& SAND2008- 2188P

Belos:
A Framework for Next-generation

lterative Linear Solvers

April 71, 2008

Mike Heroux
Rich Lehoucq
Mike Parks
Heidi Thornquist (Lead)

Sandia

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, @ National .
for the United States Department of Energy under contract DE-AC04-94AL85000. Laboratories

_'-.. \
- Outline

= |ntroduction
+ Motivation
+ Belos design

= \What's in Trilinos 8.0

¢+ Framework implementations
¢ Current linear solver iterations
¢+ Parameter list driven solver managers
¢ Stratimikos interface
= Concluding Remarks
+ \What's next for Belos ...

Sandia
National
Laboratories

A4
| Introducing Belos

= Next-generation linear solver library, written in templated C++.

= Provide a generic framework for developing algorithms for
solving large-scale linear problems.

* Algorithm implementation is accomplished through the use of
traits classes and abstract base classes:
¢+ ex.: MultiVecTraits, OperatorTraits
+ ex.. Iteration, SolverManager, StatusTest

» |[ncludes block linear solvers:
¢ Higher operator performance.

Sandia
National
Laboratories

A4
Why Belos?

= AztecOO provides solvers for Ax=0-

» What about solvers for:
+ Simultaneously solved systems w/ multiple-RHS: AX = B
+ Sequentially solved systems w/ multiple-RHS: AX, = B,, i=1,...,C
+ Sequences of multiple-RHS systems: A X, = B,, i=1,...,C

» Many advanced methods for these types of linear systems
+ Block methods: block GMRES [Vital], block CG/BICG [O’Leary]
+ “Seed” solvers: hybrid GMRES [Nachtigal, et al.]
+ Recycling solvers: recycled Krylov methods [Parks, et al.]
+ Restarting techniques, orthogonalization techiques, ...

= Efficient R&D of advanced linear solution methods requires:
¢ [nteroperability
+ Extensibility
+ Reusability

Sandia
National
Laboratories

A4
| Belos Design

Design Goal: Create a linear solver library that:

1.

Provides an abstract interface to an operator-vector products,
scaling, and preconditioning.

Allows the user to enlist any linear algebra package for the
elementary vector space operations essential to the algorithm.
(Epetra, PETSc, Thyra, etc.)

Allows the user to define convergence of any algorithm (a.k.a.
status testing).

Allows the user to determine the verbosity level, formatting, and
processor for the output.

Allows for easier R&D of new solvers through “managers” using

“iterations” as the basic kernels.
Sandia
National
Laboratories

>
| Generic lteration Kernel

Linear Problem
—vcrd/iterationA.iterate() { ‘/////////,

Ghile (statusTest.checkStatus(this) != Passed)
{

% Compute operator-vector product]
linProb->applyOp(P, AP); < Generic Operator
% Compute o = PTAP Interface

MVT: :MvTransMv(1.0, P, AP, a);

% Orthonormalize new direction vectors
int ran orthoMgr->normalize(*P) ;

out tMgr->print (Belos: :Debug, “somethzzgﬁrg\\\

Output Manager

Generic MultiVector

Orthogonalization
Interface

Manager

Sandia
National
Laboratories

S
Generic Solver Manager

Belos: :ReturnType solvengrA.solve(i{i/////////////,

<initialize iteration>

Solution
Strategy

/Generic Iteration
Kernel

A

<restart, deflate converged solutions>

Sandia
National
Laboratories

_'- \
» Belos Classes

= MultiVecTraits and OperatorTraits

+ Traits classes for interfacing linear algebra
= LinearProblem Class

¢ Describes the problem and stores the answer
» OrthoManager Class

+ Provide basic interface for orthogonalization
= StatusTest Class

+ Control testing of convergence, etc.
= QutputManager Class

¢ Control verbosity and printing in a MP scenario
» |teration Class

+ Provide basic linear solver iteration interface.

= SolverManager Class
+ Parameter list driven strategy object describing behavior of solver

Sandia
National
Laboratories

What's in Trilinos 8.0

() &=
Nationa
Laboratories

>
: Linear Algebra Interface

u Belos: :MultiVecTraits<ST,6 MV>

+ [nterface to define the linear algebra required by most iterative linear solvers:
 creational methods
» dot products, norms
» update methods
* initialize / randomize
¢ Implementations:
* MultiVecTraits<double, Epetra MultiVector>
e MultiVecTraits<ST,Thyra: :MultiVectorBase<ST> >

u Belos: :OperatorTraits<ST,MV,OP>

+ Interface to enable the application of an operator to a multivector.

¢+ |mplementations:
* OperatorTraits<double,Epetra MultiVector,Epetra Operator>
* OperatorTraits<ST,Thyra: :MultiVectorBase<ST>,Thyra: :LinearOpBase<ST> >

Sandia
National
Laboratories

X
: Linear Problem Interface

= Provides an interface between the basic iterations and the linear
problem to be solved.

» Templated class Belos: :LinearProblem<ST, MV, OP>

+ Allows preconditioning to be removed from the algorithm.
+ Behavior defined through traits mechanisms.

¢+ Methods:
« setOperator(..) / getOperator ()
« setLHS(..) / getLHS()
« setRHS(..) / getRHS()
« setLeftPrec(..) / getLeftPrec() / isLeftPrec()
« setRightPrec(..) / getRightPrec() / isRightPrec()

 apply(..) / applyOp(..) / applylLeftPrec(..) /
applyRightPrec((...)

e setHermitian(..) / isHermitian/()
« setProblem(...)

Sandia
National
Laboratories

=~
Orthogonalization Manager

» Abstract interface to orthogonalization / orthonormalization routines
for multivectors.

= Abstract base class Belos: : [Mat]OrthoManager<ST,MV,OP>
void innerProd(..) const;

void norm(..) const;

void project(..) const;

int normalize(..) const;

int projectAndNormalize(..) const;

magnitudeType orthogError(..) const;

magnitudeType orthonormError(..) const;

® & 6 6 & o o

= |mplementations:
¢ Belos: :DGKSOrthoManager
¢ Belos: :ICGSOrthoManager
¢ Belos: :IMGSOrthoManager

Sandia
National
Laboratories

F 2

StatusTest Interface

» Informs linear solver iteration of change in state, as defined by user.
= Similar to NOX / AztecOO.
= Multiple criterion can be logically connected.
= Abstract base class Belos: : StatusTest<ST,MV,OP>
¢ TestStatus checkStatus(Iteration<..>* iterate);
TestStatus getStatus () const;
void clearStatus() ;

void reset() ;
ostreamé& print(ostream& os, int indent = 0) const;

*

*
*
*

= |mplementations:

*

* & o o

Belos::
Belos::
Belos::
Belos:
Belos::

StatusTestMaxIters
StatusTestGenResNorm
StatusTestImpResNorm

:StatusTestOutput

StatusTestCombo

Sandia
National
Laboratories

>
Output Manager Interface

» Templated class that enables control of the linear solver output.
+ Behavior defined through traits mechanism

= Belos: :OutputManager<ST>
+ Get/Set Methods:
* void setVerbosity(int vbLevel) ;
e int getVerbosity();
e ostream& stream(MsgType type)
* Query Methods:
- bool 1isVerbosity(MsgType type);
¢ Print Methods:
- void print(MsgType type, const string output);
*+ Message Types:

- Belos::Errors, Belos::Warnings,
Belos::IterationDetails, Belos::0rthoDetails,
Belos: :FinalSummary, Belos::TimingDetails,
Belos: :StatusTestDetails, Belos: :Debug

» Default is lowest verbosity (Belos: :Errors), output on one

p FOCessor.
National
Laboratories

A 4
» lteration Interface

= Provides an abstract interface to Belos basic iteration kernels.
= Abstract base class Belos: :Iteration<ST,MV,0P>

* 6 6 6 o o

int getNumIters() const; void resetNumIters (int iter);
Teuchos: :RCP<const MV> getNativeResiduals(..) const;
Teuchos: :RCP<const MV> getCurrentUpdate () const;

int getBlockSize () const; void setBlockSize (int blockSize) ;
const LinearProblem<ST,MV,OP>& getProblem() const;

void iterate(); wvoid initialize();

» |terations require these classes:

*

*

*

*

Belos: :LinearProblem
Belos: :OutputManager
Belos: :StatusTest
Belos: :OrthoManager

» Implementations:

*

* & 6 o o

Belos: :BlockGmresIter
Belos: :BlockFGmresIter
Belos: : PseudoBlockGmresIter
Belos: : GCRODRIter

Belos: :CGIter,

.. Sandia
Belos: :BlockCGIter @ National
Laboratories

o

Solver Manager

» Provides an abstract interface to Belos solver managers
¢ solver strategies

= Abstract base class Belos: : SolverManager
void setProblem(..); void setParameters(..);
const Belos: :LinearProblem<ST,MV,OP>& getProblem() const;

* 6 & o o

Teuchos:
Teuchos:
:ReturnType solve() ;

Belos:

:RCP<const Teuchos: :ParameterList> getValidParameters () const;
:RCP<const Teuchos: :ParameterList> getCurrentParameters () const;

= Solvers are parameter list driven, take two arguments:

*

Belos:
¢ Teuchos:

:LinearProblem

:ParameterList [validated]

» Implementations:

*

L 4
L 4
L 4

Belos:
Belos:
Belos:
Belos:

:BlockGmresSolMgr

: PseudoBlockGmresSolMgr
: GCRODRSolMgr
:BlockCGSolMgr

Sandia
National
Laboratories

4‘ Solver Manager Implementations

= Belos::BlockGmresSolMgr

¢ Performs regular and flexible block GMRES
+ Block size can be greater than, or less than, the number of right-hand sides
+ Adaptive block size; no deflation

= Belos::PseudoBlockGmresSolMgr
+ Single-vector simultaneous GMRES solves (block size)
+ |teration performs block application of operator-vector products
+ Easier deflation strategy; “Deflation Quorum”

= Belos::GCRODRSolMgr
+ Single-vector Krylov subspace recycling solver written by Mike Parks
+ Validates iteration kernel design by using Belos: :BlockGmresIter

= Belos::BlockCGSolMgr
+ Performs single-vector and block CG
+ Block size can be greater than, or less than, the number of right-hand sides

+ Adaptive block size, deflation
National
Laboratories

Examples

Sandia
National
Laboratories

Block CG Example

(belos/example/BlockCG/BlockCGEpetraExFile.cpp)

#include
#include
#include

#include

"BelosConfigDefs.hpp"

"BelosLinearProblem.hpp"
"BelosEpetraAdapter.hpp"
"BelosBlockCGSolMgr.hpp"

int main (int argc, char *argv[]) {
typedef Epetra MultiVector MV;

typedef Epetra Operator OP;

// Create AX=B
Teuchos: :RCP<Epetra Operator> A;

Teuchos: :RCP<Epetra MultiVector> X;
Teuchos: :RCP<Epetra MultiVector> B;

// Create parameter list

Teuchos: :ParameterList belosList;

belosList.set("Block Size", blocksize
belosList.set (
belosList.set (

if (verbose) {

belosList.set ("Verbosity", Belos::Errors +
Belos::Warnings + Belos::TimingDetails +
Belos::FinalSummary + Belos::StatusTestDetails

) ;

belosList.set (

}

else

belosList.set ("Verbosity", Belos::Errors +

Belos::Warnings);

"Maximum Iterations",

"Convergence Tolerance",

// Construct an unpreconditioned linear problem
Belos::LinearProblem<double,MV,OP> problem(A, X, B);
problem.setHermitian () ;

bool set = problem.setProblem(); // VERY IMPORTANT!
if (set == false) {

return -1;

// Create an iterative solver manager

Belos: :BlockCGSolMgr<double,MV, OP> newSolver (
rcp (&problem, false), rcp(&belosList,false));

// Perform solve

Belos::ReturnType ret = newSolver.solve();

if (ret!=Belos::Converged) {
// Belos did not converge!

return -1;

"Output Frequency", frequency);

Sandia
National
Laboratories

Preconditioned Block CG Example

(belos/example/BlockCG/BlockPrecCGEpetraExFile.cpp)

#include "BelosConfigDefs.hpp"

#include "BelosLinearProblem.hpp"
#include "BelosEpetraAdapter.hpp"
#include "BelosBlockCGSolMgr.hpp"

int main (int argc, char *argv[]) {
typedef Epetra MultiVector MV;
typedef Epetra Operator OP;

// Create AX=B

Teuchos: :RCP<OP> A;
Teuchos: :RCP<MV> X;
Teuchos: :RCP<MV> B;

// Create parameter list

Teuchos: :ParameterList belosList;

belosList.set("Block Size", blocksize);
belosList.set("Maximum Iterations", maxiters);
belosList.set ("Convergence Tolerance", tol);
if (verbose) {

belosList.set ("Verbosity", Belos::Errors +
Belos::Warnings + Belos::TimingDetails +
Belos::FinalSummary + Belos::StatusTestDetails

) ;

belosList.set ("Output Frequency", frequency);

}
else

belosList.set ("Verbosity", Belos::Errors +
Belos::Warnings);

// Construct an SPD preconditioner M
// Anything that supports OP interface can go here!
Teuchos: :RCP<OP> M;

// Construct a preconditioned linear problem
Belos::LinearProblem<double,MV,OP> problem(A, X, B);
problem.setHermitian () ;
if (leftprec)

problem.setLeftPrec(M);

else

problem.setRightPrec(M) ;
bool set = problem.setProblem(); // VERY IMPORTANT!
if (set == false) {

return -1;

// Create an iterative solver manager

Belos: :BlockCGSolMgr<double,MV, OP> newSolver (
rcp (&problem, false), rcp(&belosList,false));

// Perform solve
Belos::ReturnType ret = newSolver.solve();

if (ret!=Belos::Converged) {
// Belos did not converge!
return -1;

Sandia
National
Laboratories

Preconditioned Block GMRES Example

(belos/example/BlockGmres/BlockPrecGmresEpetraExFile.cpp)

#include "BelosConfigDefs.hpp"
#include "BelosLinearProblem.hpp"
#include "BelosEpetraAdapter.hpp"
#include "BelosBlockGmresSolMgr.hpp"

int main (int argc, char *argv[]) {
typedef Epetra MultiVector MV;
typedef Epetra Operator OP;

// Create AX=B

Teuchos: :RCP<OP> A;
Teuchos: :RCP<MV> X;
Teuchos: :RCP<MV> B;

// Create parameter list

Teuchos: :ParameterList belosList;

belosList.set("Num Blocks", maxsubspace) ;
belosList.set("Block Size", blocksize);
belosList.set("Maximum Iterations", maxiters);

belosList.set("Maximum Restarts", maxrestarts);

belosList.set ("Convergence Tolerance", tol);

if (verbose) {
belosList.set ("Verbosity", Belos::Errors +
Belos::Warnings + Belos::TimingDetails +
Belos::FinalSummary + Belos::StatusTestDetails
)
belosList.set ("Output Frequency", frequency);

}

else

belosList.set ("Verbosity", Belos::Errors +
Belos::Warnings);

// Construct a preconditioner M
// Anything that supports OP interface can go here!
Teuchos: :RCP<OP> M;

// Construct a preconditioned linear problem
Belos::LinearProblem<double,MV,OP> problem(A, X, B);
if (leftprec)

problem.setlLeftPrec(M);

else

problem.setRightPrec(M);
bool set = problem.setProblem(); // VERY IMPORTANT!
if (set == false) {

return -1;

// Create an iterative solver manager

Belos: :BlockGmresSolMgr<double,MV,OP> newSolver (
rcp (&problem, false) , rcp(&belosList,false))

// Perform solve
Belos::ReturnType ret = newSolver.solve();

if (ret!=Belos::Converged) {
// Belos did not converge!
if (newSolver.isLOADetected()) {
// Convergence was impeded by a loss of accuracy

}

return -1;

Sandia
National
Laboratories

>
Stratimikos-Belos Interface

= Stratimikos:

+ Thyra-based linear solver and preconditioner strategy package
* MultiVecTraits<ST,Thyra: :MultiVectorBase<ST> >
* OperatorTraits<ST,Thyra::MultiVectorBase<ST>,Thyra: :LinearOpBase<ST> >

¢ Belos-Thyra-Tpetra interface

= Stratimikos-Belos Interface
+ [ntent: access current Belos solver managers using a factory interface
+ Implements Thyra::LinearOpWithSolveFactory / Thyra::LinearOpWithSolve
+ Stratimikos interface uses valid parameter list generated from Belos

¢+ Check out:
stratimikos/adapters/belos/example/LOWSFactory/[Epetra/Tpetra]

Sandia
National
Laboratories

o
: What’s next for Belos?

= Belos provides a powerful framework for developing robust linear
solvers, but there’s more work to do ...

= Future Development:
+ More performance improvements
¢+ More advanced solution methods

= Check out the Trilinos Tutorial;

= See Belos website for more info:

Sandia
National
Laboratories

http://trilinos.sandia.gov/packages/belos
http://trilinos.sandia.gov/Trilinos8.0Tutorial.pdf

