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This talk presents metamaterial structures that
enable studies of the interaction of light with matter

Metamaterials for chemical
or biological sensing

Metamaterials on free-standing
silicon nitride membranes

Polarization insensitive and
polarization sensitive metamaterials
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Where is the far-infrared or Terahertz (THz) region?
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Most physical phenomena at THz frequencies are
related to vibrational rotational modes of molecules

Astrophysics

Galactic optical emission
and CO emission @ 115GHz
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T. M. Dame et al., Astrophys. J. 547, 792 (2001).
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Most physical phenomena at THz frequencies are
related to vibrational rotational modes of molecules
Astrophysics Biology

DNA vibrational modes
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There are some emerging technological
applications of THz radiation

Communications Imaging and Tomography
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Why is there a void in science and technology at
THz frequencies?

THz

Microwaves Infrared Visible
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Sandia
National
7 Laboratories



Why is there a void in science and technology at
THz frequencies?
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Why is there a void in science and technology at
THz frequencies?

Microwaves THz

Infrared Visible
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Parasitics electrical and Thermal fluctuations
Transit times magnetically Energy gaps decrease
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active materials

Metamaterials can provide tools to solve this problem!
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What are metamaterials?
ueta = beyond

A natural material composed
of atoms.
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What are metamaterials?
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ueta = beyond

A natural material composed A metamaterial is composed of
of atoms. artificially structured “atoms”.

Metamaterials are artificial materials with properties
that go beyond those of the constituent materials or

naturally occurring materials. Sandia
National
Laboratories



The properties of the “atoms” and their spatial
distribution determine the properties of the
metamaterial
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The individual units are designed to have specific
electromagnetic properties. @ Sandia
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The dielectric permittivity is a measure of the ability

of a material to be polarized
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The dielectric permittivity is a measure of the ability
of a material to be polarized

E, E, =E,—4zP

|
AR

Sandia
National
14 Laboratories



The dielectric permittivity is a measure of the ability
of a material to be polarized

— - ——) + E
Ein
— - —) +
— - ——) <4
P In general e=¢(®)

The permittivity relates to a material's ability to "permit" an

electric field. Sandia
@ National
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The magnetic permeability is a measure of the

degree of magnetization of a material
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The magnetic permeability is a measure of the
degree of magnetization of a material

B, B, =H+4za\
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The magnetic permeability is a measure of the
degree of magnetization of a material

B, B, =H+4za\

—_— — Magnetic permeability
—p —
BO
— — H=—
 —— — Bi”

In general, u=p(w)
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Any material that satisfies a<<A is described by
the effective medium approximation

A natural material composed A metamaterial is composed of
of atoms. artificially structured “atoms”.

Can be characterized by an effective electric permittivity €
and an effective magnetic permeability p. @
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National

19 Laboratories



We can organize materials according to their
permittivity and permeability

u (permeability)

A
Metals Most materials
,u>0 e>0,u>0
> €
Ferrites (permittivity)
>0,
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How electromagnetic waves propagate through a
material is given by solutions to the wave equation

O°E | o
Wave equation: V°E = gu P Solution: E=Ee {at—x)
t =0
I
Metals Most materials \/7
N=+\&u
AVAVAN
,u>0 e>0,u>0
> €
Ferrites
>0,

Sandia
National
o Laboratories



How electromagnetic waves propagate through a
material is given by solutions to the wave equation

0°E _ .
Wave equation: V°E = gu P Solution: E = Eoe"(“’t"‘x)
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How electromagnetic waves propagate through a
material is given by solutions to the wave equation
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How electromagnetic waves propagate through a
material is given by solutions to the wave equation

n=—

e

0°E . it
Wave equation: V°E = gu P Solution: E=Ee {at—x)
t k= oo
I
Metals Most materials \/7
N=+\&u
\\\__ N\ \
,u>0 e>0,u>0
> €
Left-handed materials Ferrites
N\ N\ \\\_
>0,
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Why are they called left-handed materials?

~ @
KxE=—uH
Maxwell’'s equations: < ‘.
KxH=——¢E
- c

If e0 and p>0thenitis a
right-hand set of vectors:

E

n=-+eu
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Why are they called left-handed materials?

~ 0
KxE=—uH
Maxwell’'s equations: < ‘.
KkxH=——¢E
- C
If e0 and p>0thenitis a If e<0 and pu<Othenitis a
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How do you get € < 0?
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Bulk metals naturally have ¢ <0 in the UV
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In an array of thin metal wires, the region where
e <0 can be tuned by the geometry
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In an array of thin metal wires, the region where
e <0 can be tuned by the geometry
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How do you get pu < 0?
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First metamaterials with pn < 0 were double circular
split-ring resonators

© H
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First metamaterials with pn < 0 were double circular
split-ring resonators

Make it aring so H

induces a current?

©H —@—
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First metamaterials with pn < 0 were double circular
split-ring resonators

Make it aring so H

ind t
induces a curren ? c

introduce a
capacitance

Cut the ring to @ ®H

Permeability
% — é

Frequency
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First metamaterials with pn < 0 were double circular
split-ring resonators

Make it aring so H

ind t
induces a curren ? c

q

introduce a
capacitance

Cut the ring to @ ®H

\

Permeability

Double the ring to% Frequency

strengthen resonance Sandia
National
Laboratories
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The geometry of the split-ring resonators can
control the magnetic permeability (u < 0)

Permeability

o

Frequency O eq
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Metamaterials can help bridge the THz gap and
Interrogate biomolecules is new ways
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Metamaterials can help bridge the THz gap and
Interrogate biomolecules is new ways
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Metamaterials can help bridge the THz gap and
Interrogate biomolecules is new ways
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® Can we use the change in capacitance as a
sensing mechanism for chem-bio molecules?

Transmission

L 1 2 3
Frequency (THz)
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® Can we use the change in capacitance as a
sensing mechanism for chem-bio molecules?

Transmission

1 2 3
Frequency (THz)

There Is a shift in the resonance due to a Sandia
change in C. @ National
a1 Laboratories



Change in capacitance combined with resonant
detection or absorption enhances detection
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Surface functionalization uses linker molecules to
attach biomolecules to inorganic surfaces

Antibodies

<\v> | Antibodies
+
T )
R Epoxysilane — ? ? j
TI/ Au —0%0 —0%0 —o%o

Side view
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Surface functionalization uses linker molecules to
attach biomolecules to inorganic surfaces
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Surface functionalization uses linker molecules to
attach biomolecules to inorganic surfaces
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Demonstration of surface functionalization

e

— metal

Regular
metamaterial
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— opening

Complementary
pattern for
functionalization
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Demonstration of surface functionalization

<— metal

Regular
metamaterial

[ [E
E ['EL— opening

Complementary
pattern for
functionalization

47

Functionalized metamaterial

!

G4
SR S

Ti/Au !

[ [

4 A

epoxysilane epoxysilane + avidin
fluorescein conjugated

Sandia
National
Laboratories



There exist several challenges in detecting a
monolayer of biomolecules
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R. Singh et al., Opt. Exp. 16, 1786 (2008).
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There exist several challenges in detecting a
monolayer of biomolecules
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There exist several challenges in detecting a

monolayer of biomolecules
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Amplitude Transmission
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One solution is to eliminate the substrate!

B Can we fabricate metamaterials on
thin membranes?

)
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YES! THz metamaterials on silicon nitride
membranes

Metamaterials

SigN,—
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A 4" wafer showing 4 windows In a 1um thick free-
standing silicon nitride membrane

3.2 X 2.4 cm?

- 4”7 wafer
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Designed 15 different metamaterials per wafer
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THz response of a split-ring resonator on silicon
nitride has a narrow resonance line width

Phase Change

Dispersive behavior is a
sighature of a resonance.
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Removing the substrate allows higher frequency
measurements with an IR spectrometer (FTIR)
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Electromagnetic modeling informs us about the
origin of the resonances

E-field enhancement

|E| H

Transmission (arbs
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Electromagnetic modeling informs us about the
origin of the resonances

E-field enhancement
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Electromagnetic modeling informs us about the
origin of the resonances

E-field enhancement
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Electromagnetic modeling informs us about the
origin of the resonances

E-field enhancement

|E| E]|
H
iJ \\ -'I'-ﬂb\l. I /
= 0.8 L h\ IR I
EMNYON S ouT
~ \- .l l'. [
L S 00 1) 1 l 'I || S
‘ ‘n ﬂ - | I
g 0.4} o] 1
\ 2 LC 1 !
I ® 0.2 ' _j
(o I 2 i
Data. . . . . |electric —

0.0
00 05 10 15| 20 25 3.0
Frequency|(THz)

|E| 1l

| Linearly

il ‘ L oscillating
k currents Sandia
} @ National

Laboratories

Circulating current

60




Thin membranes allow studies of coupling and
symmetry in multi-layer structures

Number of layers

= 2ol
' g I
0.2} *,’ _\I
] i
OO 1 1 1 1 1
00 05 10 15 20 25 30
Frequency (THz)

Orientation of the
resonators —

- Antisymmetric
Symmetric

Separation between —

the layers j
==

T Sandia
Periodic @ National
61 Laboratories




We can also release the membrane and wrap it
around curved surfaces

This opens the possibility of creating 3D structures

: Sandia
by covering curved surfaces. @ National
62 Laboratories



Summary covering the biosensor and thin
membrane work
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Reduced the effect of the substrate by
Implementing metamaterials on thin silicon

nitride films.

Obtained narrow line widths
from higher order modes.

Transmission (arbs.)
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Developed a chem-bio detection scheme based on
changes on the dielectric response of a metamaterial.
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Chirality plays arole in biological systems

velp = hand

Mirror

Chiral object cannot be
superposed on its mirror
Image.

Many biomolecules are chiral,
e.g., sugars, aminoacids,
enzymes...
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Chirality plays arole in biological systems

velp = hand

Mirror

Chiral object cannot be
superposed on its mirror

Image.
.’ Many biomolecules are chiral,
. e.g., sugars, aminoacids,
y///é enzymes...
L

Chiral molecules rotate the polarization of light.
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Most metamaterial designs are sensitive to the

Incident polarization
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Most metamaterial designs are sensitive to the
Incident polarization
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Most metamaterial designs are sensitive to the

Incident polarization
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Culprit are the symmetries
of the structures
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Most metamaterial designs are sensitive to the
Incident polarization
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® Can we design a metamaterial that is
Insensitive to the incident
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YES! With a circular split-ring resonator (CSRR)

2lym
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PN um Ve Metal 10nm Ti/ 200nm Au
: I
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Top view Side view

Vary the angle between the incident electric field
and the horizontal axis of the circles. @
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CSRR metamaterial is insensitive to
polarization of the incident radiation
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Physical origin of the resonances

E-field enhancement
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Physical origin of the resonances

E-field enhancement E-field enhancement
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Metamaterial with circular symmetry does not
respond to polarization

—— ]
h l H . Culprit are the symmetries
il_l i ‘E 1 [ of the structures
]
T E

= Can we design a metamaterial that is
sensitive to the incident polarization
In a predictable manner?
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YES! By modifying the symmetry of the CSRR we
obtain and elliptical split-ring resonator (ESRR)

. 2lym
2um Eri
X
PR NN e Metal 10nm Ti / 200nm Au
60um 2um
GaAs ISSO m
15um H
Top view Side view

Vary the angle between the incident electric field
and the major axis of the ellipse. @ Sandia
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ESRR metamaterial responds to the
polarization of the incident radiation A B
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At 0°, there are strong circulating and linearly
oscillating currents in both resonances

E-field enhancement
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At 0°, there are strong circulating and linearly
oscillating currents in both resonances

E-field enhancement No E-field enhancement
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At 90°, the circulating and linearly oscillating
currents are weak

Some E-field enhancement
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At 90°, the circulating and linearly oscillating
currents are weak

Some E-field enhancement Some E-field enhancement
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Summary for polarization sensitive and insensitive
metamaterials
Designed, fabricated and characterized a

metamaterial insensitive to the incident
polarization.

Circular Split-Ring Resonator (CSRR)

By modifying the symmetry
we obtained a polarization
sensitive metamaterial.

4

Elliptical Split-Ring Resonator (ESRR)
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Summary for polarization sensitive and insensitive

metamaterials
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Circular Split-Ring

Resonator (CSRR)

Elliptical Split-Ring
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e
E !
-
2]
i
oML
CSRR ESRR 0° | ESRR 90°
M1 M1 | M2 | M1 | M2
Enhar)ce.ment of v v X v v
electric fields
LC resonances v v X v X
Dipole-like resonance X X | Q7 X W

Sandia
National
Laboratories



In summary, THz metamaterials enable studies of
the interaction of light with biomolecules...

" 1Irie ?Q(/i(

1) Developed a chem-bio detection
scheme based on changes on the
dielectric response of a metamaterial

L3
i
e

2) Implemented metamaterials on thin membranes
* Eliminates the effect of the substrate and allows
a more symmetric distribution of the electric flux
» Obtained narrow line widths from higher order
modes which will improve the sensitivity

3) Implemented and characterized polarization
sensitive and insensitive metamaterials
necessary for chirality studies in biomolecules

. Sandia
at THz frequencies @ National
Laboratories
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...and of the interaction of THz radiation with
artificially structured materials

Transmission (arbs.)
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4) Metamaterials on thin membranes
* Narrow line width associated with a
higher order mode shows an
asymmetric distribution of currents

5) Polarization sensitive and insensitive
metamaterials

e Change in symmetry dramatically
alters the response

 Reduced current in inner arms

Sandia
National
Laboratories



2,' Acknowledgements

Igal Brener (SNL) Antoinette Taylor (LANL)

Jeffrey Hamilton (IC Advisor) John O’Hara (LANL)
Evgenya Smirnova (LANL)

Richard D. Averitt (BU)

Andrew Strikwerda (BU) Eric A. Shaner (SNL)
Willie Padilla (Boston College) Darren W. Branch (SNL)
Funding

- IARPA thru the IC Postdoctoral
Fellowship Program

.; - CINT User Program

% Res::ritlflc;gtlgﬂship 5 Sa“dla
L B National
L Laboratories




In summary, metamaterials enable studies of the
Interaction of light with materials
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@ Biological sensing with
metamaterials

Metamaterials on free-
standing silicon nitride
membranes

. Polarization sensitive and
Insensitive metamaterials
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Previous studies identified some issues that need
to be addressed
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