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Reduced Order Models (ROMs)

* Goal of Reduced Order Modeling

— Construct a surrogate numerical model that captures the essential
dynamics of a full numerical model but at much cheaper expense.

« Applications in Fluid Dynamics

— Predictive modeling across a parameter space, e.g. aeroelastic flutter
analysis

— System model for active flow control

— Long-time unsteady flow analysis, e.g. fatigue of a wind turbine blade
under variable wind conditions
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Reduced Order Modeling (ROM) Approach
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Predictive ROMs: Numerical Analysis

* The projection approach is really an alternative discretization
of the governing PDEs (global Galerkin)

— Consistency with continuous PDE: Loosely speaking, a
ROM can be consistent with respect to the full simulations
used to generate it.

— Stability: Numerical stability is not guaranteed, in general.
There are many examples of POD/Galerkin ROM instability.

— Convergence: Consistency and stability are required.
— Accuracy: Error estimates are often not available.

* This presentation is focused on stability of Galerkin ROMs.
There are other important issues, connected with consistency,
convergence, and accuracy.
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A Stable Galerkin ROM approach

— Background (POD, Galerkin projection)
— Development of the stable inner product
— Boundary conditions that preserve ROM stability

 Demonstration
— Stability for a random basis
— 1D acoustic pulse in a uniform flow
— 2D cylindrical pressure pulse in a uniform flow

 Brief overview of stable coupled fluid/structure
ROM method

Outline
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Step 1: Constructing Modes
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Proper Orthogonal Decomposition (POD)

Modal Decomposition of the Solution :

u(x,t) = > a;(t)e;(x)
J
Ensemble of solutions from full simulation: {u“'(x) }

Inner product, .° for example : (u,v) = ] w v df)
QO

Time or ensemble averaging operator : <)

- 2
POD optimization problem : S %

POD eigenvalue problem* :

Ro = \é

(*C. W. Rowley et al., Physica D, 2004) Rqﬁ — <uA-(uA- ¢)>
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Step 2: Project the equations onto the modes
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Nonlinear PDE with linear term, quadratic and cubic nonlinearities

Galerkin Projection

Jdu i )
It Lu+ Ns(u,u) + N3(u,u, u)
p

Project the PDE onto a set of modes using an inner product operator

Jdu
(07_ ¢) (Lu, @;) + (Na(u,u), ¢;) + (Ns(u,u,u), ¢,)

Substituting the modal decomposition u(x.7) = Zfﬂj(f)cﬁj(X) results in an

ODE in the modal amplitudes, with pre-computable coefficients

day,

—_— = Za;(qﬁk, ﬁ((ﬁg)) + Zazam ¢k 9{’3 ¢7n + Z Uy oy Ay ¢F. \S(QBL' ﬁém ¢5ﬂ))

dt
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Numerical Stability of a ROM

* A practical definition: The numerical solution
does not blow up in time unexpectedly.

* A more precise definition: The norm of the
numerical solution remains bounded in a way that
iIs consistent with exact solutions to the
governing differential equations.

* Method of analysis: The energy method uses an
equation for the evolution of numerical solution
“energy” to determine stability.
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Linearized Euler Equations

» Obtained by linearizing the full Euler equations about a steady base flow.
» Useful for aeroelasticity problems, aeroacoustics, flow instability analysis.

. ’ T
q(x,t) =q(x) + q'(x,t) q= [u. vow ¢ p]
aq’ _
;; +A(Q) Vg +C(@gq =0
where
_ 4 = 1T
A(q) = [4:(aQ), 44(q). A-(q)]
[ 0 0 0 (] (5 0 0 0 0] (@ 0 0 0 0]
0O @ 0 0 0 0O & 00 ¢ O @ 0 0 0
A4, =10 0 a 0 0] A =10 0 v 00| A=|00 @ 0
—C 00 a0 0 —C 07 0 00 —=C @ 0
vp 0 0 0 @ 0 v 0 0 7 (0 0 ~p 0 o
[oa da da 9p 0 7
dr Oy Oz oz -
dr Oy =z L;u )
dw  OHa  Ow On )
C=|2 % 3 5 0
ac  ac  ac ba | o5 , ow :
a oy o *(@*@*?) 0
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Symmetrization of the Linearized Euler Equations

* The energy method can be used following “symmetrization” of the
linearized Euler equations.

« Multiply the equations by the positive definite matrix:

5 0 0 0 0
0 p 0 0 0
H=10 05 0 0
0 0 0 a*vp*p pa?
000 pa? )

« Both H and all the H A; are symmetric matrices
aq’ aq’

H
ot ()tj

+HCq =0
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Stability of the Galerkin Approximation

 Define the “energy inner product” and corresponding norm:
(u,v)g = [ u! Hv dQ |d'||g = (qr_q/)g‘z
J

» Exact solutions to the linearized Euler equations satisfy:

ld'(z. )|l < el (x,0)[|m

* Introduce the approximate Galerkin solution
M

Ay = D ar(t)dr(x)

k=1
* It turns out that the Galerkin approximation satisfies the same energy

expression as for the continuous equations, i.e. it is stable.
|y (2, )| < e™||dy (,0)||a

« For uniform flow, the Galerkin scheme satisfies the strong stability

condition: |
ldn (z, ) || < ||dy (z,0)||a
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Inner Product for Linearized Compressible Flow

The stability analysis dictates that we use the following
“energy inner product” to both compute the POD modes and to
perform the Galerkin projection.

(1) 4(2) _ A1) 4(2) J(1) 4(2) A1) A2
(4 .9 )m :/ {p (-u v +v v Hw w i
Q2

‘ ‘ { (2 1+ 0‘2 (1) ,42) ‘ (2 ) ( (2) .
Pyptp T+ ——— " +r‘12/_(CI P AR ’)] dQ
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Construction of the Fluid ROM (No BC’s)

« Galerkin Projection Step
dq’ ~ -, | B 7
(¢J ) +(¢;,A(Q) - Vq )y +(¢;,C(Q)q)y =0

. Reduced Order Model
M
;= —qu (65, A@)  Vor)n — Y _ar(¢;. C(@ée)n. j=1.....M

k=1

 Matrix Form
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Stable ROM Boundary Conditions

 In Galerkin projection step, integrate the following term by parts:

* Boundary conditions are implemented weakly by
specifying this state in the boundary integral.
« Characteristic boundary conditions are used.

Energy stability is maintained if the boundary conditions are such that

¢fH(q_) (A(Q) n)q'dS >0
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Numerical Implementation of Fluid ROM

« So far, all the analysis is for continuous and
smooth basis functions and exact evaluation of
inner product integrals.

- A discrete implementation is required that
preserves stability.

e Solution:

— Define solution snapshots and POD basis functions
using a piece-wise smooth finite element representation

— Apply Gauss quadrature rules of sufficent accuracy to
exactly integrate the inner products

— Fairly general, works for any nodal mesh that can be
represented using finite elements.
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Computer Code to Generate ROMs

 For ROMs based on large CFD simulations, construction of
the ROM is memory and CPU intensive

» A parallel computer code was developed to interface with a
CFD code, and compute POD bases and Galerkin projection

Built using the parallel data structures and linear algebra routines from
the Trilinos project, developed at Sandia

POD eigensolve performed in parallel using the RBGen Trilinos
package

Core routines are general, with 1/O interface required to handle data
from different CFD codes and finite element infrastructure required to
compute gradients and inner product integrals

Currently, only AERO-F code (C. Farhat, Stanford U.) interface is
implemented, for unstructured tetrahedral meshes
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Example: Purely Random Basis
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Each mode is a random disturbance field that decays to zero at the domain
boundaries.

Uniform steady base flow.

Recall ROM form a; = Ajia;. : positive real part of eigenvalues of A determine
stability in time.

Model problem for modes dominated by numerical error. Sandia
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Laboratories



Y

Example: 1D Acoustic Pulse

- Mode 1 Mode 2

CFD animation: pressure

Il | |
|
| 1 |
| | |
14 IN Hninge
* Uniform base flow with velocity U/c = M = 0.5 in the x-direction
the x-direction with velocity U+c
 Slip wall boundary condition applied on the top, bottom, and side

Mode 3 Mode 12
« Acoustic pulse prescribed as an initial condition, propagates in
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1D Pressure Pulse : Stability

* Four Galerkin schemes
were used
— Symmetry inner
product, with and w/o
boundary conditions

— L2 inner product, with
and w/o boundary
conditions

* Only the symmetry inner
product with boundary
conditions remains stable
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1D Pressure Pulse Results

« Comparison of the ROM
result with the projection
of the CFD simulation
onto the POD modes

This particular ROM
appears to be convergent
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Example: 2D Pressure Pulse

* M=0.25 uniform base flow, cylindrical
Gaussian pressure pulse

* The ROM is stable

* Very good qualitative agreement with
12 mode ROM

JS=——=2i 1
C w
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Coupled Fluid-Structure ROM

* The fluid ROM wall boundary condition allows for coupling of a fluid
ROM to a structural dynamics ROM for the case of small (linear)
structural displacements.

» Transfer of fluid pressure loading to the structure is possible using a
fluid/structure boundary integral.

Forced Flexible Plate
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A Galerkin projection technique for linearized,
compressible flow
— Numerically stable for any choice of basis
— Weak boundary conditions that preserve stability

— Numerical implementation using finite elements that preserves
stability

 ROMs using this scheme were demonstrated to
be stable on several model problems

Summary
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« Examine ROM performance for more
complicated systems.
— Non-uniform base flow.
— Coupled fluid-structure problem.

Future Directions

Stalled Airfoil Wake

* Towards stable Nonlinear ROMs

— Try out the linear symmetry inner product
on the nonlinear equations.

— The nonlinear Euler (and Navier-Stokes)
equations can also be symmetrized,
leading to an “entropy-stable” inner
product.
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Energy Expression for the Linearized Euler Equations

« Multiply by 9, integrate by parts, and use the symmetry of H and H A,
to derive the global “energy” expression:
d

T !
- Haq' dQ) =
ot o b Hae

%)
- f qTH(A;n;)q dS + f q’ (‘(HAJ-) — HC — OTH) q dQ
o0 Q Ju;
* Ignore the boundary integral for now

« The above equation leads to a statement of energy behavior for exact
solutions to the linearized Euler equations:

) , ,
; qTHq' dQ < 2a / qTHq' dQ  « is a constant
()f JQ Q

» Define the “energy inner product” and corresponding norm:

(0, v)y = / u’ Hv dQ o'l =(dq' . q)y"
Ja
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