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Scalable Solutions for Processing and 
Searching Very Large Document Collections 

(ParaText)
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Landscape Metaphor



Text Analysis Issues
• keyword searching does not work well

– miss relevant information

– retrieve irrelevant information

• words with multiple meanings

• different words with the same meaning
– baby and infant

– sick and ill

• word relationships can distinguish both

• Latent Semantic Analysis [Dumais et al., 1988]
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Modeling Text
• model documents as a linear equation

– meaning (document) = j meaning (termj)

• ignore term order and syntax

• discard non-differentiating words (stop list)
– articles, prepositions, conjunctions, pronouns

– common verbs, common adjectives

• remove common endings, like ‘ing’ (stemming)

• create term-document (occurrence) matrix
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Matrix Size
• English growing - no upper bound

• How many words do we use?
– Count lemmas (base words)

– Based on Oxford English Corpus (OEC)

– # Lemmas % of content in OEC
• 10 25%

• 100 50% 

• 1000 75%

• 7000 90%

• 50,000 95%

• >1M 99%

– last few % consists of rare or highly technical terms
• chrondrogenesis or dicarboxylate

• Term dimension dominates until document count 
exceeds lemmas used



Term Weighting
Want to weight by information content

• weighting within a document

– common words more meaningful

• weighting across documents

– uncommon words differentiate

• normalization by document size

– prevents large documents from dominating

Multiply the three factors together
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Latent Semantic Analysis
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Concept Space
• high-dimensional (50-D to 1500-D)
• documents are points
• similarity = relationship in concept space

– geometrically close = conceptually close
– geometrically distant = conceptually distance
– no exact keyword matching

• truncated SVD reduces dimensionality, removing 
noise through a low-rank approximation 

• truncation level determines number of concepts
• query 

– project query text into concept space
– return nearby documents



d1 : Hurricane. A hurricane is a catastrophe.

d2 : An example of a catastrophe is a hurricane.

d3 : An earthquake is bad.

d4 : Earthquake. An earthquake is a catastrophe.

d1 : Hurricane. A hurricane is a catastrophe.

d2 : An example of a catastrophe is a hurricane.

d3 : An earthquake is bad.

d4 : Earthquake. An earthquake is a catastrophe.
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LSALIB: Example



LSALIB

Implements latent semantic analysis

– Conceptual searching

• rank(k)  : more exact matches

• rank(k)  : more conceptual matches

• Can compute larger rank and use smaller rank

terms
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concepts concepts

increasing k 

more conceptual more specific



• SVD:

• Truncated:

• Query scores (query as new “doc”):

• LSA Ranking:

• Document similarities:

• Term Similarities:

LSALIB: Matrix Operations

(want sparse output)

(want sparse output)
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Sensitivity Analysis
– What is the sensitivity of LSA to different 

parameter choices?

– How does conceptual clustering change with 
rank?  

– Does the layout algorithm change our view of 
the conceptual cluster? 

– Is a change in document similarity edge 
weighting significant? 

– How do different weighting choices impact all 
of the above?



Doc Sim Graph Comparison



Layout Comparison



Sparse Matrix View



Rank Comparison



Matrix Differences



Small Multiples



LSAView



statistical bias 

(t1, t2, t4,…) -> 

(t1, t3, t7,…)

Relevancy Feedback

query (t1, t2, t4,…)
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Questions?


