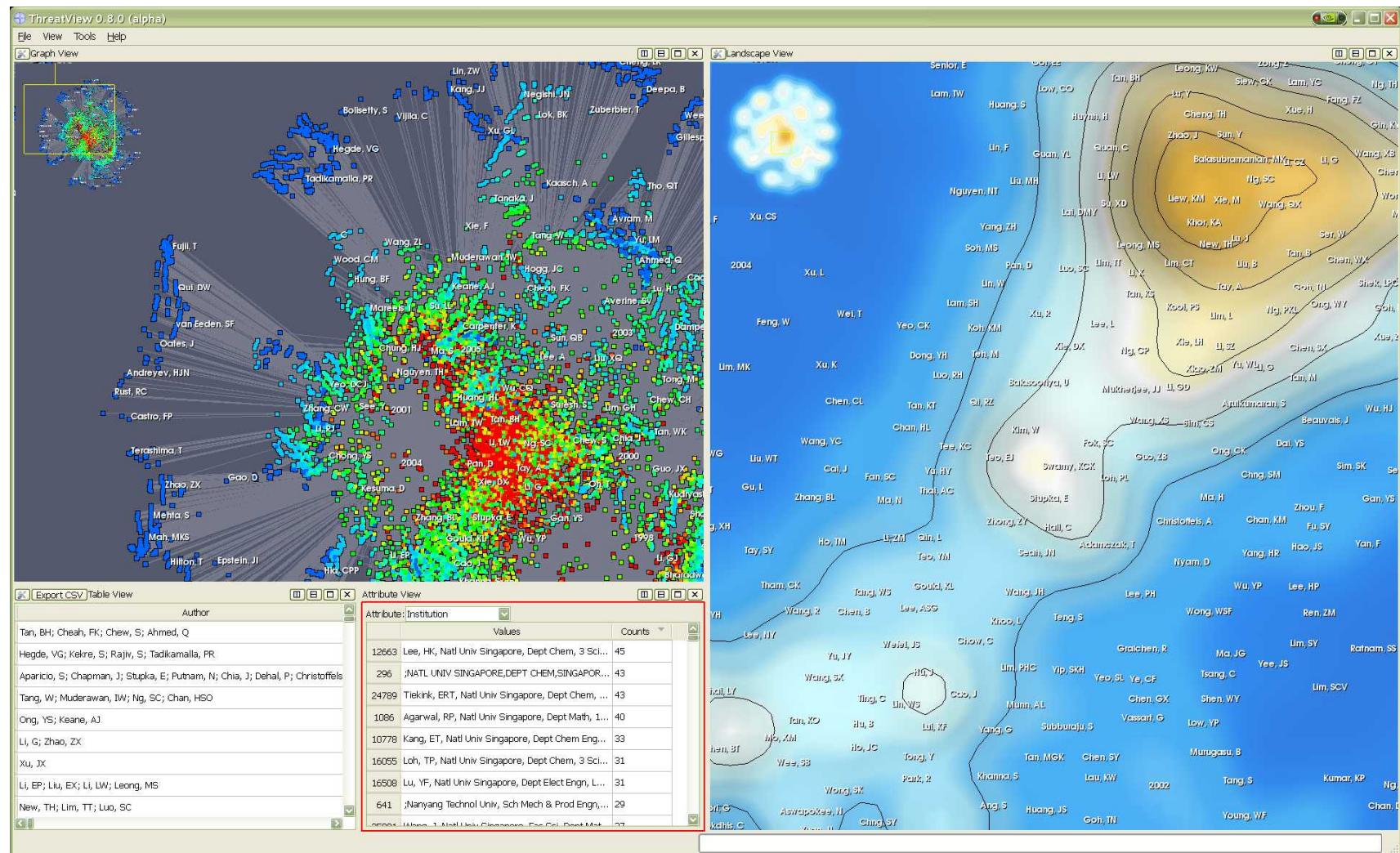
ParaText
Client



Master
ParaText
Server



Landscape Metaphor



Text Analysis Issues

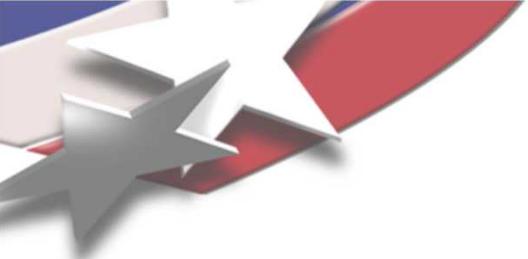
- keyword searching does not work well
 - miss relevant information
 - retrieve irrelevant information
- words with multiple meanings

- different words with the same meaning
 - baby and infant
 - sick and ill
- word relationships can distinguish both
- Latent Semantic Analysis [Dumais et al., 1988]

Modeling Text

- model documents as a linear equation
 - meaning (document) = \sum_j meaning (term_j)
- ignore term order and syntax
- discard non-differentiating words (stop list)
 - articles, prepositions, conjunctions, pronouns
 - common verbs, common adjectives
- remove common endings, like 'ing' (stemming)
- create term-document (occurrence) matrix

		documents						
		d ₁	d ₂	d ₃	d ₄	...	d _n	
term	t ₁	■	■	■	■		■	
	t ₂	■	■	■			■	■
s	■						■	
	■						■	
.	■						■	
	■						■	
t _n	■						■	



Matrix Size

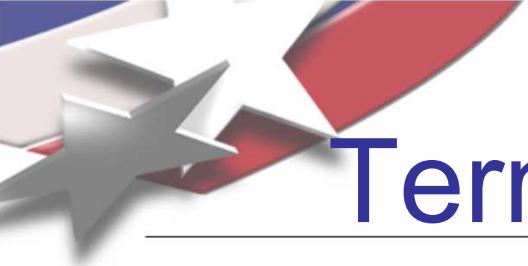
- English growing - no upper bound
- How many words do we use?
 - Count lemmas (base words)
 - Based on Oxford English Corpus (OEC)
 - # Lemmas % of content in OEC
 - 10 25%
 - 100 50%
 - 1000 75%
 - 7000 90%
 - 50,000 95%
 - >1M 99%
 - last few % consists of rare or highly technical terms
 - *chondrogenesis* or *dicarboxylate*
- Term dimension dominates until document count exceeds lemmas used

Term Weighting

Want to weight by information content

- weighting within a document
 - common words more meaningful
- weighting across documents
 - uncommon words differentiate
- normalization by document size
 - prevents large documents from dominating

Multiply the three factors together



Term Weighting Options

Local Weights (τ_{ij})

Term Frequency

f_{ij}

**individual
documents
(columns)**

$$\chi(f_{ij}) = \begin{cases} 0 & f_{ij} = 0 \\ 1 & f_{ij} > 0 \end{cases}$$

$$a_{ij} = \tau_{ij} \cdot \gamma_i \cdot \delta_j$$

Binary

$$\log(f_{ij} + 1)$$

Log

Global Weights (γ_i)

None

1

Normalized

$$(\sum_i f_{ij}^2)^{-1/2}$$

Inverse Document Frequency (IDF)

**over all
documents
(rows)**

$$\log \left(n / \sum_j \chi(f_{ij}) \right)$$

IDF Squared(IDF2)

$$\log \left(n / \sum_j (\chi(f_{ij}))^2 \right)$$

Entropy

$$1 - \sum_j \frac{(f_{ij} / \sum_k f_{ik}) \log(f_{ij} / \sum_k f_{ik})}{\log n}$$

Normalization (δ_j)

None

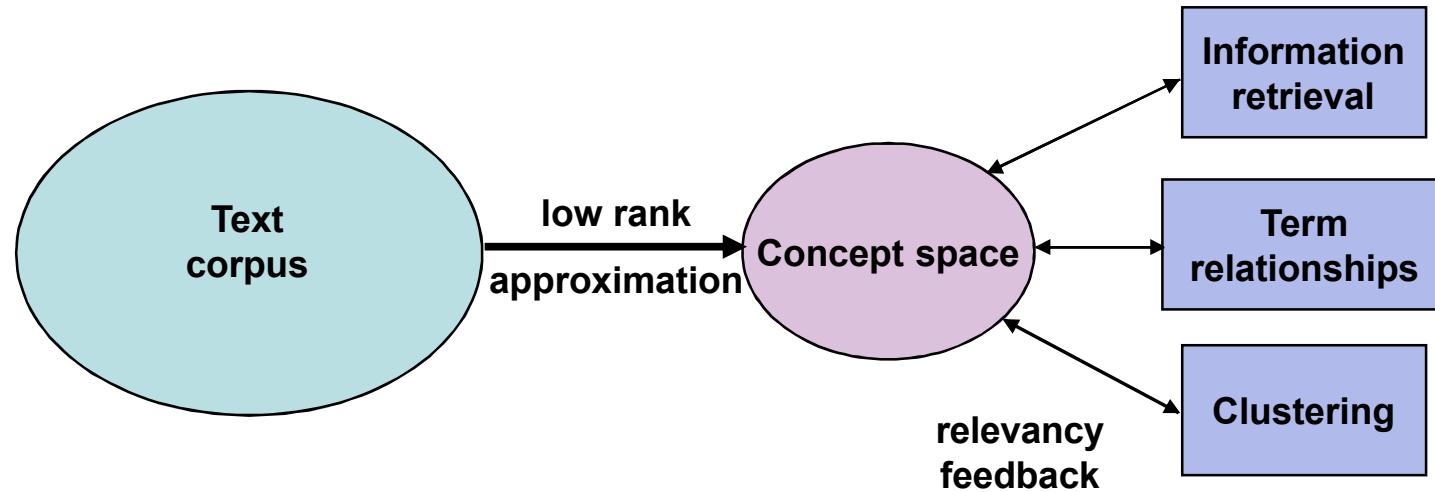
1

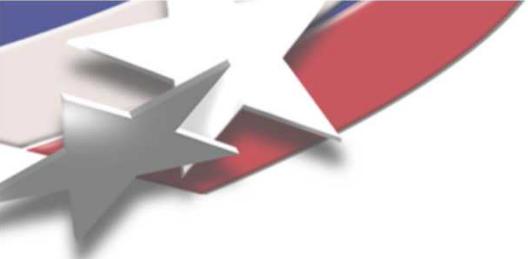
**individual
documents**

$$(\sum_i (\tau_{ij} \gamma_i)^2)^{-1/2}$$

Normalized

Latent Semantic Analysis





Concept Space

- high-dimensional (50-D to 1500-D)
- documents are points
- similarity = relationship in concept space
 - geometrically close = conceptually close
 - geometrically distant = conceptually distance
 - no exact keyword matching
- truncated SVD reduces dimensionality, removing noise through a low-rank approximation
- truncation level determines number of concepts
- query
 - project query text into concept space
 - return nearby documents

LSLIB: Example

d_1 : Hurricane. A hurricane is a catastrophe.

d_2 : An example of a catastrophe is a hurricane.

d_3 : An earthquake is bad.

d_4 : Earthquake. An earthquake is a catastrophe.

Remove
stopwords

	q
hurricane	1
earthquake	0
catastrophe	0

normalization only

A	d_1	d_2	d_3	d_4
hurricane	.89	.71	0	0
earthquake	0	0	1	.89
catastrophe	.45	.71	0	.45

$q^T A$.89	.71	0	0

rank-2 approximation

A_2	d_1	d_2	d_3	d_4
hurricane	.78	.78	-.11	.11
earthquake	-.03	.02	.96	.92
catastrophe	.59	.60	.15	.30

$q^T A_2$.78	.78	–	.11

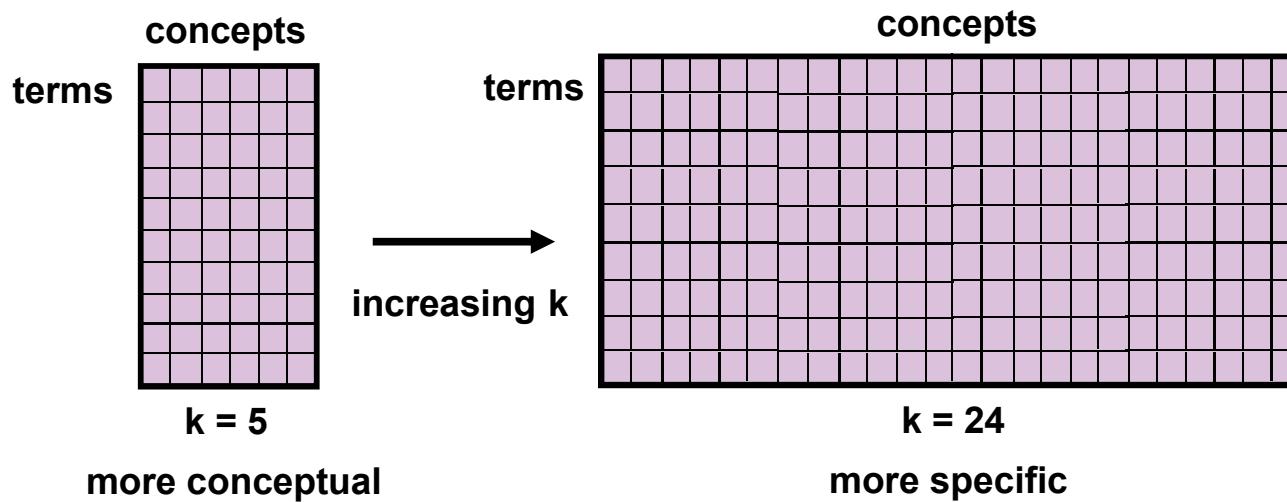
captures link to doc 4

LSALIB

Implements latent semantic analysis

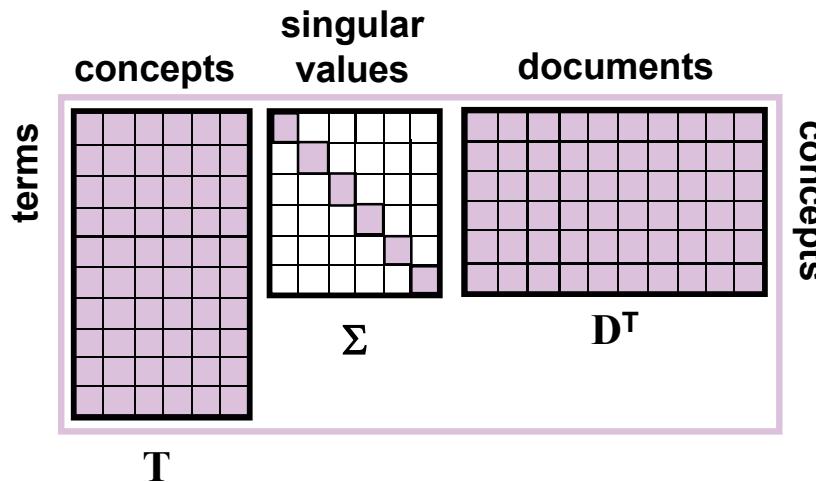
- Conceptual searching

- $\text{rank}(k) \uparrow$: more exact matches
- $\text{rank}(k) \downarrow$: more conceptual matches
- Can compute larger rank and use smaller rank



LSALIB: Matrix Operations

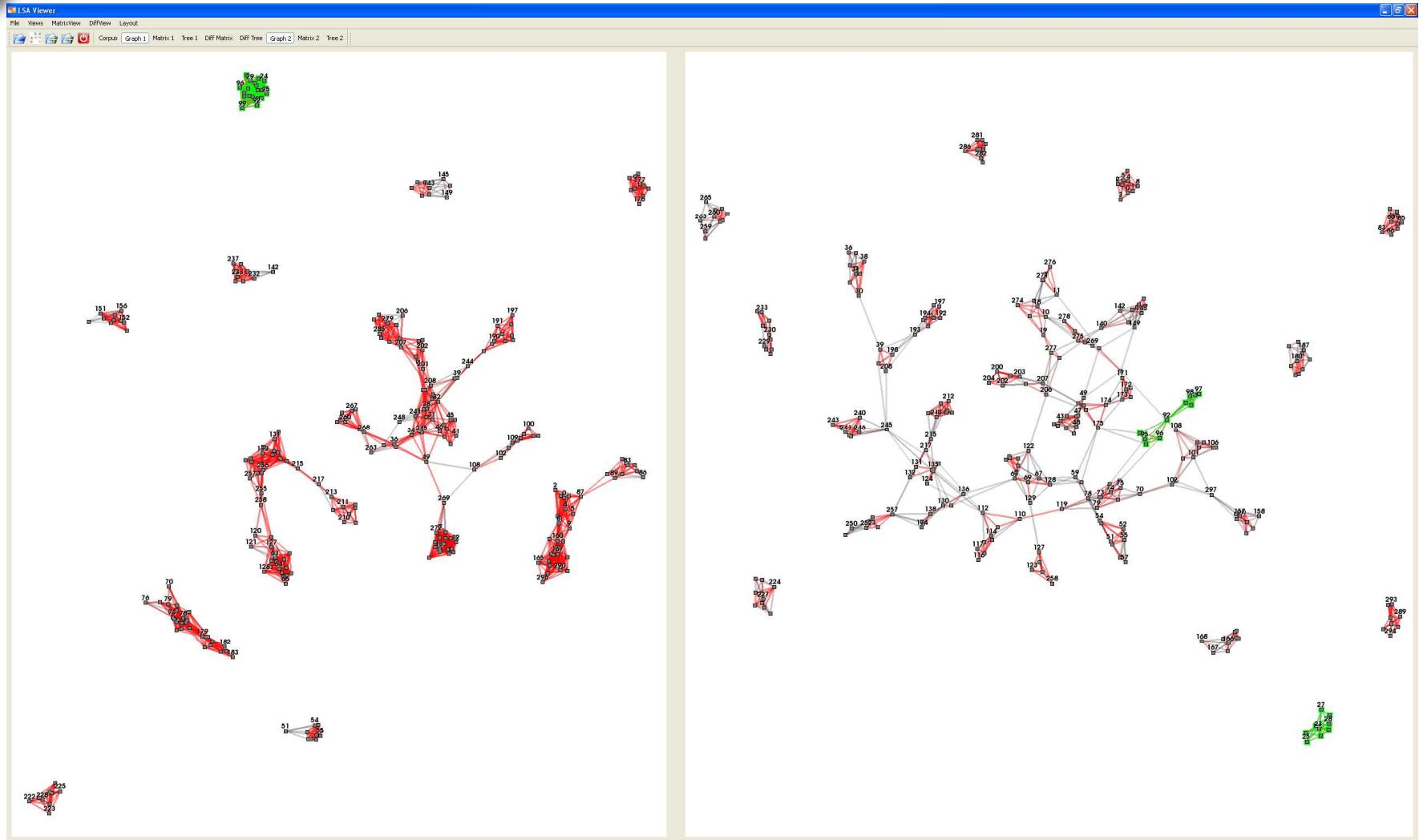
- SVD: $\mathbf{A} = \mathbf{T}\Sigma\mathbf{D}^T$
- Truncated: $\mathbf{A} \approx \mathbf{A}_k = \mathbf{T}_k\Sigma_k\mathbf{D}_k^T = \sum_{r=1}^k \sigma_r \mathbf{t}_r \mathbf{d}_r^T$
- Query scores (query as new “doc”): $q^T \mathbf{A}$
- LSA Ranking: $q^T \mathbf{A}_k$
- Document similarities: $\mathbf{D}_k \Sigma_k^2 \mathbf{D}_k^T$ (want sparse output)
- Term Similarities: $\mathbf{T}_k \Sigma_k^2 \mathbf{T}_k^T$ (want sparse output)



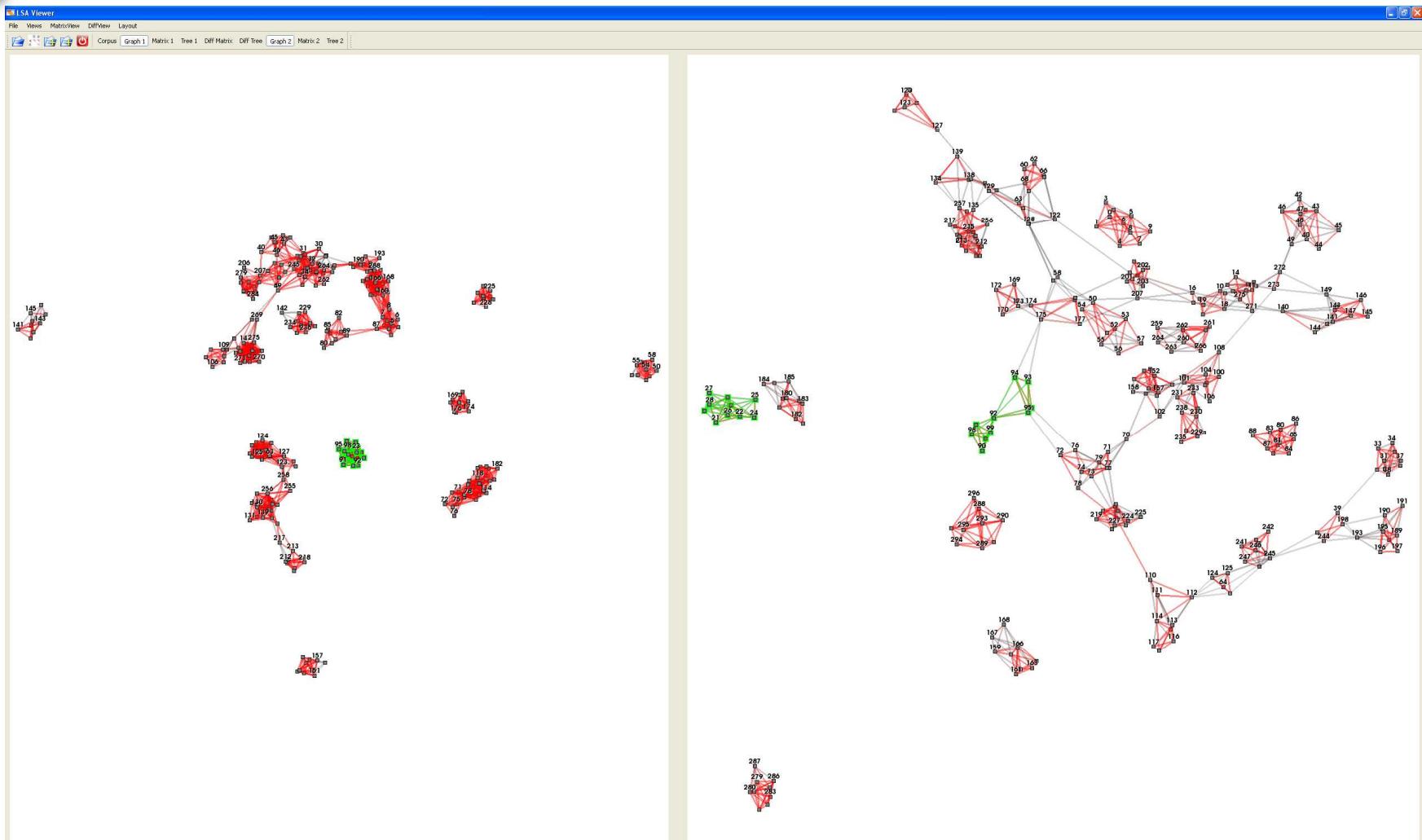
Sensitivity Analysis

- What is the sensitivity of LSA to different parameter choices?
- How does conceptual clustering change with rank?
- Does the layout algorithm change our view of the conceptual cluster?
- Is a change in document similarity edge weighting significant?
- How do different weighting choices impact all of the above?

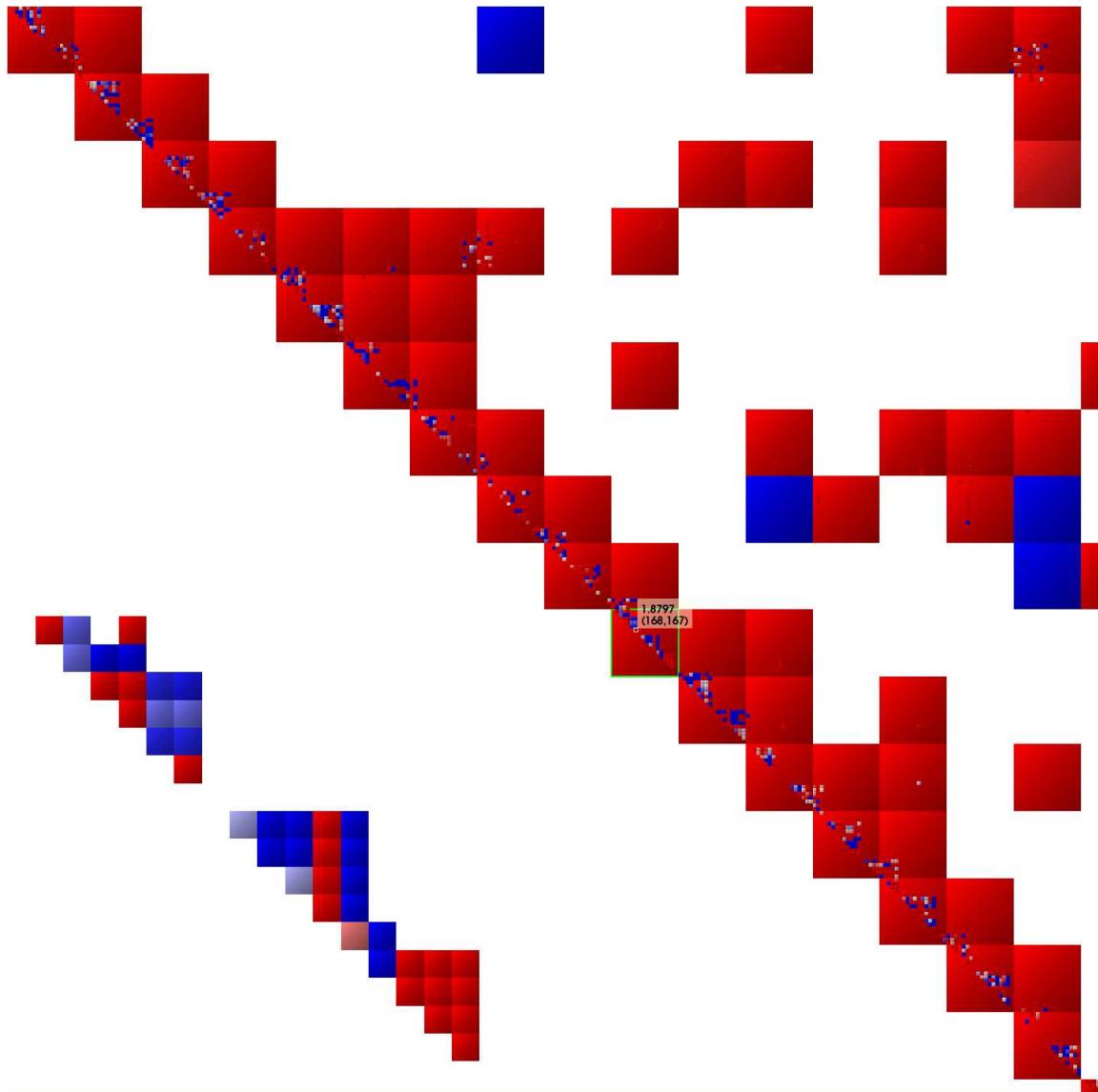
Doc Sim Graph Comparison



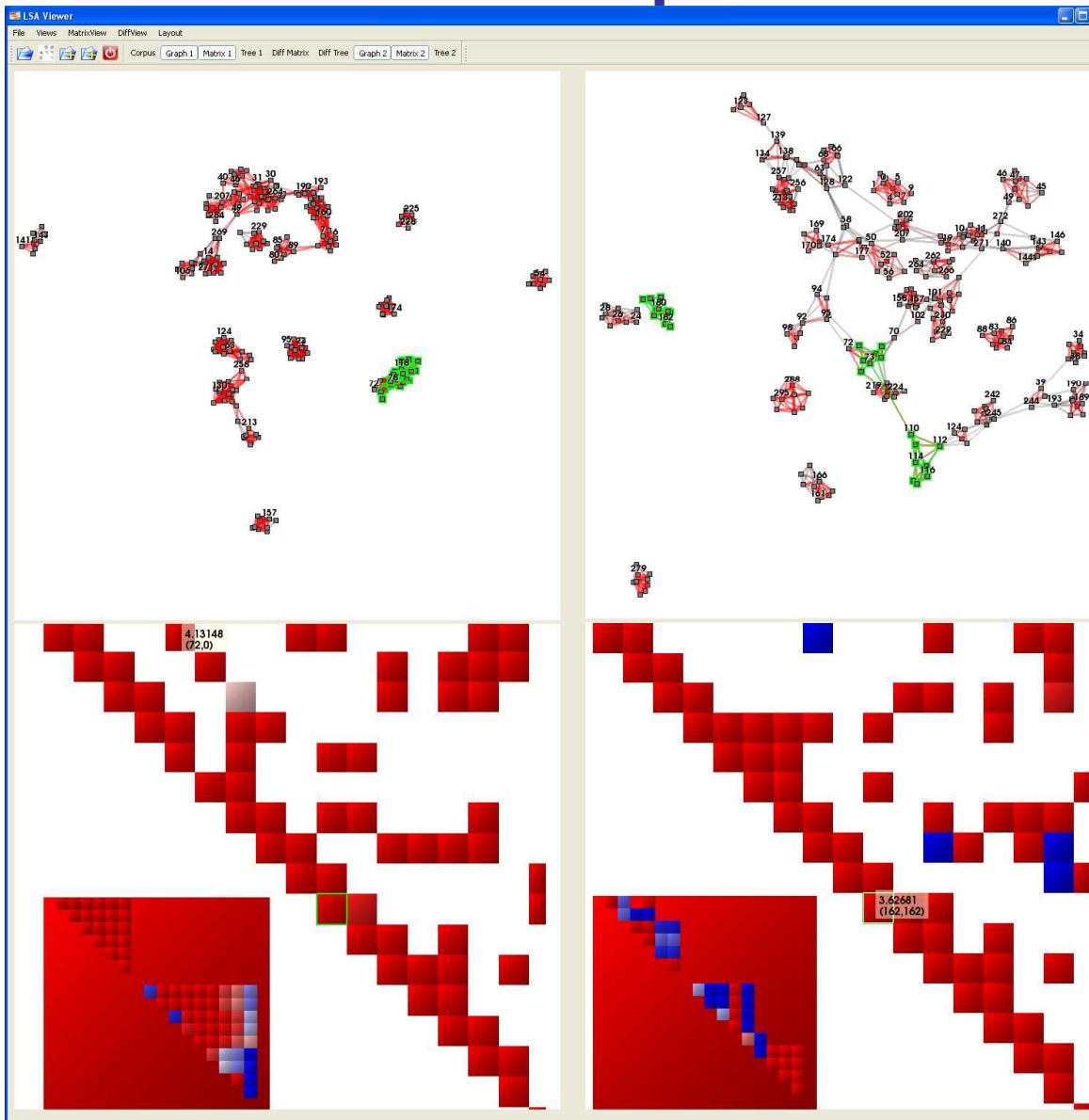
Layout Comparison



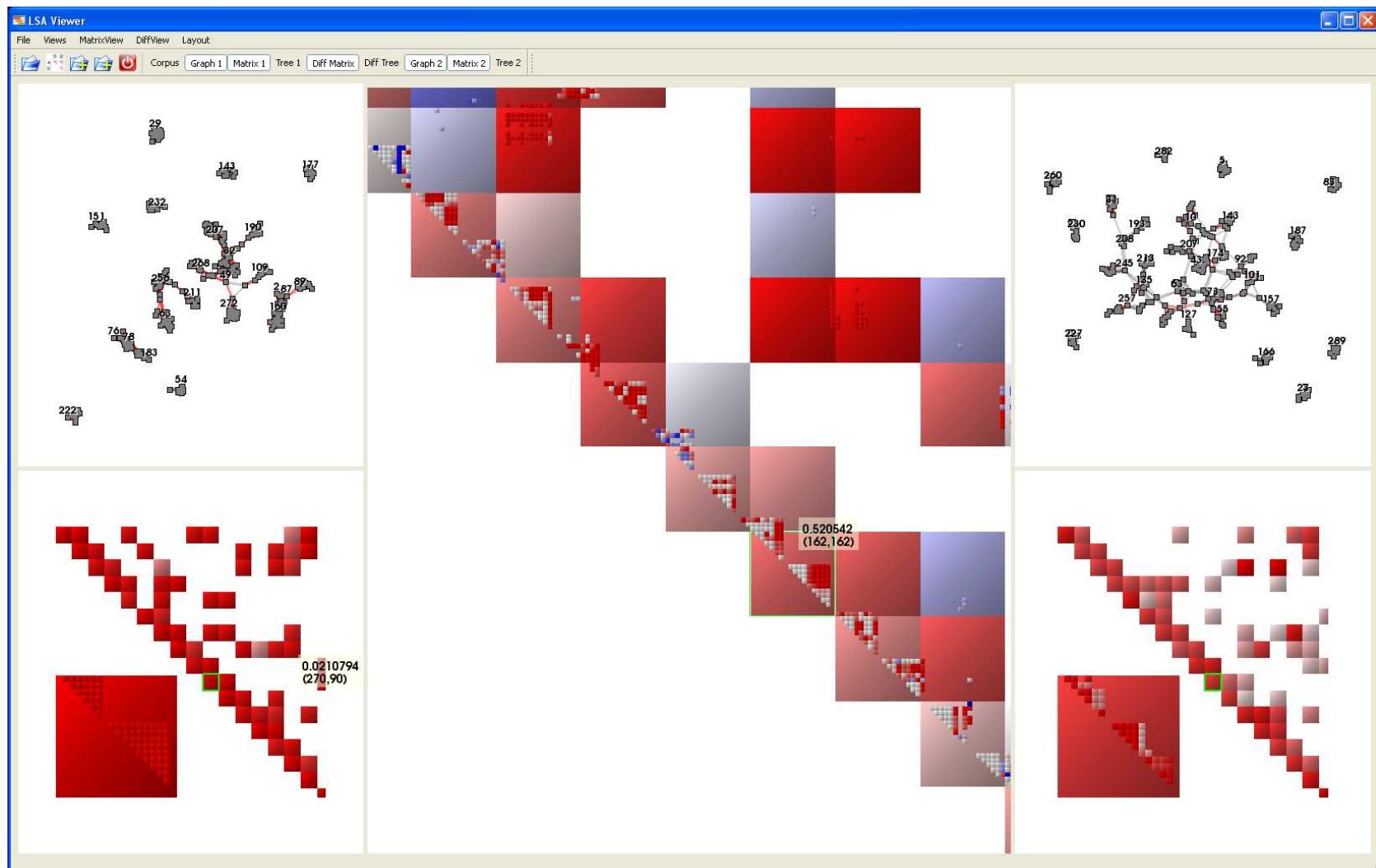
Sparse Matrix View



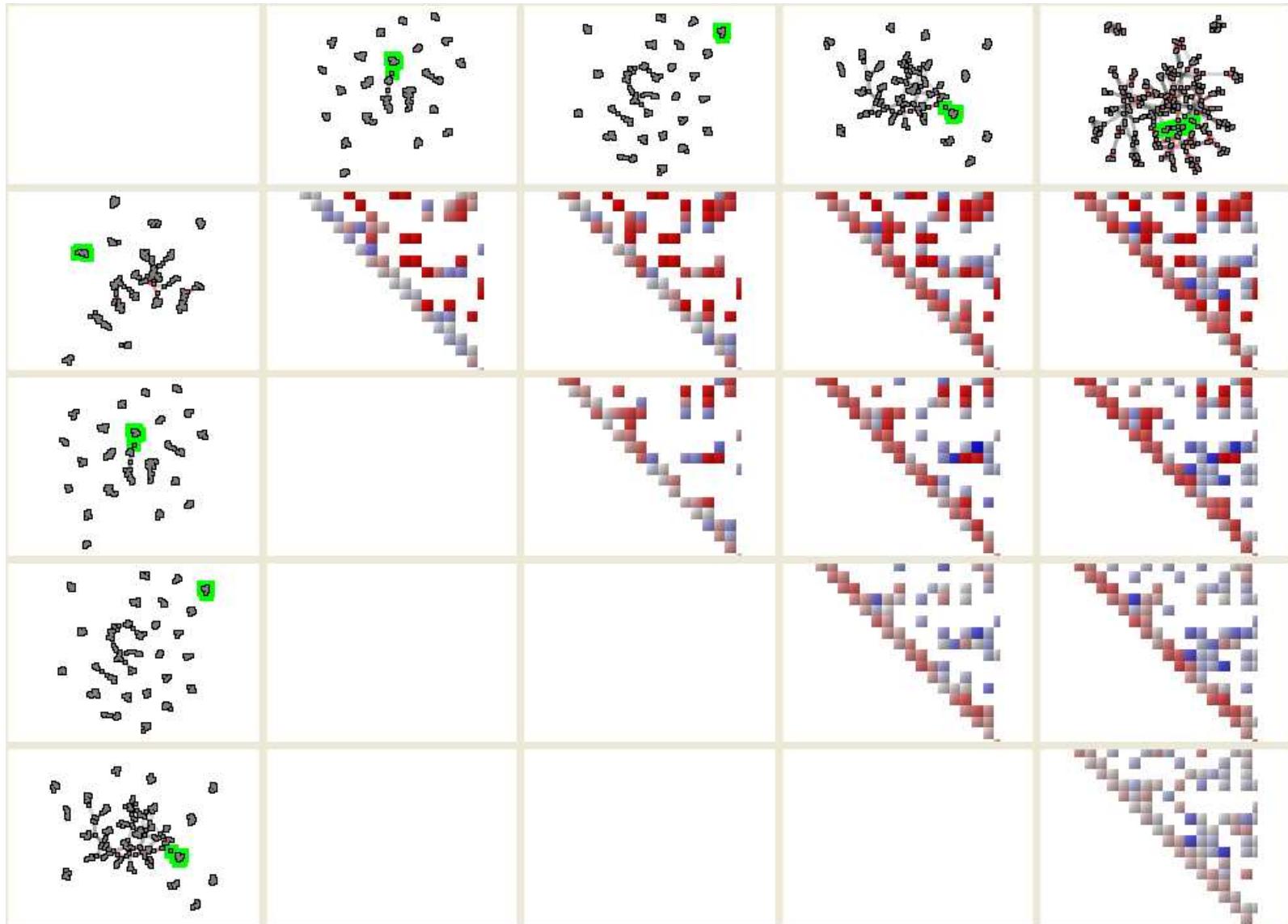
Rank Comparison



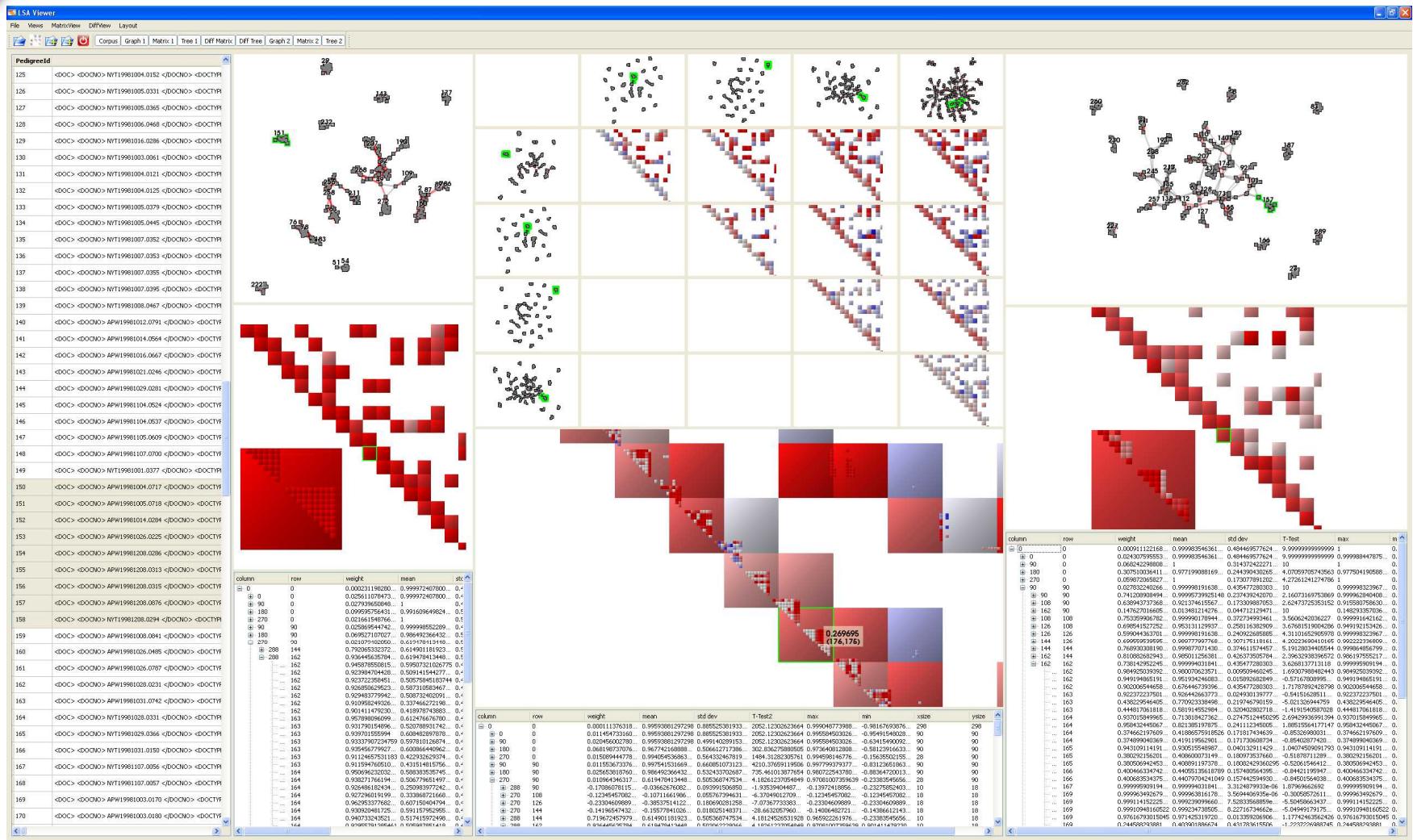
Matrix Differences



Small Multiples

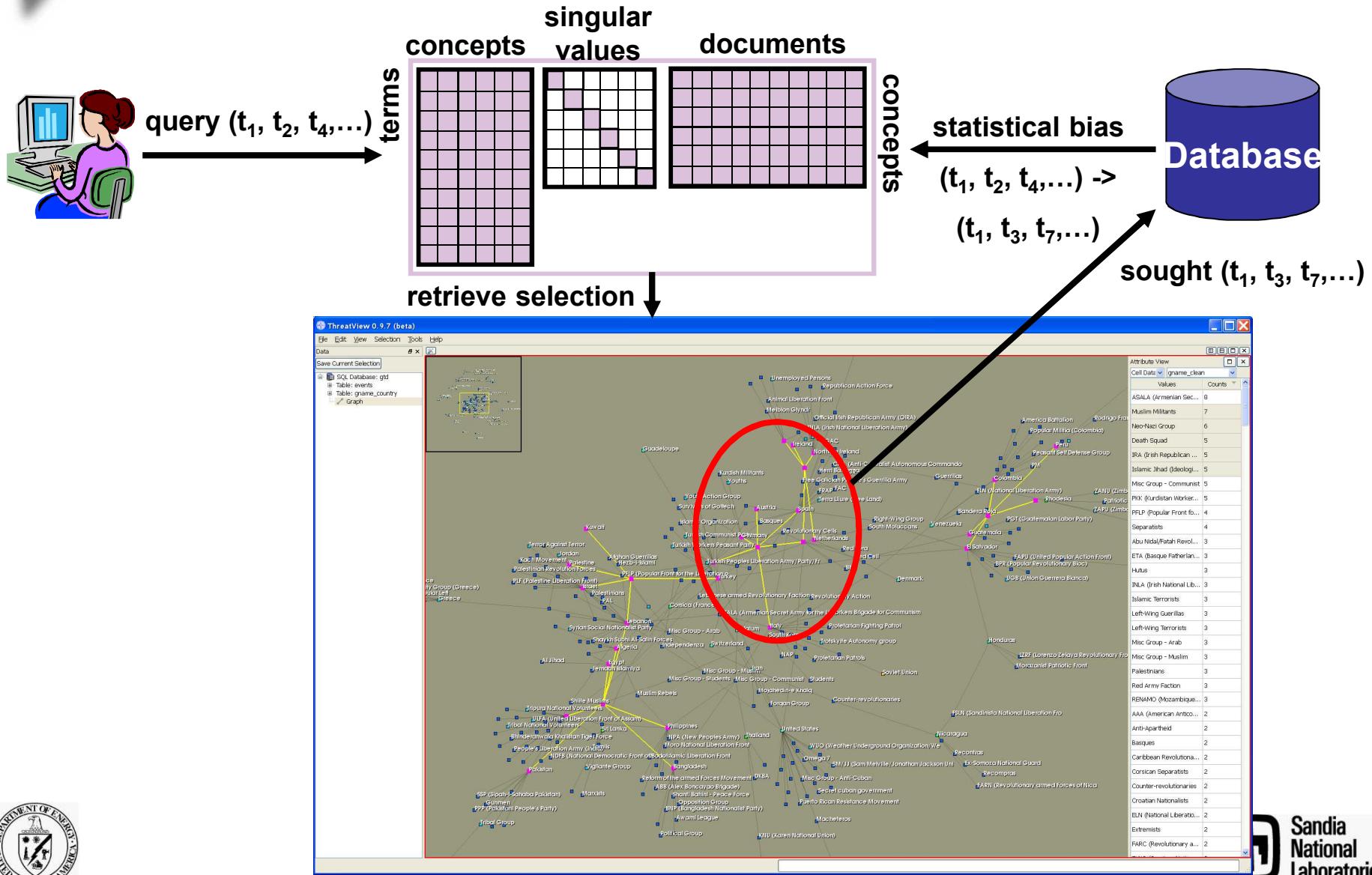


LSAView



 Sandia
National
Labs

Relevancy Feedback



Questions?

