

1 **Two-Dimensional Copper Nanosheets for Electrochemical Reduction of Carbon Monoxide to**
2 **Acetate**

3 Wesley Luc^{1,2,†}, Xianbiao Fu^{1,†}, Jianjian Shi³, Jing-Jing Lv², Matthew Jouny², Byung Hee Ko², Yaobin
4 Xu⁴, Qing Tu⁴, Xiaobing Hu⁴, Jinsong Wu⁴, Qin Yue¹, Yuanyue Liu³, Feng Jiao^{2,*}, Yijin Kang^{1,*}

5 1. *Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of*
6 *China, Chengdu, Sichuan 610054, China*

7 2. *Center for Catalytic Science and Technology, Department of Chemical and Biomolecular*
8 *Engineering, University of Delaware, Newark, Delaware, USA*

9 3. Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at
10 Austin, Austin, Texas 78712, USA

11 4. *Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois*
12 *60208, USA*

13 [†]*These authors contributed equally.*

14 Corresponding author: jiao@udel.edu, kangyijin@uestc.edu.cn

15

16 **Abstract**

17 Upgrading carbon dioxide to high-value multi-carbon (C₂₊) products is one promising avenue for fuel and
18 chemical production. Among all monometallic catalysts, copper has attracted much attention because of its
19 unique ability to convert CO₂ or CO to C₂₊ products with an appreciable selectivity. While numerous
20 attempts have been made to synthesize Cu materials that expose desired facets, it still remains a challenge
21 to obtain high-quality nanostructured Cu catalysts for electroreduction of CO₂/CO. Herein, we report a
22 facile synthesis of freestanding triangular-shaped two-dimensional Cu nanosheets, that selectively expose
23 the (111) surface. In a 2M KOH electrolyte, the Cu nanosheets exhibit an acetate Faradaic efficiency of 48%
24 with an acetate partial current density up to 131 mA cm⁻² in electrochemical CO reduction. Further analysis
25 suggest that the high acetate selectivity is attributed to the suppression of ethylene and ethanol formation,
26 likely due to the reduction of exposed (100) and (110) surfaces.

27

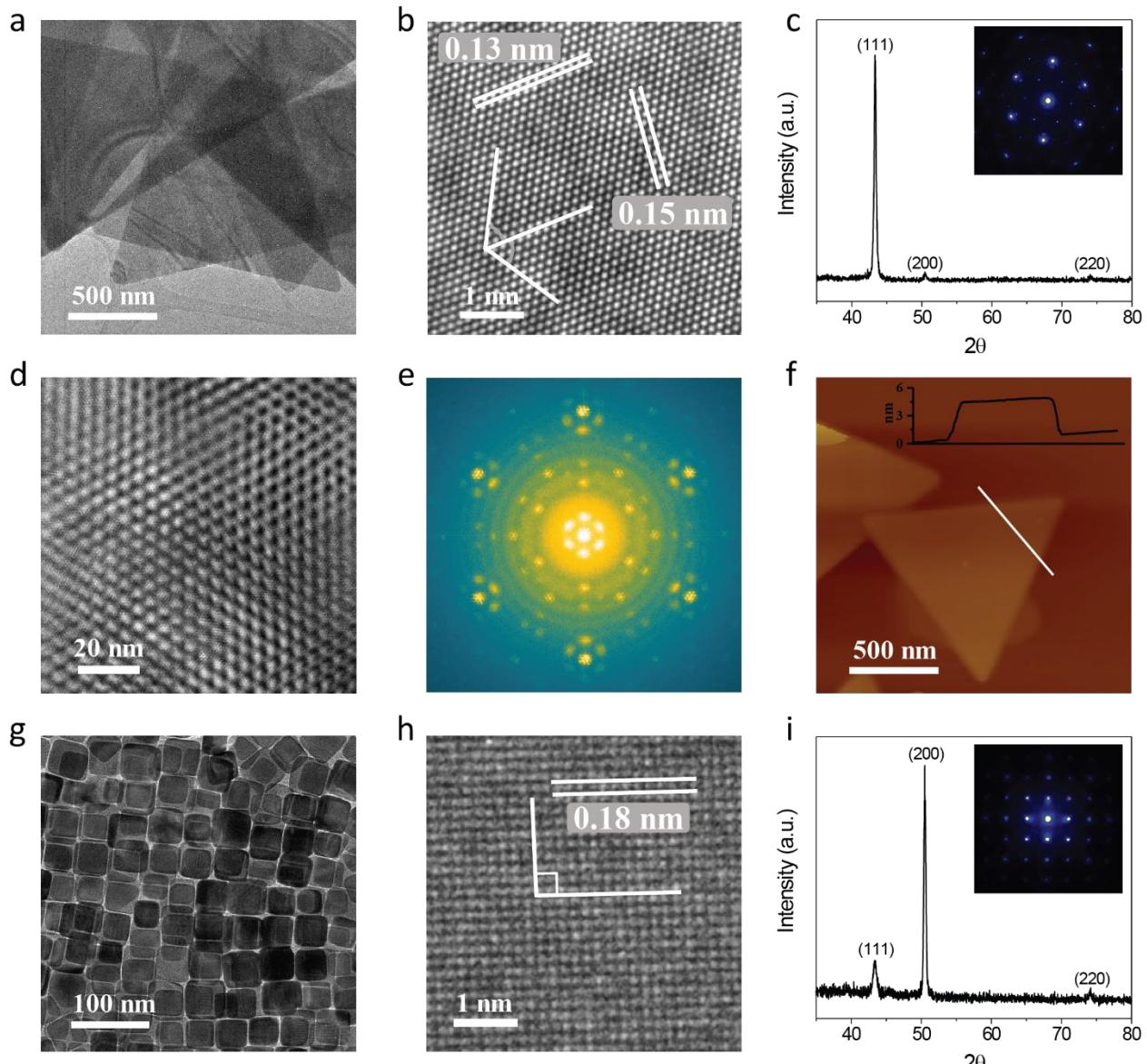
28

29

33 **Introduction**

34 Carbon dioxide electrolysis process powered by renewable electricity at decreasing price is an attractive
35 approach for the sustainable production of fuels and chemicals because this process uses greenhouse CO₂
36 gas rather than fossil sources as the carbon feedstock.¹⁻¹⁰ To achieve a high-performing CO₂ electrolysis
37 process, efficient CO₂ electrocatalysts are required to minimize the energy barriers for CO₂ activation.
38 Among all the existing CO₂ electrocatalysts, copper is one of the most widely studied material because it is
39 able to convert CO₂ (or CO₂-derived carbon monoxide) to multi-carbon (C₂₊) products at relatively high
40 selectivities in comparison to other monometallics.^{1-6,9,11-16} Many efforts have been devoted toward
41 engineering Cu-based catalysts, such as nanostructuring, thermal annealing, and alloying, in the hopes of
42 steering product selectivity and boosting catalytic activity. Although some progresses have been made, a
43 good understanding of the structure-activity relationship is still lacking in Cu-catalyzed CO₂/CO
44 electroreduction, which is mainly due to the difficulties in synthesizing well-defined Cu materials with
45 surfaces terminated with desired facets. For example, the well-defined Cu (111) model surface at nanoscale
46 is still missing, while the Cu (100) has been offered by solution-phase-synthesized Cu nanocubes.¹⁷⁻²⁰

47 Recently we have shown that micron-sized and oxide-derived Cu (OD-Cu) catalysts are able to reduce CO
48 to C₂₊ products at high rates in an alkaline electrolyte.³ Among all the C₂₊ products, acetate with a Faradaic
49 efficiency of ~20% was observed, which is higher than what is typically observed in CO₂ electroreduction
50 (<5%).^{3,14} Transport modeling suggests a highly alkaline environment (a high pH value) near the electrode-
51 electrolyte interface may promote the formation of acetate.³ However, it is still unclear whether the surface
52 nature of the catalyst also plays a role in enhancing acetate production. Because of the polycrystalline nature
53 of both catalysts, correlating the observed acetate selectivity with the catalytic surface structure is difficult.
54 Therefore, new synthetic methods for engineering Cu nanomaterials with well-controlled surfaces are
55 urgently required.


56 Herein, we report the synthesis of freestanding high-quality Cu nanosheets with two-dimensional (2D)
57 triangular shaped morphology using a solution-phase-synthesis procedure. The as-synthesized Cu
58 nanosheets are ~5 nm thick, which selectively exposed Cu {111} facets. As a model catalyst for CO
59 electroreduction, the Cu nanosheets exhibit an acetate Faradaic efficiency as high as 48%, representing the
60 among highest acetate selectivity that has been achieved in electrochemical CO₂/CO electroreduction at
61 practical rates of reaction (>100 mA cm⁻²). The enhanced acetate formation is attributed to the suppression
62 of other C₂₊ products, due of the reduction of exposed (100) and (110) surfaces that are known to be
63 favorable toward ethylene and ethanol formation. Furthermore, computation studies suggest that the
64 pathway toward acetate formation goes through a ketene intermediate, with the incorporation of one oxygen
65 atom from the electrolyte and the other originating from the CO reactant.

66 **Results**

67 **Synthesis of Cu nanosheets.** The 2D Cu nanosheets were synthesized through a chemical reduction of
68 copper(II) nitrate by L-ascorbic acid in the presence of hexadecyltrimethylammonium bromide (CTAB)
69 and hexamethylenetetramine (HMTA). Transmission electron microscope (TEM) image (Figures 1a)
70 reveals that the as-synthesized Cu nanosheets are triangular with an average edge length of ~1.7 ± 0.5 μm.
71 The high resolution TEM (HRTEM) image shows the projection of the basal plane exhibiting angles of
72 ~60° between fringes (Figure 1b). The hexagonal pattern seen in HRTEM as well as in the selective area
73 electron diffraction (SAED) can be attributed to either 1/3{422} of the fcc structure along the [111]

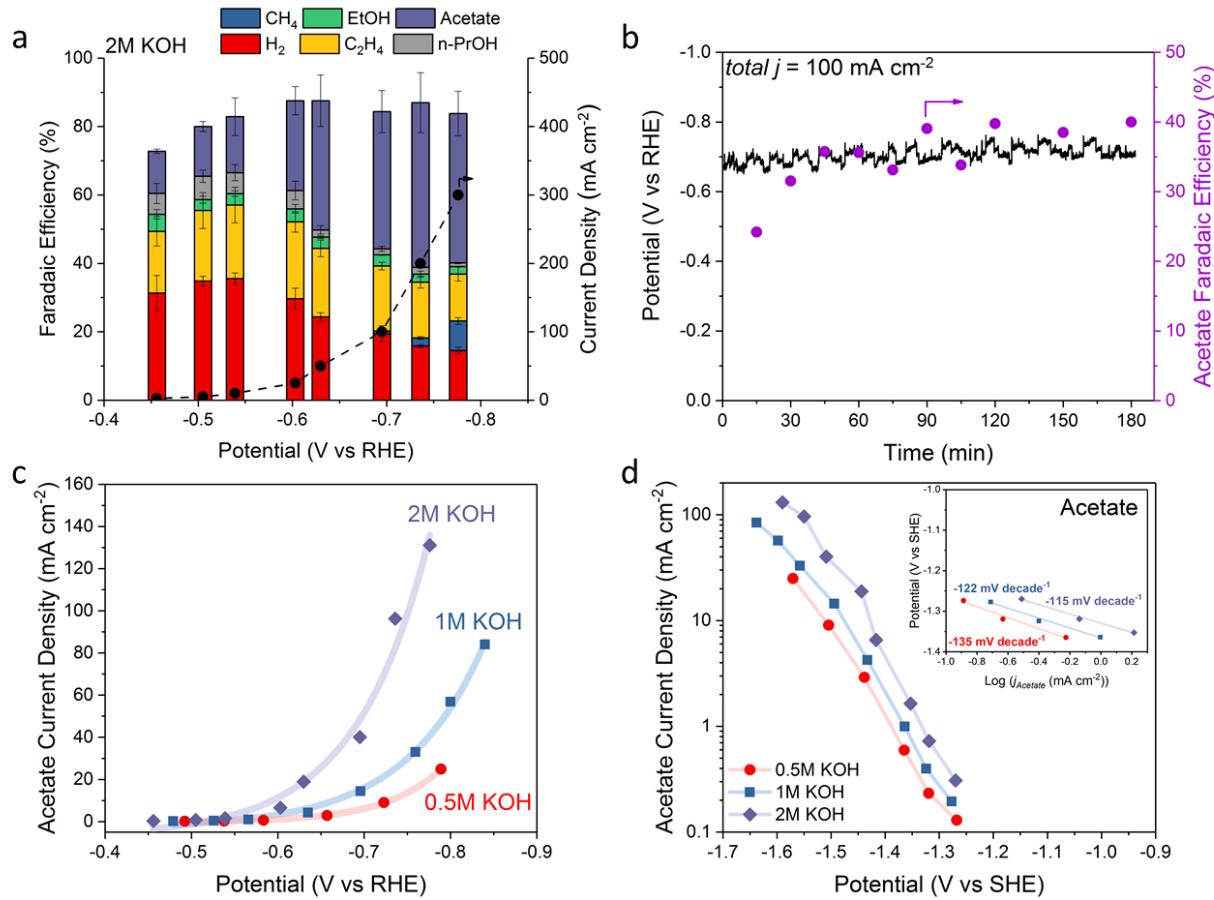
74 direction (Figure 1c, inset) or (100) of the *hcp* structure along the [001] direction.²¹ However, further
75 analysis with X-ray diffraction (XRD, Figure 1c and Supplementary Figure 1) confirmed that the structure
76 of the Cu nanosheets is *fcc* and not *hcp*. Note that, the 1/3{422} reflections of an *fcc* structure should be
77 forbidden; however, exceptions may exist for non-3n layers with thicknesses within a few nanometers.²¹
78 The substantially enhanced (111) peak shown in the XRD pattern (Figure 1c), which was obtained from
79 assembling the nanosheets on a Si wafer, indicates that the preferentially oriented {111} planes were
80 parallel to the Si substrate. The fringe distances of 0.15 nm and 0.13 nm as shown in Figure 1b closely
81 match the Cu {112} and Cu {220} lattice distances, respectively. This suggests that the projection seen in
82 the HRTEM image (Figure 1b) is indeed {111} in the <111> direction. In the region where two nanosheets
83 overlapped, a Moire pattern can be seen directly in the HRTEM image (Figure 1d) as well as in the
84 corresponding fast Fourier transform (FFT) pattern (Figure 1e). The observed secondary pattern in the FFT
85 pattern further confirms the presence of {111} basal planes. The atomic force microscopy (AFM) line scan
86 (Figure 1f) reveals that the thickness of the Cu nanosheets is ~5 nm. With these observations, it was
87 concluded that the as-synthesized Cu nanosheets are ultra-thin and enclose by two {111} basal planes. In
88 addition, Cu nanocubes that selectively expose {100} facets as the Cu (100) model surface were also
89 synthesized by a modified method as previously reported.²⁰ TEM image (Figure 1g) shows an edge length
90 of 41.4 ± 3.6 nm, and the HRTEM image (Figure 1h) confirms the presence of {100} planes by the cubic
91 arrangement of Cu atoms. The fringe distance of 0.18 nm matches the lattice spacing of Cu {200}. The
92 XRD pattern (Figure 1i) of the preferentially oriented Cu nanocubes shows an enhanced (200) peak, further
93 indicating the dominant {100} planes.

94

95

96 **Figure 1. Characterization of Cu nanosheets and Cu nanocubes.** a) TEM image of triangular Cu
 97 nanosheets; b) HRTEM image showing the basal plane projection of a Cu nanosheet; c) XRD pattern of
 98 Cu nanosheets assembled on a Si wafer, preferentially showing the (111) peak, inset of c) SAED pattern
 99 of Cu nanosheets; d) HRTEM image and e) corresponding FFT pattern showing a Moire pattern from two
 100 overlapped Cu nanosheets; f) AFM image showing the thickness of a single Cu nanosheet; g) TEM image
 101 and h) HRTEM image of Cu nanocubes; and i) XRD pattern of Cu nanocubes assembled on a Si wafer,
 102 preferentially showing (200) peak, inset of i) SAED pattern of Cu nanocubes. Scale bars: a, f) 500nm, b,
 103 h) 1 nm, d) 20nm, and g) 100 nm.

104

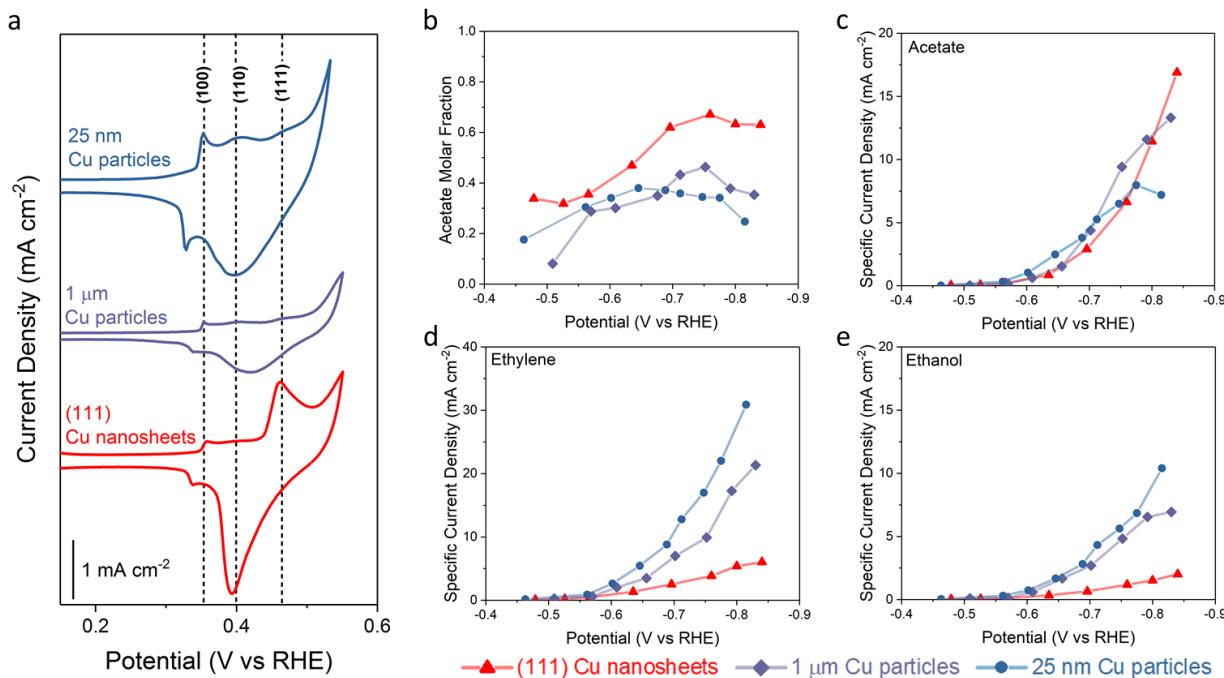

105 The combination of appropriate reducing agent, ligand, and surfactant was the key for the successful
 106 synthesis of {111}-enclosed Cu nanosheets (Supplementary Figure 2). As a long-life reducing agent, L-
 107 ascorbic acid not only reduces Cu (II) to Cu (0) via Cu(I), but also protects the final product from oxidation.

108 The as-synthesized Cu nanosheets exhibited a red color (Supplementary Figures 3a, 4, and 5) which
109 suggests the presence of Cu (0), and the observed liquid-crystal-like texture was the result of stacking of
110 nanosheets. Such appearance remained unchanged for at least four months under ambient conditions
111 (Supplementary Figure 4). However, Cu nanoparticles were completely oxidized within one hour
112 (Supplementary Figures 3c and 3d), as indicated by a red-to-blue color change. Diffuse reflectance infrared
113 Fourier transform spectroscopic (DRIFT) measurement (Supplementary Figure 6) shows the presence of
114 ascorbic acid in the Cu nanosheets sample. It is likely that surface absorbed ascorbic acid is responsible for
115 the improved chemical stability. Although ascorbic acid was used as the surfactant, an acidic environment
116 is not preferred during synthesis as the Cu nanocrystal growth cannot be controlled. The cuprous ions easily
117 disproportionate in an acidic solution, resulting in an uncontrolled rate of reduction. To provide an alkaline
118 environment, CTAB and HMTA were both used to stabilize the cuprous ion in the aqueous solution. By
119 doing so, the coordination number of the cuprous ion was three and the coordination geometry was trigonal
120 planar, which directed the anisotropic growth of the Cu nanosheets.

121 With an edge length of \sim 1.7 μ m and a thickness of \sim 5 nm, theoretically, at least 99% of the exposed surface
122 (*i.e.* basal planes) should be (111). As shown in scanning electron microscope (SEM) and TEM images
123 (Supplementary Figures 7a and 7b), the majority of the nanosheet (shadowed area) has a single-crystal
124 morphology with {111} basal plane while the edges are polycrystalline and oxidized. This was confirmed
125 with X-ray photoelectron spectroscopy (XPS), as the as-synthesized Cu nanosheets show partial oxidization
126 to Cu (II) (Supplementary Figure 7d). The single-crystal region remained intact even after CO
127 electroreduction; however, the oxidized region corroded away (Supplementary Figure 7c). This was also
128 confirmed by post-reaction XPS as majority of the Cu is in its reduced state. Slight oxidation was observed
129 likely due to sample handling after CO electroreduction experiments. These observations indicate that the
130 most striking feature of the Cu nanosheets have extraordinarily stable (111) surface, and such a stable zero-
131 valence Cu (111) surface is crucial for catalysis studies. As surface reconstruction is well known^{22,23} (*i.e.*
132 the oxidation/reduction cycles may change the atomic arrangement of metal surfaces), it is difficult to obtain
133 Cu (111) directly from reducing CuO (111) or Cu₂O (111).

134 **CO electroreduction performance.** The CO electroreduction properties of Cu nanosheets were evaluated
135 using a three-compartment flow-cell electrolyzer. As described in previous works,^{3,11,24-27} the use of a flow-
136 cell electrolyzer enables high-rate of CO conversion (>100 mA cm⁻²) which cannot be typically achieve
137 with conventional batch reactors due to the low solubility limitation of CO in aqueous electrolytes. The CO
138 electroreduction performances in 0.5-2M KOH electrolyte are summarized in Figure 2a and Supplementary
139 Figures 8 and 9. The current densities increased near-exponentially with increasing applied potentials,
140 indicating that the mass transport limitation of CO was minimal. In 2M KOH, a maximum C₂₊ products
141 Faradaic efficiency of \sim 70% was achieved with the major C₂₊ products being ethylene and acetate with
142 minor amounts of ethanol and n-propanol. At more negative potentials, small amount of methane was
143 produced. Interestingly, a maximum acetate Faradaic efficiency of \sim 48% (Figure 2a) and an acetate partial
144 current density up to 131 mA cm⁻² were achieved in 2M KOH (Figure 2c), among the highest reported to
145 date toward acetate formation. The CO electroreduction performances are tabulated in Supplementary Table
146 1. The stability of Cu nanosheets was also examined under a constant current of 100 mA cm⁻² for 3 hours
147 in 2M KOH (Figure 2b). The results show a stable acetate Faradaic efficiency over the span of the stability
148 test, except for the first 30 min, which could be caused by initial activation of catalyst layer. The oscillation
149 of the potential is due to bubble accumulation and sudden flush out in the cathode chamber during

150 electrolysis. *Operando* X-ray absorption spectroscopy (XAS) was also used to investigate the structural
 151 change of the Cu nanosheets under CO electroreduction conditions in a flow-cell electrolyzer
 152 (Supplementary Figure 10). Both the X-ray absorption near-edge spectroscopy (XANES) and extended X-
 153 ray absorption fine structure (EXAFS) spectrums (Supplementary Figure 11) show that the catalyst was in
 154 its metallic Cu⁰ state and appear similar throughout the reaction, further confirming the structural stability
 155 of the catalyst.

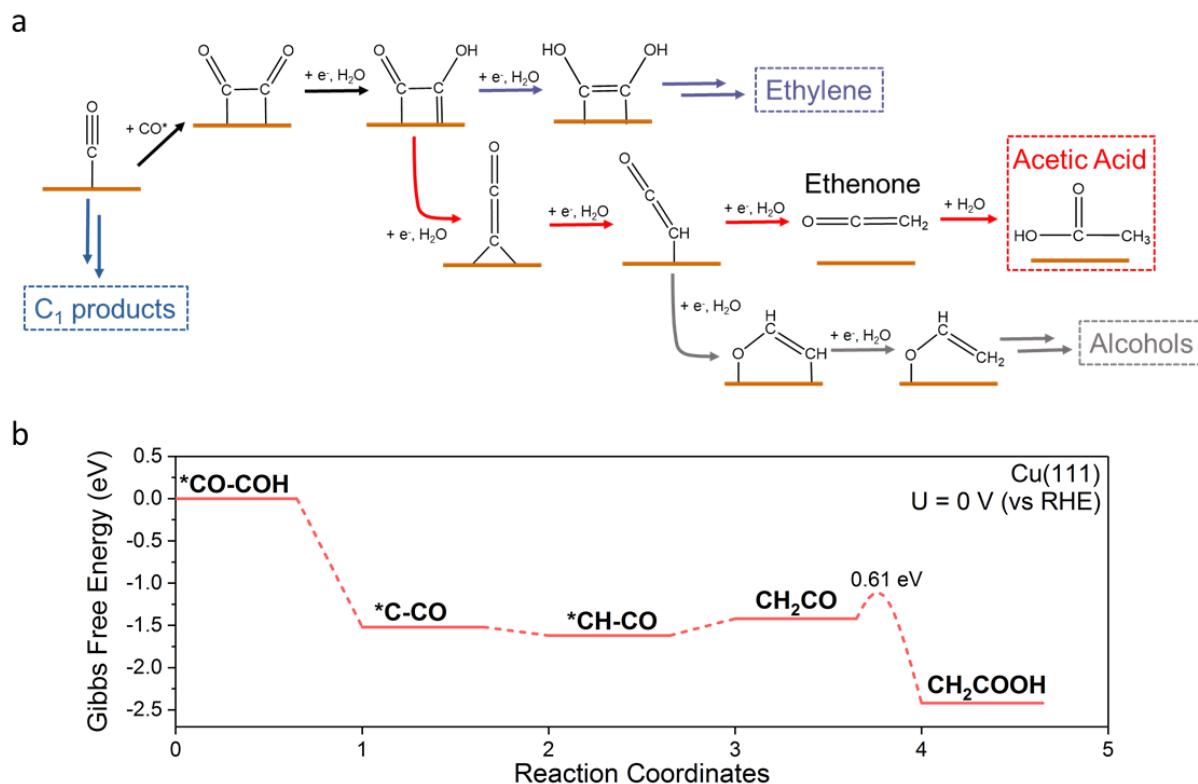


156

157 **Figure 2. CO electroreduction performance of Cu nanosheets.** a) Total current density and Faradaic
 158 efficiencies vs. applied potential for CO electroreduction on Cu nanosheets in 2M KOH. b) Stability test
 159 over a span of 3-hour electrolysis in 2M KOH. c) The acetate production performance on copper
 160 nanosheets in various KOH concentrations. d) Acetate partial current density and inset) Tafel analysis on
 161 the SHE scale. Error bars represent the standard deviation from at least three independent measurements
 162 and Tafel lines were determined with linear fit.

163 To examine the influence of pH on acetate formation in CO electroreduction, the acetate partial
 164 current densities in different electrolytes (0.5-2M) were plotted against the absolute potential scale (SHE),
 165 and Tafel slopes were derived from the three lowest partial current densities (Figure 2d). The other
 166 electroreduction products are shown in Supplementary Figure 12. Low current densities were chosen to
 167 obtain Tafel slopes as accurately as possible, since at higher current densities, significant amount of gas
 168 products was produced which can cause voltage fluctuation. It must be noted that Tafel analyses have

169 limitations and are typically done at low overpotentials and low currents to avoid mass transport limitation
 170 caused by not only the transport of reactant to the catalytic surface, but also by the adsorption of cations.²⁸
 171 From Figure 2d, it is clear that acetate production has a strong pH dependence. As the hydroxide ion
 172 concentration increased, a positive shift in onset potential for acetate and a change to lower Tafel slopes
 173 (Figure 2d, inset) were observed, indicating that acetate formation is favored in highly alkaline
 174 environments. C¹⁸O labeling studies (Supplementary Figure 13) on Cu nanosheets show that the produced
 175 acetate in the form of acetic acid is partially-labeled where one oxygen of the acetate is originated from the
 176 CO feed and the other oxygen is originated from the electrolyte as consistent with previous studies,^{3,29}
 177 further supporting that acetate formation is strongly dependent on the alkalinity of the electrolyte. Ethanol,
 178 n-propanol, and acetaldehyde were also detected (Supplementary Figures 11, b-d), and the labeling results
 179 were similar to our previous work.³ Kanan and co-workers have also observed an enhancement in acetate
 180 formation, accompanied with a decrease in ethanol, at high pH on oxide-derived Cu and have attributed to
 181 the attack of a hydroxide ion to a surface-bound ketene or other carbonyl-containing intermediate.⁹ The
 182 formation of hydrogen and ethylene are insensitive to the changes in pH (Supplementary Figure 12), as
 183 consistent with other reports;^{16,30-32} while ethanol has a small pH dependence at low overpotentials.


184 **Figure 3. Comparison of copper nanosheets with commercial copper particles in 1M KOH.** a)
 185 Voltammograms of OH_{ads} peaks collected in Ar-purged 1M KOH batch cell. b) Acetate molar production
 186 fraction excluding hydrogen. c-e) ECSA corrected acetate, ethylene, and ethanol partial current densities
 187 of various Cu catalysts, respectively.

188 To further understand the high acetate selectivity of Cu nanosheets, CO electroreduction was performed on
 189 commercial 1 μm and 25 nm Cu particles (Supplementary Figure 14) with a similar catalyst loading of 0.5
 190 mg cm⁻², and the catalytic performances were compared. Electrosorption of hydroxide (OH_{ads}) was first
 191 used to probe the surface structure of the commercial Cu particles and Cu nanosheets.^{33,34} Qualitatively, the
 192

193 Cu nanosheets have a pronounced (111) OH_{ads} feature, suggesting a high surface density of (111). As for
194 the commercial particles, the (100), (110), and (111) OH_{ads} peaks are similar in relative intensities, reflecting
195 the polycrystalline surface nature of the commercial particles. *In-situ* OH_{ads} studies on the Cu nanosheets
196 were also conducted in the flow-cell electrolyzer prior to and immediate after CO electrolysis by switching
197 the gas feed to avoid potential oxidation during sample handling. The pre- and post-reaction
198 voltammograms (Supplementary Figure 15) show similar features, indicating that the high surface density
199 of (111) was preserved and that the catalytic performance of the Cu nanosheets is not attributed to surface
200 reconstruction. In comparison to the commercial Cu particles, the Cu nanosheets have a higher acetate
201 molar production fraction (excluding hydrogen) in the similar potential region, indicating that the Cu
202 nanosheets are more selective toward converting CO to acetate (Figure 3b). To further compare the reaction
203 rates, the performances (Supplementary Figures 16 and 17) were normalized to the electrochemical surface
204 area (ECSA; see Supplementary Figure 18 for measurement). Surprisingly, the trend in specific acetate
205 current density of the Cu nanosheets is similar to commercial Cu particles (Figure 3c), suggesting that all
206 Cu catalysts have similar intrinsic activity toward acetate formation. However, the intrinsic activities toward
207 ethylene and ethanol formation are much lower on the Cu nanosheets than commercial Cu particles (Figure
208 4d and 4e). To rule out the effects of ascorbic acid, which was critical for the successful synthesis of the
209 Cu nanosheets, commercial 25 nm Cu particles were treated with ascorbic acid and tested for CO
210 electroreduction. The performance of the treated Cu particles (Supplementary Figure 19) is similar to the
211 untreated Cu particles, demonstrating that ascorbic acid has a minimal effect on catalytic performance. With
212 these observations, we therefore attribute the overall enhancement of acetate formation on Cu nanosheet to
213 the suppression of ethylene and ethanol formation. Previous single-crystal studies on CO electroreduction
214 have shown that the (111) surface is unfavorable for the formation of ethylene and ethanol; while, (100)
215 and (110) surfaces are more favorable.^{35,36} The Cu nanosheets selectively expose {111} surfaces,
216 theoretically 99% of the as-synthesized surface is (111), which reduce the overall surface density of (100)
217 and (110). This consequentially suppresses ethylene and ethanol formation while enhancing the overall
218 selectivity toward acetate. However, to the best of our knowledge, the mechanistic understanding of acetate
219 on Cu surfaces has yet been fully elucidated and further work is needed. In addition, Cu nanocubes with
220 exposed {100} surfaces exhibits similar CO electroreduction performance (Supplementary Figure 20) as
221 the 25 nm commercial Cu particles.

222 **DFT calculations.** To understand the acetate formation pathway on Cu surfaces, density functional theory
223 (DFT) calculations were performed and the calculation details can be found in Methods. Based on the
224 isotopic labelling studies, H₂O incorporation must be involved during acetate formation to introduce ¹⁶O.
225 As *CO-COH (* denotes a binding site) is known be a common intermediate proposed in literature for the
226 formation of C₂₊ products,³⁷⁻⁴⁰ we focused our calculations from this initial intermediate. It must be noted
227 that the pathway toward acetic acid, the protonated form of acetate, was determined such that the
228 intermediate species are charge neutral. Starting from *CO-COH, acetic acid may form through: *CO-COH
229 + H₂O + e⁻ → *C-CO + H₂O + OH⁻, *C-CO + H₂O + e⁻ → *CH-CO + OH⁻, *CH-CO + H₂O + e⁻ → *CH₂-
230 CO + OH⁻, *CH₂-CO + H₂O → CH₃-COOH (Figure 4a). Note that in alkaline conditions, no protons are
231 available for reaction, and thus, water is likely the proton donator.³² This pathway involves the water
232 incorporation into ethenone (CH₂-CO), a ketene specie, to form acetic acid (CH₃-COOH), and the DFT
233 calculations of the free energy evolutions show that this pathway is thermodynamically feasible (Figure 4b).
234 In addition, the barrier for water incorporation into the ketene is only 0.61 eV (Supplementary Figure 21),
235 suggesting it is also kinetically feasible. We also found that ethenone is weakly adsorbed on Cu surfaces

236 with a binding energy of 0.06 eV for (111) and 0.21 eV for (100); therefore, the water incorporation into
 237 the ketene specie to form acetic acid is less affected by the difference in Cu surfaces, explaining its weak
 238 surface dependence. Lastly, acetic acid may also form without involving a ketene as the intermediate,
 239 through: $^*\text{CH-CO} + \text{H}_2\text{O} \rightarrow ^*\text{CH}_2\text{-COOH}$, $^*\text{CH}_2\text{-COOH} + \text{H}_2\text{O} + \text{e}^- \rightarrow \text{CH}_3\text{-COOH} + \text{OH}^-$ (Supplementary
 240 Figure 22). However, calculations show that this pathway has a higher energy barrier for water
 241 incorporation (0.76 eV, Supplementary Figure 21). Therefore, the formation pathway involving ethenone,
 242 the ketene specie, is more likely. As OH^- ions are more nucleophilic than H_2O , it is likely that OH^- ions also
 243 interact with the ketene intermediate to form acetate; however, the computation assessment of charged
 244 species is currently difficult. The alcohol pathway (Figure 4a) shares a common $^*\text{CH-CO}$ intermediate with
 245 the acetic acid pathway and this could explain the competitive formation of ethanol and acetate that have
 246 been previously observed.⁹ The $^*\text{CH-CO}$ intermediate was proposed by Calle-Vallejo and Koper as a
 247 possible intermediate toward C_{2+} products,⁴⁰ and our calculations show that the pathway toward ethanol
 248 through $^*\text{CH-CO}$ is thermodynamically feasible (Supplementary Figure 23). To further elucidate the
 249 influence of pH, future work should also focus on calculating the kinetic barriers of each step as a function
 250 of pH, as the pH could affect the overall pathways toward various C_{2+} products.

251
 252 **Figure 4. DFT calculations.** a) Proposed mechanism for the electroreduction of CO to C_{2+} products. b) Energy evolution for acetic acid formation on Cu (111) at 0 V (vs RHE).

254 As described in previous reports,⁴¹ multiple beneficial properties can be added up toward one catalytic
 255 process. In this paper, we demonstrated that a highly selective CO-to-acetate conversion can be achieved
 256 solely by materials engineering. Very recently, Kanan and co-workers developed an electrolyzer (*i.e.*
 257 through chemical reactor engineering) utilizing an interdigitated flow field that can produce highly

258 concentrated acetate product (~1.1M) using a proton-exchange membrane (Nafion).² Therefore, a design
259 incorporating materials engineering and reactor engineering may push the acetate conversion to the level
260 that is economically viable. For instance, an electrolyzer design can be explored by utilizing Cu nanosheets
261 with an anion-exchange membrane at a maximal local alkalinity near the catalytic interface to further boost
262 acetate production.

263 **Methods**

264 **Synthesis of copper nanosheets**

265 In a typical synthesis of Cu nanosheets, copper(II) nitrate trihydrate ($\text{Cu}(\text{NO}_3)_2 \cdot 3\text{H}_2\text{O}$, 50 mg), L-ascorbic
266 acid (100 mg) and 15.0 mL deionized water were added into a vial (volume: 20 mL). After forming a
267 homogeneous solution, hexadecyltrimethylammonium bromide (100 mg) and hexamethylenetetramine
268 (100 mg) were added. After 30 min stirring, the vial of solution was capped and heated from room
269 temperature to 80 °C (~2 °C/min) and kept at 80 °C for 3 h in an oil bath. The resulting products were
270 collected by centrifugation and washed three times with an ethanol/deionized water mixture.

271 **Synthesis of copper nanocubes**

272 In a typical synthesis of Cu nanocubes, 35.0 mL oleylamine and 3.0 g trioctylphosphine oxide were mixed
273 at room temperature and were heated to 60 °C (~5 °C/min) under vacuum. After kept at 60 °C for 20 min,
274 the vacuum was replaced by Ar atmosphere, and 215.0 mg CuBr was rapidly added into the mixture. The
275 solution was then heated 265 °C (~7 °C/min) and kept for 20 min before naturally cooling to room
276 temperature. The resulting products were collected by centrifugation and washed three times with
277 hexane/ethanol.

278 **Preparation of electrodes**

279 To construct the cathode electrode, a catalyst slurry containing 25 mg of as-synthesized Cu nanosheets, 3
280 mL isopropanol, and 20 μL of Nafion ionomer solution (5 wt% in H_2O) was first mixed and sonicated.
281 Next, the catalyst slurry was slowly dropcast onto a Sigracet 29 BC GDL (Fuel Cell Store) to achieve a
282 catalyst loading of ~0.5 mg cm^{-2} . A similar procedure was used to for commercial 1 μm Cu particles (0.5-
283 1.5 μm , 99%; Alfa Aesar) and 25 nm Cu particles (25nm nanopowder; Sigma-Aldrich). As for the anode
284 electrode, IrO_2 nanoparticles (99%; Alfa Aesar) was used instead.

285 **Material Characterization**

286 TEM images were taken with a Hitachi 8100 at an acceleration voltage of 200 kV. High-resolution TEM
287 images were taken with a JEOL ARM300F at an acceleration voltage of 200 kV. AFM measurements were
288 performed on a Dimension Icon (Bruker) to obtain 3D profiles of the patterns. XRD spectra were collected
289 on a Rigaku SmartLab Thin-film Diffraction Workstation with a Cu $\text{K}\alpha$ source. A high intensity 9 kW
290 copper rotating anode x-ray source is coupled to a multilayer optic. An Auriga 60 Cross Beam scanning
291 electrode microscopy (SEM) instrument was used to obtain SEM images of the copper nanosheets. To
292 analyze the composition near the surface, a K-Alpha X-ray Photoelectron Spectrometer System (Thermo
293 Fisher Scientific) was used. CasaXPS software was used to analyze the XPS data and conduct peak analysis.
294 The adventitious carbon peak was calibrated to 284.5 eV and all peaks were fitted using a
295 Gaussian/Lorentzian product line shape with a Shirley background.

296 The ECSA was determined by measuring the double-layer capacitance (C_{DL}) of the as-prepared electrodes
297 in Ar-purged 0.1M HClO_4 in a H-cell. The scan rate was varied from 10 to 100 mV sec^{-1} in the non-Faradaic
298 potential region and the observed current was plotted as a function of scan rate to obtain the C_{DL} . The ECSA
299 was determining by normalizing the C_{DL} to that of a copper foil.

305 OH_{ads} studies were conducted by performing cyclic voltammetry in an Ar-purged 1M KOH in a H-cell. The
306 voltammogram was collected at 100 mV sec⁻¹. *In-situ* OH_{ads} studies was conducted by flowing Ar in the
307 flow-cell electrolyzer. The electrolyte flow rate was stopped to minimize the fluctuation in the
308 voltammogram. Next, CO electrolysis was conducted at constant current density of 100 mA cm⁻² for one
309 hour by switching the gas feed to CO and flowing the electrolyte. Immediately after electrolysis, the gas
310 feed was switch back to Ar, the electrolyte flow rate was stopped, and then cyclic voltammetry was
311 performed.

312
313 *Operando* XAS was performed at the 8-ID Beamline of the National Synchrotron Light Source II at
314 Brookhaven National Laboratory. A modified two-compartment flow-cell electrolyzer made from acrylic
315 was used for *operando* XAS studies (Supplementary Figure 10). The gas chamber had a small window cut
316 out sealed with Kapton film to allow fluorescence signals to pass from the electrode to the detector. XAS
317 data were processed using the IFEFFIT package, including ATHENE and ARTEMIS.⁴²

318
319 Flow-cell CO electrolysis
320 CO reduction was conducted in a three-chamber flow cell as previously described. The dimension of the
321 flow channels was 2 cm × 0.5 cm × 0.15 cm. The CO gas flow rate was controlled using a mass flow
322 controller (MKS GE50) and set to 15 sccm. Aqueous potassium hydroxide solution (99.99%; Sigma-
323 Aldrich) was used as both the catholyte and the anolyte. Peristaltic pumps were used to control the flow
324 rate of the electrolytes at ~0.5 to 2 mL min⁻¹. A hydroxide exchange membrane (FAA-3; Fumatech) was
325 used to separate the cathode and anode chambers. The gas outlet backpressure of the flow cell was
326 modulated to atmospheric pressure with a backpressure controller (Cole-Parmer).

327
328 Electrolysis experiments were conducted using chronopotentiometry with a potentiostat (Autolab
329 PGSTAT204). The cathode potentials were measured against an external Ag/AgCl reference electrode
330 (Pine Research), and the solution resistance between the reference electrode and the cathode was measured
331 using a current-interrupt technique before each electrolysis experiment. The measured potential was
332 converted to the RHE scale using E (versus RHE) = E (versus Ag/AgCl) + 0.210 V + 0.0591 × pH and was
333 iR-corrected. For each current density, products were quantified over a period of 200 s and at least three
334 replicates were conducted to get an average and standard deviation.

335
336 During electrolysis, gas products were quantified using an in-line Multiple Gas Analyzer gas
337 chromatography system (SRI Instruments) equipped with a HayeSep D and Molsieve 5 A columns
338 connected to a thermal conductivity detector (TCD) and a flame ionization detector (FID). Argon (99.999%)
339 was used as the carrier gas. Liquid products were analyzed using a Bruker AVIII 600 MHz NMR
340 spectrometer. In short, 500 μ L of sampled catholyte was mixed with 100 μ L D₂O containing 20 ppm (*m/m*)
341 dimethyl sulphoxide (\geq 99.9%; Alfa Aesar) as the internal standard. The one-dimensional ¹H spectrum was
342 measured with water suppression using a pre-saturation method.

343
344 Labelled C¹⁸O experiment
345 Labelling studies were conducted with a C¹⁸O lecture bottle (95 at% ¹⁸O; Sigma Aldrich). In short, C¹⁸O
346 gas was extracted using a 30 mL syringe and a syringe pump was used to control the feed rate into the flow
347 cell. The feed rate was set to 5 mL min⁻¹. Constant current electrolysis was conducted at 300 mA cm⁻² for
348 5 min and the liquid product was collected for analysis. The liquid products were slightly acidified to a pH
349 value of ~2 using hydrochloric acid to allow detection of acetate as acetic acid. Mass spectrum analysis was
350 conducted with an integrated GC-MS (Agilent 59771A) system equipped with a DB-FFAP column and a
351 mass spectrometry system (Agilent 59771A). Mass fragmentation patterns, focused on the parent ion of the
352 molecules, were compared with those of the National Institute of Standards and Technology library.

353
354 Computational Methods

355 DFT calculations were performed using the Vienna Ab-initio Simulation Package (VASP)^{43,44} with PAW
356 pseudopotential⁴⁵ and the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional⁴⁶. The Cu (111)
357 surface is modelled by a 4×4 slab with 4 layers, and (100) surface is modelled by a 4×4 slab with 3 layers
358 (Supplementary Figure 24). The slabs are separated by ~ 15 Å from its periodic images. We used $3 \times 3 \times 1$
359 Monkhorst Pack⁴⁷ k-points, and a kinetic energy cut-off of 400 eV. All atomic positions were fully relaxed
360 until the final force on each atom being less than 0.01 eV/Å. The free energy of the solid system was
361 calculated by adding the adsorbate vibration contribution to the electronic energy, and the free energy of a
362 molecule is calculated by adding the vibration, translation, and rotation (if applicable) contributions
363 (calculated using Gaussian software)⁴⁸ to the electronic energy. The pH and potential effects are included
364 using the computational hydrogen electrode model.⁴⁹ The transition state barriers were calculated using CI-
365 NEB method.⁵⁰

366

367 Acknowledgements

368 The work is supported by the Department of Energy (USA) under Award Number DE-FE0029868 and
369 National Natural Science Foundation of China, under Award 51601030, 21773023. F.J., W.L, J.J.L, M.J.,
370 and B.H.K also thank the National Science Foundation Faculty Early Career Development program (Award
371 No. CBET-1350911). Y.J.K. and X.B.F. acknowledge the support from International Institute for
372 Nanotechnology (IIN) and Institute for Sustainability and Energy (ISEN) at Northwestern University. The
373 theoretical calculation is the supported by Welch Foundation (Grant No. F-1959-20180324) and the startup
374 grant from UT Austin, and used computational resources sponsored by the DOE's Office of Energy
375 Efficiency and Renewable Energy and located at the National Renewable Energy Laboratory, and the Texas
376 Advanced Computing Center (TACC) at UT Austin. This work made use of the Electron Probe
377 Instrumentation Center (EPIC) facility of Northwestern University's Atomic and Nanoscale
378 Characterization Experimental Center (NUANCE), which has received support from the Soft and Hybrid
379 Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205); the Materials Research Science
380 and Engineering Centers (MRSEC) program (NSF DMR-1121262) at the Materials Research Center; the
381 IIN. This work made use of the J.B. Cohen X-Ray Diffraction Facility supported by MRSEC and SHyNE.
382 The authors acknowledge Dr. Dong Su (Brookhaven National Laboratory), Prof. Xingchen Ye (Indiana
383 University), and Prof. Amanda Petford-Long (Northwestern University) for help in discussion. This
384 research used resources at the 8-ID Beamline of the National Synchrotron Light Source II, a U.S.
385 Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by
386 Brookhaven National Laboratory under Contract No. DE-SC0012704. The authors acknowledge Dr. Eli
387 Stavitski (8-ID Beamline, NSLS-II, Brookhaven National Laboratory) for assistance in XAS measurements.

388 Author contributions

389 Y.J.K. and F.J. conceived the idea and supervised the project. X.B.F. designed the catalyst and synthesized
390 the Cu nanomaterials. W.L. performed the electrocatalytic studies. Y.J.K., X.B.F., W.L., Y.Y.L., and F.J.
391 analysed data and drafted the manuscript. J.J.L. and M.J. performed the electrocatalytic study on Cu
392 nanoparticles and micron-sized particles. M.J. designed the *operando* XAS flow-cell electrolyzer, and M.J.,
393 B.H.K., and W.L. performed the XAS study. Y.B.X., X.B.H. and J.S.W. facilitated the electron microscopic
394 work. Q.T. assisted the AFM measurement. J.J.S. and Y.Y.L. performed the computational modelling
395 studies. All the authors contributed to discussion of the results and manuscript preparation. W. L. and X.B.F.
396 contributed equally to this work and each of them has the right to list themselves first in the bibliographic
397 documents.

398 **References**

399 1 Zhuang, T.-T. *et al.* Steering post-C–C coupling selectivity enables high efficiency
400 2 electroreduction of carbon dioxide to multi-carbon alcohols. *Nat. Catal.* **1**, 421-428, (2018).

401 2 Ripatti, D. S., Veltman, T. R. & Kanan, M. W. Carbon Monoxide Gas Diffusion Electrolysis that
402 3 Produces Concentrated C₂ Products with High Single-Pass Conversion. *Joule* **3**, 240-256, (2018).

403 3 Jouny, M., Luc, W. & Jiao, F. High-rate electroreduction of carbon monoxide to multi-carbon
404 4 products. *Nat. Catal.* **1**, 748-755, (2018).

405 4 Jiang, K. *et al.* Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO₂
406 5 reduction. *Nat. Catal.* **1**, 111-119, (2018).

407 5 Dinh, C.-T. *et al.* CO₂ electroreduction to ethylene via hydroxide-mediated copper catalysis at an
408 6 abrupt interface. *Science* **360**, 783, (2018).

409 6 De Luna, P. *et al.* Catalyst electro-redeposition controls morphology and oxidation state for
410 7 selective carbon dioxide reduction. *Nat. Catal.* **1**, 103-110, (2018).

411 7 Ma, S. *et al.* Electroreduction of Carbon Dioxide to Hydrocarbons Using Bimetallic Cu–Pd
412 8 Catalysts with Different Mixing Patterns. *J. Am. Chem. Soc.* **139**, 47-50, (2017).

413 8 Lu, Q. *et al.* A selective and efficient electrocatalyst for carbon dioxide reduction. *Nat. Commun.*
414 9 **5**, 3242, (2014).

415 9 Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on
416 10 oxide-derived nanocrystalline copper. *Nature* **508**, 504, (2014).

417 10 Jouny, M., Luc, W. & Jiao, F. General Techno-Economic Analysis of CO₂ Electrolysis Systems.
418 11 *Ind. Eng. Chem. Res.* **57**, 2165-2177, (2018).

419 11 Lv, J.-J. *et al.* A Highly Porous Copper Electrocatalyst for Carbon Dioxide Reduction. *Adv.*
420 12 *Mater.* **0**, 1803111, (2018).

421 12 Raciti, D., Livi, K. J. & Wang, C. Highly Dense Cu Nanowires for Low-Overpotential CO₂
422 13 Reduction. *Nano Lett.* **15**, 6829-6835, (2015).

423 13 Hori, Y., Wakebe, H., Tsukamoto, T. & Koga, O. ELECTROCATALYTIC PROCESS OF CO
424 14 SELECTIVITY IN ELECTROCHEMICAL REDUCTION OF CO₂ AT METAL-ELECTRODES
425 15 IN AQUEOUS-MEDIA. *Electrochim. Acta* **39**, 1833-1839, (1994).

426 14 Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical
427 16 reduction of carbon dioxide on metallic copper surfaces. *Energy Environ. Sci.* **5**, 7050-7059,
428 17 (2012).

429 15 Kuhl, K. P. *et al.* Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on
430 18 Transition Metal Surfaces. *J. Am. Chem. Soc.* **136**, 14107-14113, (2014).

431 16 Hori, Y., Takahashi, R., Yoshinami, Y. & Murata, A. Electrochemical reduction of CO at a
432 19 copper electrode. *J. Phys. Chem. B* **101**, 7075-7081, (1997).

433 17 Yang, H.-J., He, S.-Y., Chen, H.-L. & Tuan, H.-Y. Monodisperse Copper Nanocubes: Synthesis,
434 20 Self-Assembly, and Large-Area Dense-Packed Films. *Chem. Mater.* **26**, 1785-1793, (2014).

435 18 Jin, M. *et al.* Shape-Controlled Synthesis of Copper Nanocrystals in an Aqueous Solution with
436 21 Glucose as a Reducing Agent and Hexadecylamine as a Capping Agent. *Angew. Chem. Int. Ed.*
437 22 **50**, 10560-10564, (2011).

438 19 Huang, J. F. *et al.* Potential-induced nanoclustering of metallic catalysts during electrochemical
439 20 CO₂ reduction. *Nat. Commun.* **9**, 3117, (2018).

440 20 Guo, H. Z. *et al.* Shape-Selective Formation of Monodisperse Copper Nanospheres and
441 21 Nanocubes via Disproportionation Reaction Route and Their Optical Properties. *J. Phys. Chem. C*
442 22 **118**, 9801-9808, (2014).

443 21 Salzemann, C., Urban, J., Lisiecki, I. & Pileni, M. P. Characterization and Growth Process of
444 23 Copper Nanodisks. *Adv. Funct. Mater.* **15**, 1277-1284, (2005).

445 22 Tao, F. *et al.* Break-Up of Stepped Platinum Catalyst Surfaces by High CO Coverage. *Science*
446 24 **327**, 850, (2010).

447 23 Tao, F. *et al.* Reaction-Driven Restructuring of Rh-Pd and Pt-Pd Core-Shell Nanoparticles. *Science* **322**, 932-934, (2008).

448 24 Verma, S. *et al.* Insights into the Low Overpotential Electroreduction of CO₂ to CO on a Supported Gold Catalyst in an Alkaline Flow Electrolyzer. *ACS Energy Lett.* **3**, 193-198, (2018).

449 25 Zhuang, T.-T. *et al.* Copper nanocavities confine intermediates for efficient electrosynthesis of C₃ alcohol fuels from carbon monoxide. *Nat. Catal.* **1**, 946-951, (2018).

450 26 Ma, S. C. *et al.* One-step electrosynthesis of ethylene and ethanol from CO₂ in an alkaline electrolyzer. *J. Power Sources* **301**, 219-228, (2016).

451 27 Weekes, D. M., Salvatore, D. A., Reyes, A., Huang, A. X. & Berlinguette, C. P. Electrolytic CO₂ Reduction in a Flow Cell. *Acc. Chem. Res.* **51**, 910-918, (2018).

452 28 Dunwell, M., Luc, W., Yan, Y. S., Jiao, F. & Xu, B. J. Understanding Surface-Mediated Electrochemical Reactions: CO₂ Reduction and Beyond. *ACS Catal.* **8**, 8121-8129, (2018).

453 29 Lum, Y. W., Cheng, T., Goddard, W. A. & Ager, J. W. Electrochemical CO Reduction Builds Solvent Water into Oxygenate Products. *J. Am. Chem. Soc.* **140**, 9337-9340, (2018).

454 30 Liu, X. Y. *et al.* pH effects on the electrochemical reduction of CO₂ towards C₂ products on stepped copper. *Nat. Commun.* **10**, 32, (2019).

455 31 Wang, L. *et al.* Electrochemical Carbon Monoxide Reduction on Polycrystalline Copper: Effects of Potential, Pressure, and pH on Selectivity toward Multicarbon and Oxygenated Products. *ACS Catal.* **8**, 7445-7454, (2018).

456 32 Strmcnik, D. *et al.* Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. *Nat. Chem.* **5**, 300-306, (2013).

457 33 Raciti, D. *et al.* Low-Overpotential Electroreduction of Carbon Monoxide Using Copper Nanowires. *ACS Catal.* **7**, 4467-4472, (2017).

458 34 Droog, J. M. M. & Schleinter, B. OXYGEN ELECTROSORPTION ON COPPER SINGLE-CRYSTAL ELECTRODES IN SODIUM-HYDROXIDE SOLUTION. *J. Electroanal. Chem.* **112**, 387-390, (1980).

459 35 Schouten, K. J. P., Gallent, E. P. & Koper, M. T. M. Structure Sensitivity of the Electrochemical Reduction of Carbon Monoxide on Copper Single Crystals. *ACS Catal.* **3**, 1292-1295, (2013).

460 36 Hahn, C. *et al.* Engineering Cu surfaces for the electrocatalytic conversion of CO₂: Controlling selectivity toward oxygenates and hydrocarbons. *Proc. Natl. Acad. Sci. U.S.A.* **114**, 5918-5923, (2017).

461 37 Cheng, T., Xiao, H. & Goddard, W. A. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. *Proc. Natl. Acad. Sci. U.S.A.* **114**, 1795-1800, (2017).

462 38 Cheng, T., Xiao, H. & Goddard, W. A. Nature of the Active Sites for CO Reduction on Copper Nanoparticles; Suggestions for Optimizing Performance. *J. Am. Chem. Soc.* **139**, 11642-11645, (2017).

463 39 Xiao, H., Cheng, T., Goddard, W. A. & Sundararaman, R. Mechanistic Explanation of the pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical Reduction of CO on Cu (111). *J. Am. Chem. Soc.* **138**, 483-486, (2016).

464 40 Calle-Vallejo, F. & Koper, M. T. M. Theoretical Considerations on the Electroreduction of CO to C₂ Species on Cu(100) Electrodes. *Angew. Chem. Int. Ed.* **52**, 7282-7285, (2013).

465 41 Chen, C. *et al.* Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. *Science* **343**, 1339-1343, (2014).

466 42 Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. *J. Synchrotron Radiat.* **12**, 537-541, (2005).

467 43 Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B* **54**, 11169-11186, (1996).

468 44 Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. *Phys. Rev. B* **47**, 558-561, (1993).

497 45 Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave
498 method. *Phys. Rev. B* **59**, 1758-1775, (1999).

499 46 Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple.
500 *Phys. Rev. Lett.* **77**, 3865-3868, (1996).

501 47 Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. *Phys. Rev. B* **13**,
502 5188-5192, (1976).

503 48 Scott, A. P. & Radom, L. Harmonic Vibrational Frequencies: An Evaluation of Hartree–Fock,
504 Møller–Plesset, Quadratic Configuration Interaction, Density Functional Theory, and
505 Semiempirical Scale Factors. *J. Phys. Chem.* **100**, 16502-16513, (1996).

506 49 Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper
507 catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. *Energy Environ. Sci.* **3**,
508 1311-1315, (2010).

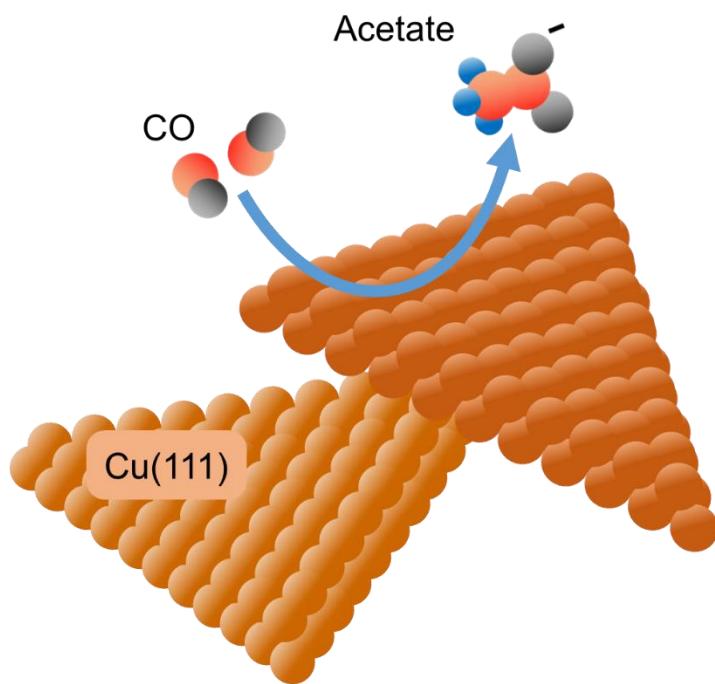
509 50 Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for
510 finding saddle points and minimum energy paths. *J. Chem. Phys.* **113**, 9901-9904, (2000).

511

512 **Competing interests**

513

514 The authors declare no competing interests.


515

516 **Data availability**

517 The datasets generated during and/or analysed during the current study are available from the
518 corresponding authors on reasonable request.

519

520 **Table of Content Figure**

521

522