

1 **High-Rate Electroreduction of Carbon Monoxide to Multi-Carbon Products**

2 Matthew Jouny, Wesley Luc, and Feng Jiao*

3 Center for Catalytic Science and Technology, Department of Chemical and Biomolecular
4 Engineering, University of Delaware, Newark, DE 19716 USA

5
6 *Corresponding author: jiao@udel.edu

7 **Abstract**

8
9 Carbon monoxide electrolysis has previously been reported to yield enhanced multi-carbon (C_{2+})
10 Faradaic efficiencies up to ~55% but only at low reaction rates. This is due to the low solubility of
11 CO in aqueous electrolytes and operation in batch-type reactors. Here we present a high-
12 performance CO flow electrolyzer with a well-controlled electrode-electrolyte interface that can
13 reach total current densities up to 1 A/cm^2 together with improved C_{2+} selectivities. Computational
14 transport modelling and isotopic $C^{18}\text{O}$ reduction experiments suggest the enhanced activity is due
15 to a higher surface pH under CO reduction conditions, which facilitated the production of acetate.
16 At optimal operating conditions, we achieve a C_{2+} Faradaic efficiency of ~91% with a C_{2+} partial
17 current density over 630 mA/cm^2 . Further investigations show that maintaining an efficient triple-
18 phase boundary at the electrode-electrolyte interface is the most critical challenge to achieving a
19 stable CO/CO₂ electrolysis process at high rates.
20

21

22

23

24

25

26

27

28

29

30

31

32

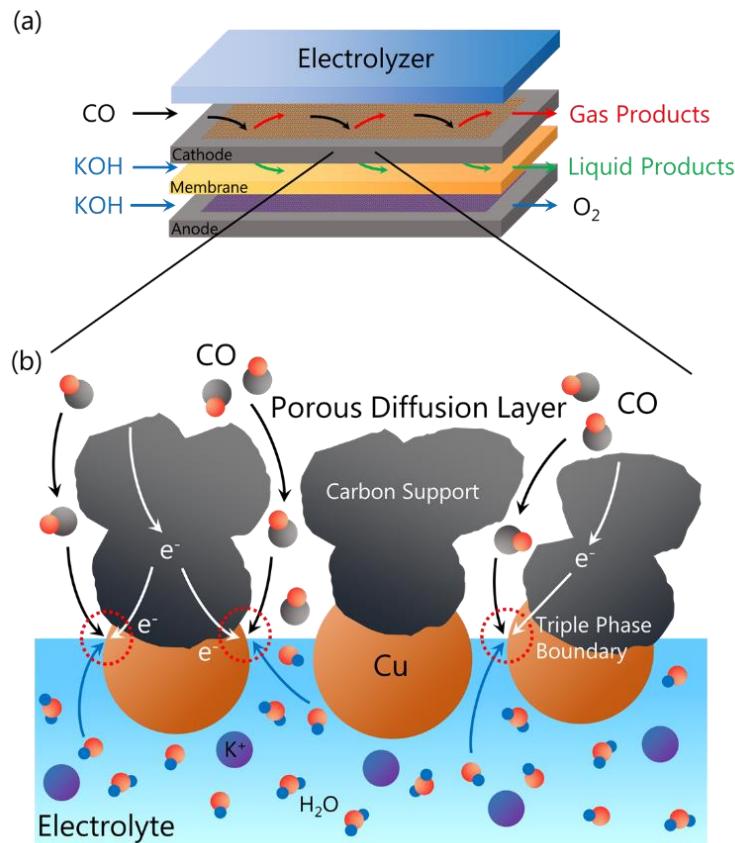
33

34

35

36 Introduction

37
38 The rapid development of novel energy technologies has decreased renewable electricity prices
39 significantly over the past decade. For example, the photovoltaic industry has consistently made
40 strides on improving solar cell efficiencies and reducing manufacturing costs with a projected
41 electricity price as low as \$0.03/kWh by 2030.¹ This foreseen cheap electricity has motivated
42 significant research interest in the development of electrified pathways for chemical and fuel
43 production. Compared to traditional chemical processes driven by fossil energy, electrochemical
44 processes are often more environmentally friendly, can operate under relatively mild conditions,
45 and can also be coupled with renewable electricity sources at remote locations.²⁻⁴ The electrolysis
46 of carbon dioxide (CO₂) has attracted significant attention as a process to produce high-value
47 chemicals such as ethylene and ethanol, but current state-of-the-art CO₂ electrolyzers generally
48 suffer from low selectivity and high overpotentials at practical reaction rates (>300 mA/cm²).⁵⁻⁷


49
50 As an alternative to direct CO₂ electrolysis, a two-step cascade process where CO₂ is initially
51 reduced to carbon monoxide (CO) and then sequentially reduced to multi-carbon (C₂₊) products
52 holds several advantages. As CO is widely accepted as a key reaction intermediate for C-C
53 coupling in carbon dioxide reduction (CO₂R),⁸ directly feeding CO as the reactant into a CO
54 electrolyzer to increase the near-surface CO concentration (and consequently *CO surface
55 coverage) may significantly enhance the performance toward producing C₂₊ products.^{9,10}
56 Furthermore, CO reduction (COR) can be done in alkaline electrolytes that suppress the
57 competitive hydrogen evolution reaction, improve charge transfer kinetics, and boost selectivity
58 towards C₂₊ products,¹¹⁻¹³ without the significant carbonate formation that plagues CO₂
59 reduction.¹⁴ Finally, while a cascade process would require an additional gas separation step to
60 purify the CO feed, this is likely to be minor relative to the total system economics.¹⁵

61
62 Copper is currently being extensively studied as it is the only monometallic CO₂/CO reduction
63 catalyst that can produce C₂₊ hydrocarbons and oxygenates with appreciable selectivities. The
64 majority of research efforts have primarily focused on particle size effects,¹⁶⁻¹⁸ nanostructuring,¹⁹⁻
65²² facet dependency,^{10,23,24} bimetallic alloys,²⁵⁻²⁹ and surface modification.³⁰⁻³⁴ In particular,
66 “oxide-derived” copper (OD-Cu) has shown significant COR selectivities towards ethanol and
67 acetate at low overpotentials.³⁵⁻³⁷ To date, most COR investigations were performed in a batch-
68 type electrochemical cell configuration, where mass transport limitations arise due to the extremely
69 low solubility of CO in aqueous electrolytes such as KOH solution.³⁸ Consequently, high
70 oxygenate Faradaic efficiency up to 70% has been demonstrated, but only at very low reaction
71 rates (~1 mA/cm²). In order to circumvent mass transport limitations, a flow cell reactor can be
72 engineered where the gaseous reactant is directly fed to the electrode-electrolyte interface to form
73 a triple-phase boundary such that high rates of COR can be achieved. However, to the best of our
74 knowledge, a flow system that can achieve high rates for COR has yet to be demonstrated in the
75 literature.

76
77 Herein, we constructed a three-compartment CO flow electrolyzer in which a hydrophobic porous
78 carbon support was loaded with a copper catalyst and positioned between a gas and liquid chamber
79 where CO is directly fed on one side while electrolyte was fed on the other (Figure 1a). The well-
80 engineered electrode-electrolyte interface (Figure 1b) allowed us to convert CO at high reaction
81 rates with a remarkable C₂₊ selectivity. At the optimal conditions, the flow cell utilizing an OD-

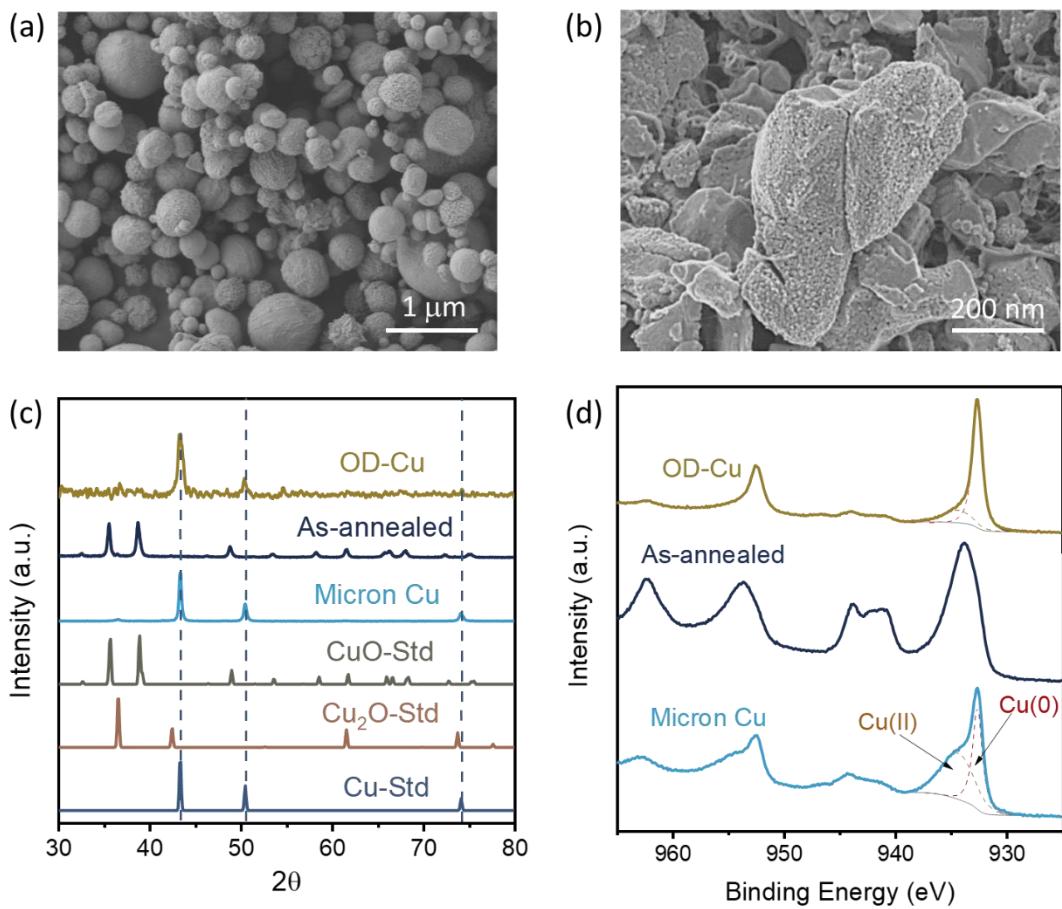
82 Cu catalyst exhibited a 91% C_{2+} selectivity at a partial current density of 635 mA/cm^2 , representing
 83 the highest performance that has ever been achieved for COR. Further studies revealed that
 84 maintaining an efficient electrode-electrolyte interface where gaseous reactant/products can easily
 85 transport in/out of the porous electrode without disrupting ionic and electrical conductivity is
 86 crucial for a stable performance at high reaction rates. Additionally, we compared CO_2R and COR
 87 performances in an identical setup and demonstrated that CO reduction has multiple advantages
 88 over CO_2 reduction in a flow cell configuration, such as a higher C_{2+} selectivity and a more robust
 89 interface. Finally, surface pH calculations under COR and CO_2R conditions and isotopic labelling
 90 studies suggest that the higher surface pH for COR facilitates the improved activity as well as
 91 acetate production.

92

93

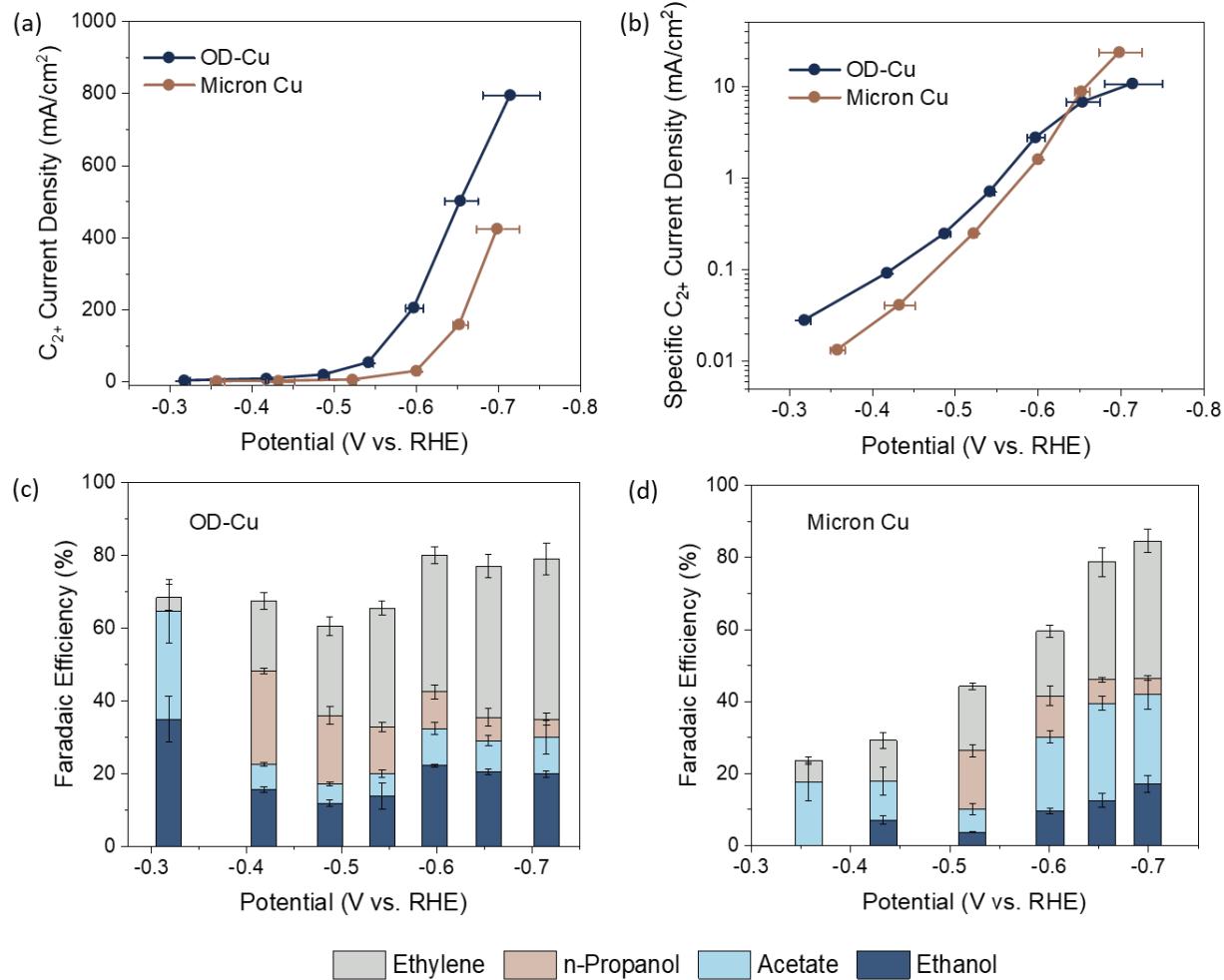
94 **Figure 1-Flow Electrolyzer Schematic:** (a) A schematic of the three-compartment microfluidic
 95 CO flow electrolyzer and (b) a schematic of the well-controlled electrode-electrolyte interface
 96 for CO reduction at high current densities.

97


98 Results

99 Catalyst characterization and COR performance

100 OD-Cu catalyst was prepared following a literature procedure where Cu particles were annealed
 101 in air, followed by an *in-situ* electrochemical reduction treatment.³⁵ In a typical preparation,
 102 commercial Cu particles (“micron Cu”) with an average particle size of 0.5-1.5 μm (Figure 2a)
 103 were first annealed at 500 °C for 2 hours. After annealing, a clear morphology change from
 104 spherical particles to irregular particles (0.1 to 1 μm) was observed and a typical scanning electron
 105 microscopy (SEM) image is shown in Supplementary Fig. 1. Structural characterizations using


106 powder X-ray diffraction (XRD) technique revealed a phase transition from cubic metallic Cu into
 107 monoclinic CuO (Figure 2c), which is consistent with X-ray photoelectron spectroscopy (XPS)
 108 results (Figure 2d). The resulting CuO particles were dispersed in a catalyst ink with a small
 109 amount of multi-walled carbon nanotubes and dropcast onto a gas-diffusion layer (GDL) with a
 110 final catalyst loading of ~ 1 mg/cm². The electrode was then pre-conditioned through an *in-situ*
 111 electrochemical reduction at a constant current density of 15 mA/cm². After the pre-conditioning,
 112 the OD-Cu sample became highly porous with a pore size of 10-20 nm (Figures 2b and
 113 Supplementary Fig. 2). *In-situ* X-ray absorption spectroscopy (XAS) under COR conditions (5
 114 mA/cm² in 0.1M KOH) in a custom-built H-cell (Supplementary Fig. 3) indicates that the catalyst
 115 is metallic Cu⁰ after pre-reduction and under reaction conditions (Supplementary Fig. 4). The
 116 micron Cu electrodes were prepared using the same commercial Cu powder and the spherical
 117 morphology of the particles was maintained throughout the preparation procedure (Supplementary
 118 Fig. 5).

119

120
 121
 122
 123
 124
 125

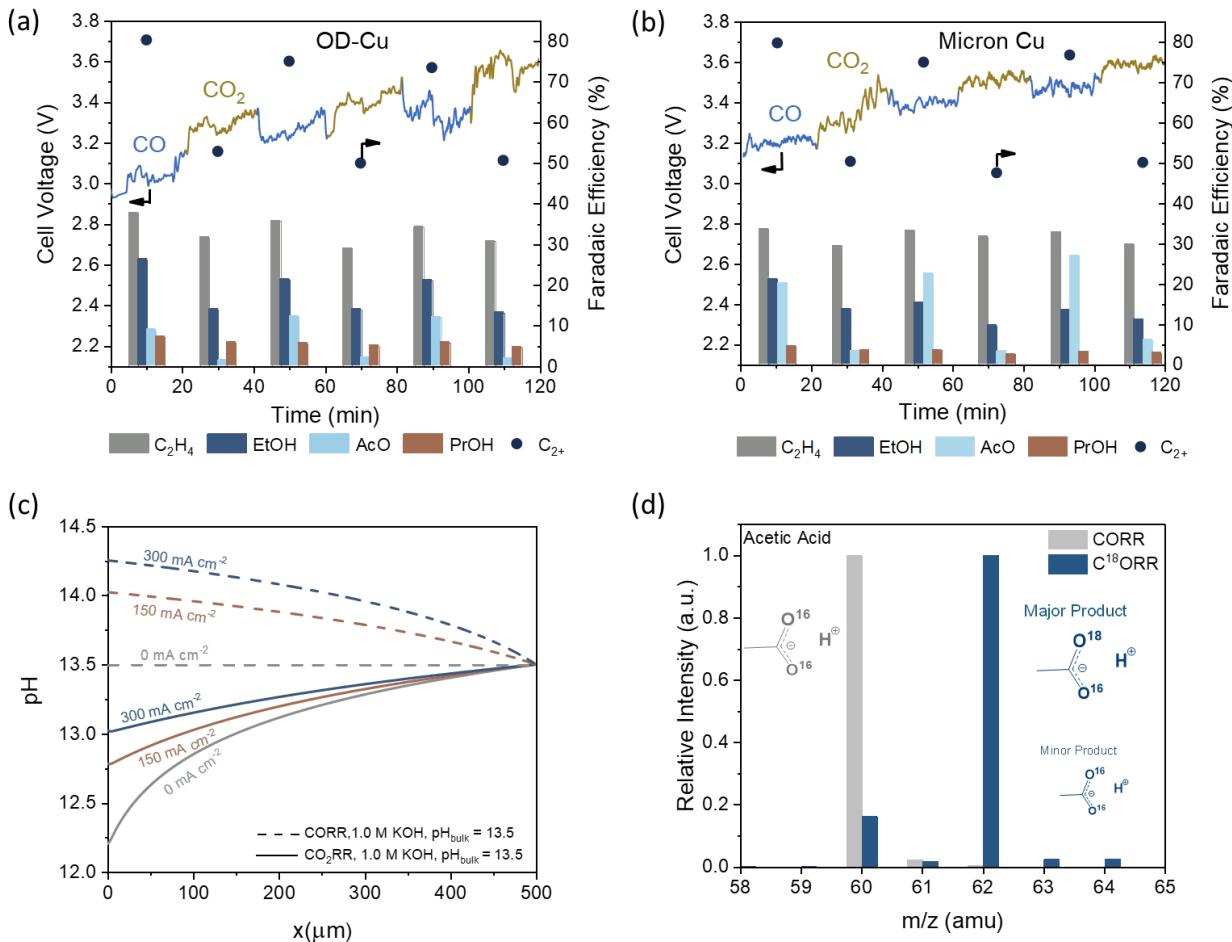
Figure 2-Catalyst Structural Characterization: (a) SEM image of commercial copper powder (Micron Cu), (b) SEM image of oxide-derived copper (OD-Cu) particles on GDL, (c) XRD of copper samples, and (d) XPS of copper samples. Data for copper standards are also showed in (c) for comparison.

126
127 **Figure 3-COR performance of OD-Cu and Micron Cu:** Partial current density for C_{2+}
128 products vs. applied potential for CO reduction in 1M KOH on OD-Cu and micron Cu
129 normalized to (a) geometric surface area and (b) electrochemical surface area, with
130 corresponding Faradaic efficiency profiles for (c) OD-Cu and (d) micron Cu. Error bars represent
131 the standard deviation from at least three independent measurements.

132 The COR activities of both OD-Cu and micron Cu electrodes were evaluated using a three-
133 compartment flow electrolyzer (Figure 1a). The COR results are summarized in Figure 3 and the
134 products detected in significant quantities were ethanol, acetate, ethylene, and n-propanol, with
135 the remaining charge attributed to the competing hydrogen evolution reaction. For both OD-Cu
136 and micron Cu electrodes, there was a near exponential increase in the CO reduction current
137 density with respect to applied potential (Figure 3a), indicating excellent transport of CO to the
138 catalytic surface at the triple-phase boundary. Furthermore, a remarkable partial current density
139 for C_{2+} products (830 mA/cm^2) was obtained using OD-Cu at a moderate applied potential (-0.72
140 V vs. RHE). To compare the reaction rates of both Cu electrodes, the performance was normalized
141 to the electrochemical surface area (ECSA, see Supplementary Fig. 6 for measurement). The OD-
142 Cu copper electrode exhibited higher geometric and ECSA-corrected C_{2+} current densities than
143 micron Cu at lower overpotentials (Figures 3a-b). The enhanced activity of OD-Cu for COR in
144 batch systems at low overpotentials has been attributed to the presence of grain boundaries,^{35,38-41}

146 or other unique Cu facets.^{37,42} However, copper can undergo significant surface restructuring
147 under a CO-rich environment,⁴³⁻⁴⁵ and future work involving advanced *operando* techniques
148 mirroring flow cell conditions is needed to elucidate true structure-property relationships. The non-
149 linearity of Figure 3b at high overpotentials is likely caused by mass transport limitations of the
150 product gas bubbles which begin to block the catalyst at high current densities (>500 mA/cm²).
151 The two electrodes exhibited similar normalized total current densities (Supplementary Fig. 7).
152 After a 1-hour constant current density electrolysis at 500 mA/cm², the morphology of the OD-Cu
153 particles was maintained (Supplementary Fig. 8).

154


155 At low overpotentials, OD-Cu showed significantly higher C₂₊ Faradaic efficiencies (69%, Figure
156 3c) at -0.32V vs. RHE than what were observed with micron Cu (Figure 3d). At -0.42V vs. RHE,
157 the OD-Cu exhibited a 26% Faradaic efficiency towards n-propanol, which is the highest value
158 reported for CO₂/CO electrolysis in the literature. As the overpotential increased, the OD-Cu began
159 to produce significant amounts of ethylene with the total oxygenates Faradaic efficiency remaining
160 constant at ~40%, whereas the Faradaic efficiency towards n-propanol declined to ~6%. We
161 attribute this to the rate of the C-C coupling reaction (which may be a thermochemical reaction
162 step) for n-propanol formation becoming relatively slow compared to the C₂ intermediate
163 protonation reaction at high overpotentials.⁴⁶ Interestingly, the micron Cu electrode showed a
164 similar C₂₊ selectivity profile at high overpotentials, with a total C₂₊ Faradaic efficiency of ~80%.
165 This demonstrates that polycrystalline copper exhibits similar selectivity as OD-Cu for COR to
166 C₂₊ products at high overpotentials.

167

168 Comparison between COR and CO₂R

169

170 To further illustrate the advantages of CO electrolysis over CO₂ electrolysis for C₂₊ production,
171 we operated the flow electrolyzer using 1 M KOH electrolyte, while switching the gas feed
172 between CO and CO₂ during a constant current electrolysis at 300 mA/cm² on OD-Cu and micron
173 Cu. Products were sampled after 20 minutes to ensure that steady-state was reached. Figures 4a-b
174 show the total cell voltage and Faradaic efficiencies over time. Remarkably, the overall C₂₊
175 Faradaic efficiency for COR (~80%) is much higher than that of CO₂R (~55%), as CO₂ reduction
176 produced significant amounts of CO (~15%) and HCOO⁻ (~7%) that were not counted for the total
177 C₂₊ Faradaic efficiency. Furthermore, for the same C₂₊ products, COR requires 1/3 less electrons
178 than CO₂R. As a result, the molar production rate of C₂₊ products were more than doubled for
179 COR (Supplementary Figs. 9 and 10).

Figure 4-Comparison of CO₂R and COR performance: (a) CO/CO₂ reduction on OD-Cu at 300 mA/cm² in 1M KOH over two hours showing the difference in C₂₊ product selectivities, (b) CO/CO₂ reduction on micron Cu at 300 mA/cm² in 1M KOH over two hours showing the difference in C₂₊ product selectivities, (c) calculated pH profiles for CO/CO₂ reduction in 1M KOH under various current densities, and (d) mass spectrum of partially labelled acetic acid produced by C¹⁸O reduction at 300 mA/cm² in 1M KOH.

Additionally, the overall cell voltage increased by ~100 mV when the gas feed was changed from CO to CO₂. The increase in cathodic overpotential could either be a result of the additional energy required to activate CO₂ relative to CO or a pH decrease at the electrode-electrolyte interface. The latter would likely be caused by carbonate formation through a fast chemical reaction between CO₂ and KOH, which served as a buffer layer and inevitably lowers the pH near the catalytic surface.¹⁴ Since carbonate has a lower ionic conductivity than KOH, this would lead to an increase in the cathodic overpotential.

In order to better understand the difference in interfacial pH between CO₂R and COR, we modelled the transport of CO₂/CO between the electrode-electrolyte interface and bulk electrolyte (see Supplementary Methods for details).^{13,47} The pH gradients for CO₂/CO reduction under various current densities are shown in Figure 4c. In the case of CO₂ reduction at 0 mA/cm², there is already a significant reduction in surface pH (x = 0 μm) due to the fast equilibrium reaction between CO₂

201 and KOH. However, the surface pH increases with increasing current density in both CO₂ and CO
202 reduction cases due to the generation of OH⁻ ions. At 300 mA/cm², the estimated OH⁻ concentration
203 under CO reduction conditions is more than 1 order of magnitude higher than under CO₂ reduction
204 conditions. It should also be noted that previous studies of CO₂ electrolysis using KOH as the
205 electrolyte in a flow electrolyzer often assumed a pH value based on the bulk KOH concentration,
206 leading to an underestimation of the electrode overpotential for CO₂ reduction in alkaline
207 electrolyte.^{48,49}

208

209 Another observation from Figures 4a-b is that the selectivity for ethylene, ethanol, and n-propanol
210 did not change significantly before and after the CO/CO₂ switch, while the acetate Faradaic
211 efficiency was much higher for COR and thus the major contributor to the C₂₊ selectivity
212 difference between CO and CO₂ reduction. Mechanistically, the formation of acetate from CO₂/CO
213 reduction is poorly understood. Li and Kanan suggested that acetate formation is due to hydroxide
214 attack of a surface intermediate due to observed increase in acetate FE at higher KOH
215 concentrations.³⁵ Moreover, Koper *et al.* recently reported a favourable acetate formation at high
216 pH in CO₂ reduction due to the hydroxide ions promoted Cannizzaro-type reactions at the catalytic
217 surface.⁵⁰ However, the molar ratios of the produced ethanol and acetate are not equivalent
218 (Supplementary Figs. 9 and 10), indicating there may be an additional pathway to acetate. Garza
219 *et al.* also proposed a direct reduction of CO to acetate without oxygen donation from the
220 electrolyte through the isomerization of *OCH₂COH to a three-membered ring attach to the
221 surface.⁵¹

222

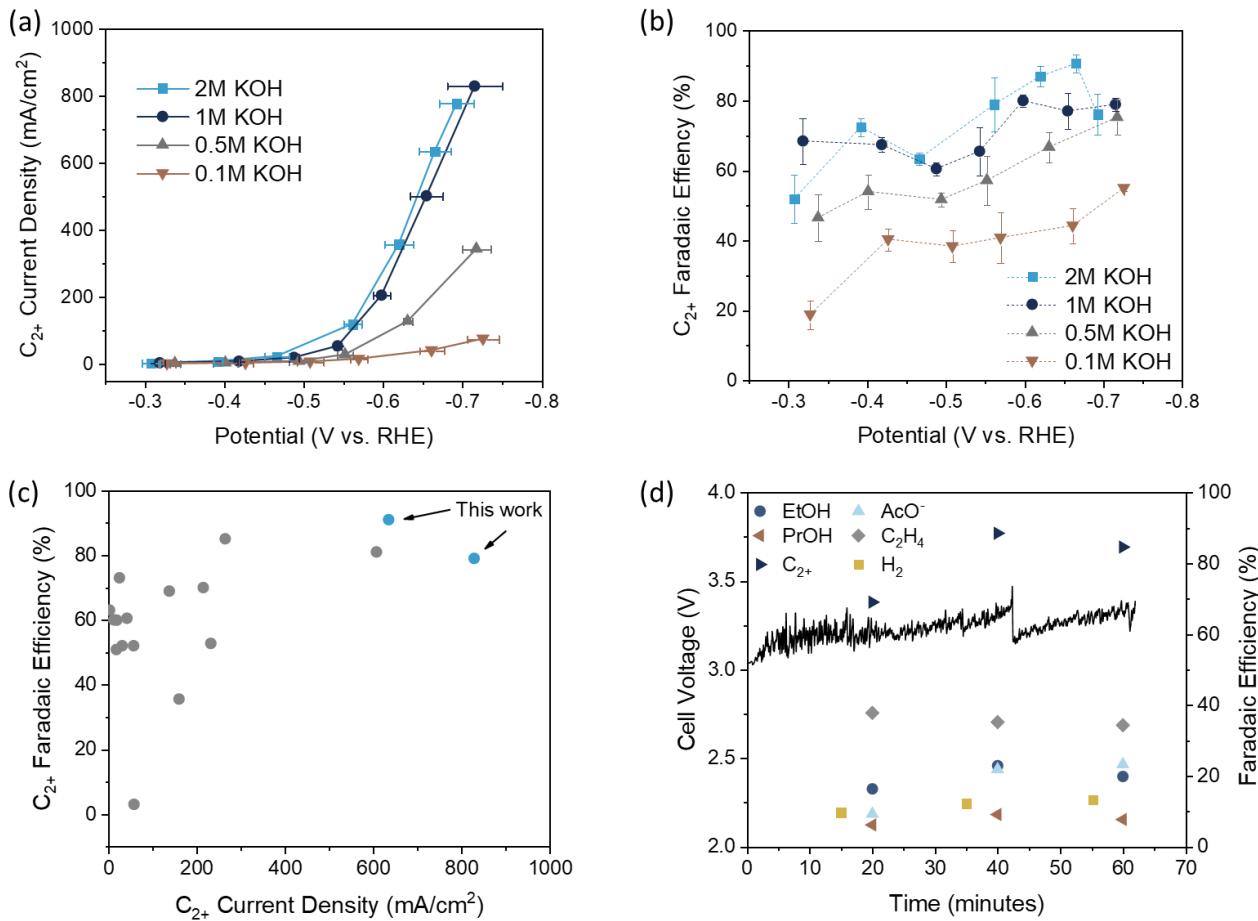
223 C¹⁸O isotopic labelling studies

224

225 To further gain mechanistic insights into the formation of acetate, isotopic labelled C¹⁸O (Sigma
226 Aldrich, 95 at% ¹⁸O) was fed to the electrolyzer at a constant current of 300 mA/cm² and a gas
227 chromatography-mass spectrometry (GC-MS) system was used to analyze the liquid products. We
228 note that this investigation can only be done with labelled C¹⁸O rather than C¹⁸O₂ due to the rapid
229 equilibrium exchange of oxygen atoms when CO₂ reacts with KOH. Furthermore, the use of the
230 flow cell allows for easy quantification of labelled products due to the rapid production of
231 concentrated products that would otherwise not be possible with a batch-type reactor. The liquid
232 products were acidified with hydrochloric acid to a pH value of ~2 after electrolysis before
233 injecting into the GC-MS to enable acetate detection as acetic acid. If the acetate is formed through
234 an oxygen donation from the electrolyte, it should only be partially labelled (62 amu), while a
235 direct reduction pathway would yield fully labelled acetate (64 amu).

236

237 The mass fragmentation patterns of acetic acid produced from unlabelled CO and labelled C¹⁸O
238 are shown in Figure 4d. The parent ion of acetic acid (60 amu) produced from unlabelled CO
239 matches well to that of the NIST database. A clear mass shift by 2 amu (62 amu) was observed
240 when labelled C¹⁸O was used, which indicates that only one oxygen of acetic acid is labelled. A
241 small signal at 60 amu is likely due to C¹⁶O impurity in the feed. Since the signal at 64 amu, as
242 well as at 63 amu, is even smaller than the observed signal at 60 amu, we attribute this signal to
243 the natural isotope abundance of ¹³C, and not acetic acid with both oxygen atoms labelled.
244 Additionally, the signal ratio between 62 and 60 amu is close that of the ratio of ¹⁸O and ¹⁶O in the
245 gas feed; and therefore, we conclude that the observed acetic acid with a signal at 62 amu consisted
246 of one oxygen originating from labelled C¹⁸O and one oxygen originating from the electrolyte,


247 most likely from a OH⁻ ion reacting with an intermediate species. Combining these observations
248 with the estimated pH gradients shown in Figure 4c, we attribute the high acetate selectivity in
249 COR to a higher local pH at the electrode-electrolyte interface, where the abundance of OH⁻ ions
250 near the catalytic surface can easily react with an intermediate to form acetate. A proposed pathway
251 to acetate is shown in Supplementary Fig. 11. However, we note that other effects such as the
252 presence of carbonates under CO₂R conditions may also influence the selectivity.

253
254 In addition to acetic acid, we also detected ethanol and n-propanol via GC-MS along with a small
255 amount of acetaldehyde. Surprisingly, acetaldehyde was entirely unlabelled, and ethanol/n-
256 propanol were only partially labelled (Supplementary Fig. 12). The unlabelled acetaldehyde can
257 be explained by the rapid oxygen exchange between acetaldehyde and water which has been
258 extensively studied by Greenzaid et al.⁵² This was verified by adding 0.2% of acetaldehyde,
259 ethanol, and acetic acid to 98% H₂¹⁸O. Indeed, a clear mass shift by 2 amu (46 amu) was observed
260 with acetaldehyde; however, no oxygen exchange was observed with ethanol or acetic acid
261 (Supplementary Fig. 13). Therefore, the observation of only partially labelled ethanol and n-
262 propanol is likely due to acetaldehyde oxygen exchange prior to further reduction, since
263 acetaldehyde has been shown to be a reaction intermediate to these alcohols.³⁶ Overall, this
264 demonstrates the challenges of gaining mechanistic insights through isotopic labelled oxygen
265 studies for CO reduction, and future work such as direct sampling at the reaction interface through
266 differential electrochemical mass spectrometry (DEMS) is required.⁵³

267
268 **Influence of KOH concentration on COR performance**

269
270 The pH effect on CO reduction was further studied by varying the KOH electrolyte concentration
271 from 0.1M to 2.0 M. The cathode polarization curves for C₂₊ products in 0.1M, 0.5 M, 1.0M, and
272 2.0 M KOH aqueous electrolytes are shown in Figure 5a. Both C₂₊ partial current density and
273 Faradaic efficiency increased (Figures 5a-b) as the KOH concentration increased. While the HER
274 partial current density also increased with increasing concentration, the HER Faradaic efficiency
275 was dramatically reduced (Supplementary Fig. 14). We attribute this enhancement to two effects:
276 1) the reduction of charge transfer resistance across the electrolyte that improved the active area
277 of the triple-phase boundary due to the increase in electrolyte conductivity at higher
278 concentrations,^{11,54} and 2) higher pH at the electrocatalytic interface that favours C-C coupling.
279 Although previous studies on CO reduction were primarily carried out in a 0.1 M KOH electrolyte,
280 recent computational work have suggested that a high pH environment could enhance C-C
281 coupling through the dimerization of adsorbed CO.¹²

282
283 As reflected, Figures 5a-b clearly shows that high KOH concentrations are favourable for CO
284 reduction to C₂₊ products (see Supplementary Table 1 for specific product Faradaic Efficiencies).
285 The molar production ratio of acetate to other products generally increased with increasing KOH
286 concentration (Supplementary Fig. 15), further supporting that OH⁻ ions shift selectivity to acetate.
287 In 1.0 M KOH electrolyte, we achieved a C₂₊ partial current density of 829 mA/cm² with a total
288 C₂₊ Faradaic efficiency of 79% at a moderate potential of -0.72V vs. RHE. At a slightly lower
289 potential (-0.67V vs. RHE) in 2.0M KOH, a C₂₊ partial current density of 635 mA/cm² with a total
290 C₂₊ Faradaic efficiency of 91% was obtained. In terms of C₂₊ current density and Faradaic
291 efficiency, our results are significantly better than performances reported in the current state-of-
292 the-art CO₂R (Figure 5c, see Supplementary Table 2 for details).^{13,22,24,30-33,49,55-60}

Figure 5-KOH concentration effect on COR performance: (a) partial current density for C_{2+} products for CO reduction in varying concentrations of KOH and (b) associated Faradaic efficiencies, (c) comparison of the partial current densities and Faradaic efficiencies for C_{2+} products reported in this work compared to current state-of-the-art, (d) cell voltage and Faradaic efficiencies for CO reduction on OD-Cu in 2M KOH at $500 \text{ mA}/\text{cm}^2$ over 1 hour. Error bars represent the standard deviation from at least three independent measurements.

The stability of the CO electrolyzer was also examined at a constant current of $500 \text{ mA}/\text{cm}^2$ with 2.0 M KOH electrolyte in a two-electrode flow cell configuration. The applied cell voltage increased from 3.05 V to 3.25 V over the course of 1-hour electrolysis with gradual increases and sudden decreases (Figure 5d), which was caused by the gradual build-up of gas bubbles in the liquid catholyte chamber until it was flushed out at once. Despite this, a 1-hour stable performance was achieved at a cell potential of $\sim 3.2 \text{ V}$ and a current density of $500 \text{ mA}/\text{cm}^2$. The slight decrease of total C_{2+} Faradaic efficiency after 30 minutes is predominantly due to flooding issues through the GDL into the CO gas chamber, which was caused by the condensation of water vapour. At such a high current density, water quickly accumulated in the gas chamber and caused cell voltage increase and fluctuations (Figure 5d). In the case of CO_2 reduction, the same water accumulation issue also existed, but much worse stability was observed (Supplementary Fig. 16). This severe degradation was likely due to carbonate formation at the electrode-electrolyte interface that blocks

314 the pores of the GDL.¹⁴ Attempts to obtain higher C₂₊ partial current from CO reduction at higher
315 cell voltages were made and a total current density beyond 1 A/cm² was achieved; however, the
316 cell performance was only maintained for less than 30 minutes because of severe flooding issues
317 into the gas chamber. Clearly, maintaining an efficient three-phase boundary at the electrode-
318 electrolyte interface is crucial to obtaining a high-performing CO electrolyzer that can be operated
319 at extremely high current densities while preserving a high C₂₊ selectivity.

320

321 Discussion

322

323 While we have successfully demonstrated a CO electrolyzer that can operate at high rates with a
324 remarkable C₂₊ selectivity, some critical challenges must be addressed before this technology can
325 be commercialized. The CO flow electrolyzer was operated at ~3.2 V which is ~2.1 V above the
326 thermodynamic potential, resulting in an energetic efficiency of < 40%. Consequently, the low
327 energetic efficiency will significantly increase the cost associated with electricity consumption and
328 reduce the profitability of the whole process. For the CO electrolyzer cell presented in this work,
329 the resistance between the cathode and anode was ~1.5 Ohm, corresponding to a resistive loss of
330 about 0.75 V (at 500 mA/cm²). The voltage loss associated with internal resistance could be
331 reduced by depositing the anode catalyst directly on the membrane and using a more conductive
332 anion exchange membrane. Maintaining a stable cell operation over a long period of time is also
333 important. Flooding and salt accumulation issues at the electrode-electrolyte interface must be
334 addressed through interface engineering. For example, Dinh et al. recently demonstrated excellent
335 stability for CO₂ reduction using custom-designed gas diffusion electrodes.¹³ Additionally, the
336 flow cell suffered from a low single-pass conversion of CO gas feed, which would lead to a high
337 cost to separate gas products from the unreacted CO reactant.

338

339 In summary, despite the remaining process engineering challenges, we have demonstrated a CO
340 flow electrolyzer that can achieve over 630 mA/cm² with a C₂₊ selectivity above 90%, exceeding
341 the performance for the current state-of-the-art COR and CO₂R systems. The flow electrolyzer
342 design successfully overcame mass transport limitations associated with the low solubility of CO
343 in aqueous electrolytes and allowed us to achieve superior performances at high rates. This work
344 also illustrated the critical need to design a robust electrode-electrolyte interface, which allowed
345 us to investigate COR and CO₂R at practical reaction rates. The comparison between COR and
346 CO₂R clearly demonstrated the potential advantages of CO electrolysis over CO₂ electrolysis to
347 produce valuable C₂₊ chemicals. With a CO₂-derived CO source or other CO-rich sources, CO
348 electrolysis technology may be considered as an alternative approach to produce high-value C₂₊
349 chemicals in practical applications.

350

351 Methods

352

353 Preparation of Electrodes

354

355 Commercial copper powder (0.5-1.5 μ m, 99%) was purchased from Alfa Aesar and stored under
356 Ar atmosphere. 1 g of copper powder was placed in a ceramic crucible and immediately heated to
357 500 °C for 2 hours. Following thermal annealing, the copper powder sintered into a black sheet,
358 which was hand ground to form a fine powder. 100 mg of powder was mixed with 0.5 mL
359 tetrahydrofuran containing 0.5 mg/mL multiwalled carbon nanotubes (>98% carbon basis, O.D. \times

360 L 6-13 nm \times 2.5-20 μm , Sigma Aldrich), 2 mL of isopropanol, and 20 μL of Nafion ionomer
361 solution (10 wt% in H_2O). The oxide-derived copper (OD-Cu) electrode was prepared via in-situ
362 electrochemical reduction at a constant current density of 15 mA/cm^2 . An identical ink was
363 prepared using the as-purchased commercial micron copper. The catalyst inks were sonicated for
364 30 minutes and then dropcast onto a Sigracet 29 BC gas diffusion layer (GDL, Fuel Cell Store) to
365 a loading of 1 mg/cm^2 . IrO_2 anodes were prepared by mixing 50 mg IrO_2 nanoparticles (99%, Alfa
366 Aesar) with 0.5 mL of DI H_2O , 2 mL of isopropanol, and 20 μL of Nafion ionomer solution (10
367 wt% in H_2O), which was sonicated and dropcast onto Sigracet 29BC GDL at 1 mg/cm^2 loading. A
368 fresh cathode was used for each flow cell experiment, while anodes were reused 3 times.
369

370 Materials Characterization

371 Scanning electron microscopy (SEM) images were obtained on an Auriga 60 Crossbeam. X-ray
372 diffraction (XRD) was performed on a Bruker D8 Discovery diffractometer using a Cu $\text{K}\alpha$
373 radiation source. A Thermo Scientific K-Alpha X-ray Photoelectron Spectrometer (XPS) System
374 was used to analyse the surface composition near the surface. XPS fitting was conducted with
375 CasaXPS software with the adventitious carbon peak being calibrated to 284.5 eV. All peaks were
376 fitted using a Gaussian/Lorentzian product line shape and a Shirley background.
377

378 The electrochemical surface area (ECSA) was determined by measuring the double-layer
379 capacitances of the commercial micron Cu and OD-Cu and comparing to a polycrystalline copper
380 foil (99.999%, Alfa Aesar). The double layer capacitance (C_{DL}) was found by performing cyclic
381 voltammetry of the electrodes in 0.1M HClO_4 in a H-cell. The electrodes were scanned at scan
382 rates of 10-100 mV/s in the potential region of no Faradaic current, and the observed current was
383 plotted vs. scan rate to obtain the double layer capacitance. The ECSA was then calculated using
384 the C_{DL} for the copper foil.
385

386 *In-situ* X-ray adsorption spectroscopy (XAS) was performed at Beamline 5 BM-D at the Advanced
387 Photon Source (APS) at Argonne National Laboratory through the general user program. The XAS
388 data was processed using the IFEFFIT package, including Athena and Artemis.⁶¹ A modified two-
389 compartment H-type electrochemical cell made from acrylic was used for *in-situ* XAS experiments
390 and is shown in (Supplementary Fig. 3). The electrolysis was performed in 0.1M potassium
391 hydroxide under a flowing atmosphere of 5 sccm carbon monoxide. The OD-Cu electrodes were
392 reduced at 10 mA/cm^2 , and then held at potentials ranging from -0.2V to -0.5V vs. RHE.
393

394 Flow Cell Electrolysis

395 CO and CO_2 electrolysis were performed in a three-channel flow cell with channels of dimension
396 $2 \times 0.5 \times 0.15 \text{ cm}^3$. The flow cell design was modified based on engineering drawings kindly
397 provided by Dr. Paul Kenis at University of Illinois at Urbana-Champaign (USA). The electrolytes
398 were aqueous solutions of potassium hydroxide (99.99%, Sigma Aldrich). The gas flow rate into
399 the flow cell was controlled at 10 sccm via a Brooks GF40 mass flow controller. The catholyte
400 and anolyte flow rates were controlled via a peristaltic pump, with the catholyte flow rate ranging
401 from 0.1-1 mL/min depending on the current density (lower flow rates were used at lower current
402 densities to allow for sufficient accumulation of liquid products). The anolyte flow rate was 5
403 mL/min. The cathode and anode were separated via a hydroxide exchange membrane (FAA-3,
404
405

406 Fumatech). The backpressure of the gas in the flow cell was controlled to atmospheric pressure
 407 using a backpressure controller (Cole-Parmer).

408
 409 Chronopotentiometry experiments were performed using an Autolab PG128N. For the 3-electrode
 410 set-up experiments, the cathode potential was measured using an external Ag/AgCl reference
 411 electrode (Pine Research). The resistance between the cathode and reference electrode was
 412 measured using the current-interrupt technique prior to each applied current density, and the
 413 measured applied potential was IR corrected following electrolysis. For each data point, the cell
 414 was allowed to reach steady state, and products were quantified over a 300s period. At least three
 415 replicates were performed at each current density. For the CO/CO₂ gas switching experiments
 416 where the cell voltage is recorded over time, the voltage data were smoothed using the Savitzsky-
 417 Golay method to reduce oscillations due to bubble formation at the anode.

418
 419 Gas products were quantified using a Multigas #5 GC (SRI Instruments) equipped with a Hayesep
 420 D and Molsieve 5A columns connected to a thermal conductivity detector (TCD) and a Hayesep
 421 D column connected to a flame ionization detector (FID). Hydrogen was quantified using TCD,
 422 while ethylene, carbon monoxide (for CO₂ electrolysis), and methane were detected on both FID
 423 and TCD. The Faradaic efficiency for products was calculated using the following formula:
 424

$$425 \quad FE (\%) = \frac{nFxV}{j_{Tot}} * 100 \quad (1)$$

426 where n = # of electrons transferred

427 F = Faraday's constant

428 x = mole fraction of product

429 V = total molar flow rate of gas

430 j_{Tot} = total current

431
 432 Liquid products were quantified using a Bruker AVIII 600 MHz NMR spectrometer. Typically,
 433 500 μL of collected catholyte exiting the reactor was mixed with 100 μL D₂O containing 20 ppm
 434 (m/m) dimethyl sulphoxide (≥99.9%, Alfa Aesar) as the internal standard. The one-dimensional
 435 ¹H spectrum was measured with water suppression using a pre-saturation method.

436
 437 Labelled C¹⁸O experiment

438
 439 A low pressure C¹⁸O lecture bottle (Sigma Aldrich, 95 at% ¹⁸O) was used for all labelled
 440 experiments. A 30 mL syringe was used to extract the C¹⁸O gas and a syringe pump was used to
 441 feed the gas into the flow cell at 5 mL/min. Electrolysis was conducted at constant current of 300
 442 mA/cm² for 5 minutes and the catholyte was collected for analysis. The liquid products were
 443 acidified in an ice bath with hydrochloric acid to a pH value of ~2. Acidification did not affect the
 444 mass spectrum analysis, other than allowing for the detection of acetate through acetic acid.
 445 Identification of the liquid products was performed using an integrated gas chromatography-mass
 446 spectrometry (GC-MS, Agilent 59771A) system. The GC (Agilent 7890B) was equipped with a
 447 DB-FFAP column and interfaced directly to the MS (Agilent 59771A). Identification of the GC-
 448 MS spectral features were accomplished by comparing the mass fragmentation patterns with those
 449 of the NIST library and focused on the shifts of the parent ion of the molecules.

450

451

452 **Data Availability**

453

454 The data that support the findings of this study are available from the corresponding author upon
455 reasonable request.

456

457

458 **References**

- 459 1 Haegel, N. M. *et al.* Terawatt-scale photovoltaics: Trajectories and challenges. *Science* **356**, 141-143, (2017).
- 460 2 Herron, J. A., Kim, J., Upadhye, A. A., Huber, G. W. & Maravelias, C. T. A general
461 framework for the assessment of solar fuel technologies. *Energy Environ. Sci.* **8**, 126-
462 157, (2015).
- 463 3 Whipple, D. T. & Kenis, P. J. Prospects of CO₂ utilization via direct heterogeneous
464 electrochemical reduction. *J. Phys. Chem. Lett.* **1**, 3451-3458, (2010).
- 465 4 Gu, S., Xu, B. & Yan, Y. Electrochemical energy engineering: a new frontier of chemical
466 engineering innovation. *Annu. Rev. Chem. Biomol. Eng.* **5**, 429-454, (2014).
- 467 5 Martín, A. J., Larrazábal, G. O. & Pérez-Ramírez, J. Towards sustainable fuels and
468 chemicals through the electrochemical reduction of CO₂: lessons from water electrolysis.
469 *Green Chem.* **17**, 5114-5130, (2015).
- 470 6 Jouny, M., Luc, W. & Jiao, F. General Techno-Economic Analysis of CO₂ Electrolysis
471 Systems. *Ind. Eng. Chem. Res.* **57**, 2165-2177, (2018).
- 472 7 Jhong, H.-R. M., Ma, S. & Kenis, P. J. A. Electrochemical conversion of CO₂ to useful
473 chemicals: current status, remaining challenges, and future opportunities. *Curr. Opin.
474 Chem. Eng.* **2**, 191-199, (2013).
- 475 8 Liu, X. *et al.* Understanding trends in electrochemical carbon dioxide reduction rates.
476 *Nat. Commun.* **8**, 15438, (2017).
- 477 9 Montoya, J. H., Shi, C., Chan, K. & Norskov, J. K. Theoretical Insights into a CO
478 Dimerization Mechanism in CO₂ Electroreduction. *J. Phys. Chem. Lett.* **6**, 2032-2037,
479 (2015).
- 480 10 Huang, Y., Handoko, A. D., Hirunsit, P. & Yeo, B. S. Electrochemical Reduction of CO₂
481 Using Copper Single-Crystal Surfaces: Effects of CO* Coverage on the Selective
482 Formation of Ethylene. *ACS Catal.* **7**, 1749-1756, (2017).
- 483 11 Verma, S., Lu, X., Ma, S., Masel, R. I. & Kenis, P. J. A. The effect of electrolyte
484 composition on the electroreduction of CO₂ to CO on Ag based gas diffusion electrodes.
485 *PCCP* **18**, 7075-7084, (2016).
- 486 12 Xiao, H., Cheng, T., Goddard, W. A., 3rd & Sundararaman, R. Mechanistic Explanation
487 of the pH Dependence and Onset Potentials for Hydrocarbon Products from
488 Electrochemical Reduction of CO on Cu (111). *J. Am. Chem. Soc.* **138**, 483-486, (2016).
- 489 13 Dinh, C.-T. *et al.* CO₂ electroreduction to ethylene via hydroxide-mediated copper
490 catalysis at an abrupt interface. *Science* **360**, 783-787, (2018).
- 491 14 Verma, S. *et al.* Insights into the Low Overpotential Electroreduction of CO₂ to CO on a
492 Supported Gold Catalyst in an Alkaline Flow Electrolyzer. *ACS Energy Lett.* **3**, 193-198,
493 (2018).
- 494 15 Spurgeon, J. M. & Kumar, B. A comparative technoeconomic analysis of pathways for
495 commercial electrochemical CO₂ reduction to liquid products. *Energy Environ. Sci.* **11**,
496 1536-1551, (2018).
- 497

- 498 16 Reske, R., Mistry, H., Behafarid, F., Roldan Cuenya, B. & Strasser, P. Particle size
499 effects in the catalytic electroreduction of CO₂ on Cu nanoparticles. *J. Am. Chem. Soc.*
500 **136**, 6978-6986, (2014).
- 501 17 Loiudice, A. *et al.* Tailoring copper nanocrystals towards C₂ products in electrochemical
502 CO₂ reduction. *Angew. Chem. Int. Ed.* **55**, 5789-5792, (2016).
- 503 18 Baturina, O. A. *et al.* CO₂ Electroreduction to Hydrocarbons on Carbon-Supported Cu
504 Nanoparticles. *ACS Catal.* **4**, 3682-3695, (2014).
- 505 19 Kas, R. *et al.* Three-dimensional porous hollow fibre copper electrodes for efficient and
506 high-rate electrochemical carbon dioxide reduction. *Nat. Commun.* **7**, 10748, (2016).
- 507 20 Sen, S., Liu, D. & Palmore, G. T. R. Electrochemical Reduction of CO₂ at Copper
508 Nanofoams. *ACS Catal.* **4**, 3091-3095, (2014).
- 509 21 Rahaman, M., Dutta, A., Zanetti, A. & Broekmann, P. Electrochemical Reduction of CO₂
510 into Multicarbon Alcohols on Activated Cu Mesh Catalysts: An Identical Location (IL)
511 Study. *ACS Catal.* **7**, 7946-7956, (2017).
- 512 22 Dutta, A., Rahaman, M., Luedi, N. C., Mohos, M. & Broekmann, P. Morphology
513 Matters: Tuning the Product Distribution of CO₂ Electroreduction on Oxide-Derived Cu
514 Foam Catalysts. *ACS Catal.* **6**, 3804-3814, (2016).
- 515 23 Hahn, C. *et al.* Engineering Cu surfaces for the electrocatalytic conversion of CO₂:
516 Controlling selectivity toward oxygenates and hydrocarbons. *PNAS* **114**, 5918, (2017).
- 517 24 Kim, Y.-G., Javier, A., Baricuatro, J. H. & Soriaga, M. P. Regulating the Product
518 Distribution of CO Reduction by the Atomic-Level Structural Modification of the Cu
519 Electrode Surface. *Electrocatalysis* **7**, 391-399, (2016).
- 520 25 Clark, E. L., Hahn, C., Jaramillo, T. F. & Bell, A. T. Electrochemical CO₂ Reduction
521 over Compressively Strained CuAg Surface Alloys with Enhanced Multi-Carbon
522 Oxygenate Selectivity. *J. Am. Chem. Soc.* **139**, 15848-15857, (2017).
- 523 26 Ren, D., Ang, B. S.-H. & Yeo, B. S. Tuning the Selectivity of Carbon Dioxide
524 Electroreduction toward Ethanol on Oxide-Derived Cu_xZn Catalysts. *ACS Catal.* **6**, 8239-
525 8247, (2016).
- 526 27 Zhang, S. *et al.* Polymer-supported CuPd nanoalloy as a synergistic catalyst for
527 electrocatalytic reduction of carbon dioxide to methane. *PNAS* **112**, 15809-15814, (2015).
- 528 28 Sarfraz, S., Garcia-Esparza, A. T., Jedidi, A., Cavallo, L. & Takanabe, K. Cu-Sn
529 Bimetallic Catalyst for Selective Aqueous Electroreduction of CO₂ to CO. *ACS Catal.* **6**,
530 2842-2851, (2016).
- 531 29 Lee, S., Park, G. & Lee, J. Importance of Ag-Cu Biphasic Boundaries for Selective
532 Electrochemical Reduction of CO₂ to Ethanol. *ACS Catal.* **7**, 8594-8604, (2017).
- 533 30 Mistry, H. *et al.* Highly selective plasma-activated copper catalysts for carbon dioxide
534 reduction to ethylene. *Nat. Commun.* **7**, 12123, (2016).
- 535 31 Jiang, K. *et al.* Metal ion cycling of Cu foil for selective C-C coupling in electrochemical
536 CO₂ reduction. *Nat. Catal.* **1**, 111-119, (2018).
- 537 32 Gao, D. *et al.* Plasma-Activated Copper Nanocube Catalysts for Efficient Carbon Dioxide
538 Electroreduction to Hydrocarbons and Alcohols. *ACS Nano* **11**, 4825-4831, (2017).
- 539 33 Handoko, A. D. *et al.* Mechanistic Insights into the Selective Electroreduction of Carbon
540 Dioxide to Ethylene on Cu₂O-Derived Copper Catalysts. *J. Phys. Chem. C* **120**, 20058-
541 20067, (2016).
- 542 34 Tang, W. *et al.* The importance of surface morphology in controlling the selectivity of
543 polycrystalline copper for CO₂ electroreduction. *PCCP* **14**, 76-81, (2012).

- 544 35 Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel
545 on oxide-derived nanocrystalline copper. *Nature* **508**, 504-507, (2014).
- 546 36 Bertheussen, E. *et al.* Acetaldehyde as an Intermediate in the Electroreduction of Carbon
547 Monoxide to Ethanol on Oxide-Derived Copper. *Angew. Chem. Int. Ed.* **55**, 1450-1454,
548 (2016).
- 549 37 Raciti, D. *et al.* Low-Overpotential Electroreduction of Carbon Monoxide Using Copper
550 Nanowires. *ACS Catal.* **7**, 4467-4472, (2017).
- 551 38 Feng, X., Jiang, K., Fan, S. & Kanan, M. W. A Direct Grain-Boundary-Activity
552 Correlation for CO Electroreduction on Cu Nanoparticles. *ACS Cent. Sci.* **2**, 169-174,
553 (2016).
- 554 39 Verdaguer-Casadevall, A. *et al.* Probing the Active Surface Sites for CO Reduction on
555 Oxide-Derived Copper Electrocatalysts. *J. Am. Chem. Soc.* **137**, 9808-9811, (2015).
- 556 40 Mariano, R. G., McKelvey, K., White, H. S. & Kanan, M. W. Selective increase in CO₂
557 electroreduction activity at grain-boundary surface terminations. *Science* **358**, 1187-1192,
558 (2017).
- 559 41 Raciti, D. *et al.* Low-Overpotential Electroreduction of Carbon Monoxide Using Copper
560 Nanowires. *ACS Catal.* **7**, 4467-4472, (2017).
- 561 42 Raciti, D. & Wang, C. Recent Advances in CO₂ Reduction Electrocatalysis on Copper.
562 *ACS Energy Lett.* **3**, 1545-1556, (2018).
- 563 43 Eren, B. *et al.* Activation of Cu(111) surface by decomposition into nanoclusters driven
564 by CO adsorption. *Science* **351**, 475-478, (2016).
- 565 44 Eren, B. *et al.* One-dimensional nanoclustering of the Cu(100) surface under CO gas in
566 the mbar pressure range. *Surf. Sci.* **651**, 210-214, (2016).
- 567 45 Gunathunge, C. M. *et al.* Spectroscopic Observation of Reversible Surface
568 Reconstruction of Copper Electrodes under CO₂ Reduction. *J. Phys. Chem. C* **121**,
569 12337-12344, (2017).
- 570 46 Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the
571 electrochemical reduction of carbon dioxide on metallic copper surfaces. *Energy Environ.
Sci.* **5**, 7050-7059, (2012).
- 573 47 Gupta, N., Gattrell, M. & MacDougall, B. Calculation for the cathode surface
574 concentrations in the electrochemical reduction of CO₂ in KHCO₃ solutions. *J. Appl.
Electrochem.* **36**, 161-172, (2006).
- 576 48 Ma, S. *et al.* Carbon nanotube containing Ag catalyst layers for efficient and selective
577 reduction of carbon dioxide. *J. Mater. Chem. A* **4**, 8573-8578, (2016).
- 578 49 Hoang, T. T. H., Ma, S., Gold, J. I., Kenis, P. J. A. & Gewirth, A. A. Nanoporous Copper
579 Films by Additive-Controlled Electrodeposition: CO₂ Reduction Catalysis. *ACS Catal.* **7**,
580 3313-3321, (2017).
- 581 50 Birdja, Y. Y. & Koper, M. T. The Importance of Cannizzaro-Type Reactions during
582 Electrocatalytic Reduction of Carbon Dioxide. *J. Am. Chem. Soc.* **139**, 2030-2034,
583 (2017).
- 584 51 Garza, A. J., Bell, A. T. & Head-Gordon, M. Mechanism of CO₂ Reduction at Copper
585 Surfaces: Pathways to C₂ Products. *ACS Catal.* **8**, 1490-1499, (2018).
- 586 52 Greenzaid, P., Luz, Z. & Samuel, D. A nuclear magnetic resonance study of the
587 reversible hydration of aliphatic aldehydes and ketones. II. The acid-catalyzed oxygen
588 exchange of acetaldehyde. *J. Am. Chem. Soc.* **89**, 756-759, (1967).

- 589 53 Clark, E. L. & Bell, A. T. Direct Observation of the Local Reaction Environment during
590 the Electrochemical Reduction of CO₂. *J. Am. Chem. Soc.* **140**, 7012-7020, (2018).
- 591 54 Gileadi, E. *Physical electrochemistry: fundamentals, techniques and applications*.
592 (2011).
- 593 55 Hori, Y., Takahashi, I., Koga, O. & Hoshi, N. Electrochemical reduction of carbon
594 dioxide at various series of copper single crystal electrodes. *J. Mol. Catal. A: Chem.* **199**,
595 39-47, (2003).
- 596 56 Song, Y. *et al.* High-Selectivity Electrochemical Conversion of CO₂ to Ethanol using a
597 Copper Nanoparticle/N-Doped Graphene Electrode. *ChemistrySelect* **1**, 6055-6061,
598 (2016).
- 599 57 Ren, D. *et al.* Selective Electrochemical Reduction of Carbon Dioxide to Ethylene and
600 Ethanol on Copper(I) Oxide Catalysts. *ACS Catal.* **5**, 2814-2821, (2015).
- 601 58 Weng, Z. *et al.* Electrochemical CO₂ Reduction to Hydrocarbons on a Heterogeneous
602 Molecular Cu Catalyst in Aqueous Solution. *J. Am. Chem. Soc.* **138**, 8076-8079, (2016).
- 603 59 De Luna, P. *et al.* Catalyst electro-redistribution controls morphology and oxidation state
604 for selective carbon dioxide reduction. *Nat. Catal.* **1**, 103-110, (2018).
- 605 60 Hoang, T. T. H. *et al.* Nanoporous Copper–Silver Alloys by Additive-Controlled
606 Electrodeposition for the Selective Electroreduction of CO₂ to Ethylene and Ethanol. *J.*
607 *Am. Chem. Soc.* **140**, 5791-5797, (2018).
- 608 61 Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-
609 ray absorption spectroscopy using IFEFFIT. *J. Synchrotron Radiat.* **12**, 537-541, (2005).

610

611 **Acknowledgements**

612

613 We would like to thank Dr. Bingjun Xu and Marco Dunwell for useful discussion. We would also
614 like to thank Brian Murphy for help with GC-MS experiments and Dr. Brian Setzler for help with
615 the transport model. This material is based upon work supported by the Department of Energy
616 under Award Number DE-FE0029868. The authors also thank the National Science Foundation
617 Faculty Early Career Development program (Award No. CBET-1350911). This research used
618 resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science
619 User Facility operated for the DOE Office of Science by Argonne National Laboratory under
620 Contract No. DE-AC02-06CH11357.

621

622 **Author contributions**

623 M.J. synthesized the electrodes, performed XAS characterization, designed and performed flow
624 electrolysis experiments, analysed the data, and wrote the manuscript. W.L. performed SEM, XPS,
625 and XRD characterizations and surface pH calculations. F.J. supervised the project. All authors
626 contributed to discussion of results and manuscript preparation.

627

628 **Competing interests**

629 The authors declare no competing financial interests.