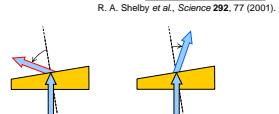


Terahertz Metamaterials on Thin Silicon Nitride Membranes

Xomalin G. Peralta,^{1,*} C.L. Arrington,¹ J.D. Williams,¹ A. Strikwerda,² R.D. Averitt,² W.J. Padilla,³ J.F. O'Hara,^{4,*} and I. Brener^{1,*}

¹Sandia National Laboratories, ^{*}CINT, ²Boston University, ³Boston College, ⁴Los Alamos National Laboratory

What are metamaterials?

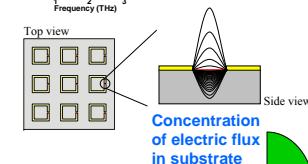


Metamaterials are artificial materials with designed electromagnetic properties that go **beyond** those of naturally occurring materials.

Example: Negative Index of Refraction

Microwave prism - a quasi 3D structure formed of double split-ring resonators and wire arrays.

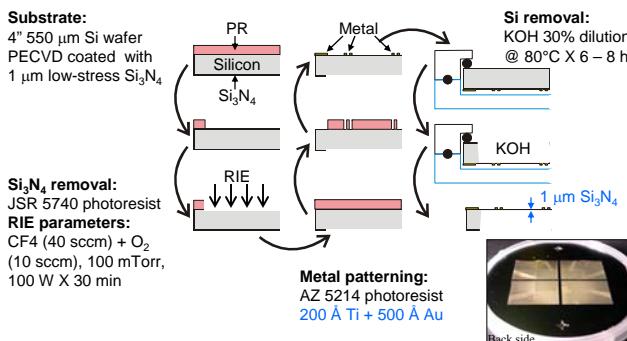
R. A. Shelby et al., *Science* 292, 77 (2001).

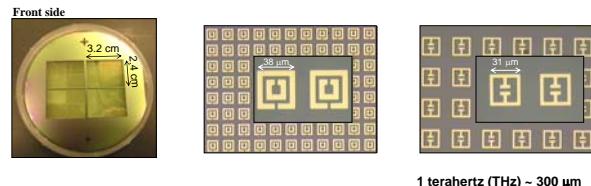


Negative index material
Normal material
No equivalent fabrication process at higher frequencies

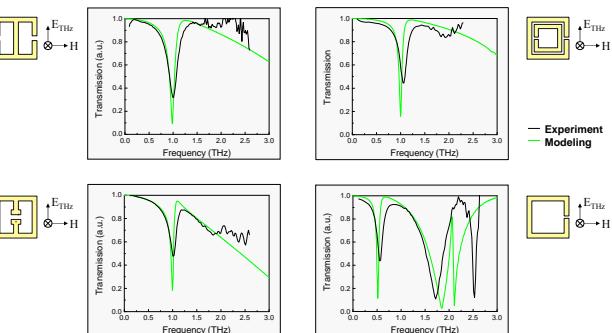
Application: Biosensing

Transmission $\propto \frac{1}{1 + \frac{\omega_{res}}{\omega}}$

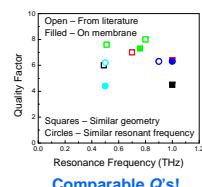

Detection scheme: Modify the dielectric in the gap to modify the resonance.


Why metamaterials on membranes?

- They provide a path towards 3D metamaterials.
- Impose symmetry on the electric flux distribution.

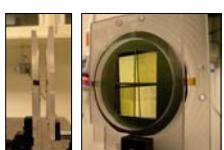

Fabrication

Planar metamaterials on SiN membranes


Experiment and electromagnetic modeling of THz transmission spectra

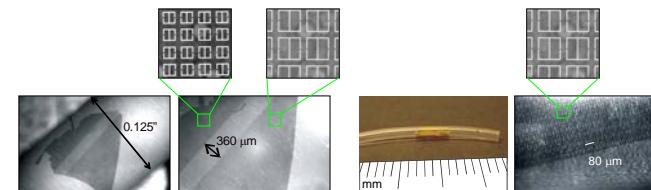
Differences may be attributed to:

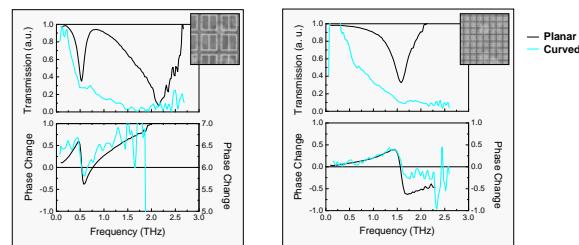
- Constant dielectric permittivity used in EM modeling.
- Effect of higher-order modes.


Comparison to thick substrates

From the literature:
Substrate materials: Quartz, GaAs, Si
Thickness range: 1.03 mm - 640 μm

- Consider effect of coupling between resonators.
- Metallization thickness 70 nm vs. (3 μm - 200 nm).


Stacking


Limited to two layers due to substrate thickness.

Membrane removal allows multilayer stacking.
Can also make curved metamaterials!

Curved metamaterials on SiN membranes

THz transmission spectra of a metamaterial covered membrane on a Teflon tube

- Small decrease in transmission at resonance.
- Uniformly decreasing background in transmission.
- Clear resonance in phase change data.

Conclusions

- Fabricated THz metamaterials on large-area, free-standing, 1 μm Si₃N₄ membranes.
- Obtained comparable quality factors to those fabricated on thick substrates so they can still be used for sensing.
- Implemented a double layer THz metamaterial scheme.
- Identified a route for membrane liftoff.
- First implementation and characterization of curved THz metamaterials.

Future work

- Characterize THz metamaterial bilayer.
- Implement membrane liftoff technique.
- Study curved THz metamaterial's response.

Acknowledgements

We would like to thank A. K. Azad for help with the measurements on the 3D structures.

References

D. R. Smith et al., *PRL* 84, 4184 (2000).
 B. Ferguson et al., *Nature Materials* 1, 26 (2002).
 W. J. Padilla et al., *PRL* 96, 107401 (2006).
 J. F. O'Hara et al., *J. Nanolectro. Optoelectron.* 2, 90 (2007).
 X. G. Peralta et al., *Conf. Proc. MRS Spring Meeting 2008*.

IC Postdoctoral Research Fellowship Program
Universities