

Galerkin Reduced Order Models for Compressible Flow with Structural Interaction

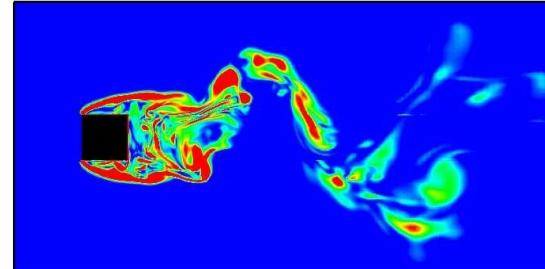
Matthew Barone, Daniel Segalman, Heidi Thornquist, Jeffrey Payne
Sandia National Laboratories, Albuquerque, NM*

Irina Kalashnikova
Sandia National Laboratories, Albuquerque, NM*
and
Institute for Computational and Mathematical Engineering
Stanford University, Stanford, CA

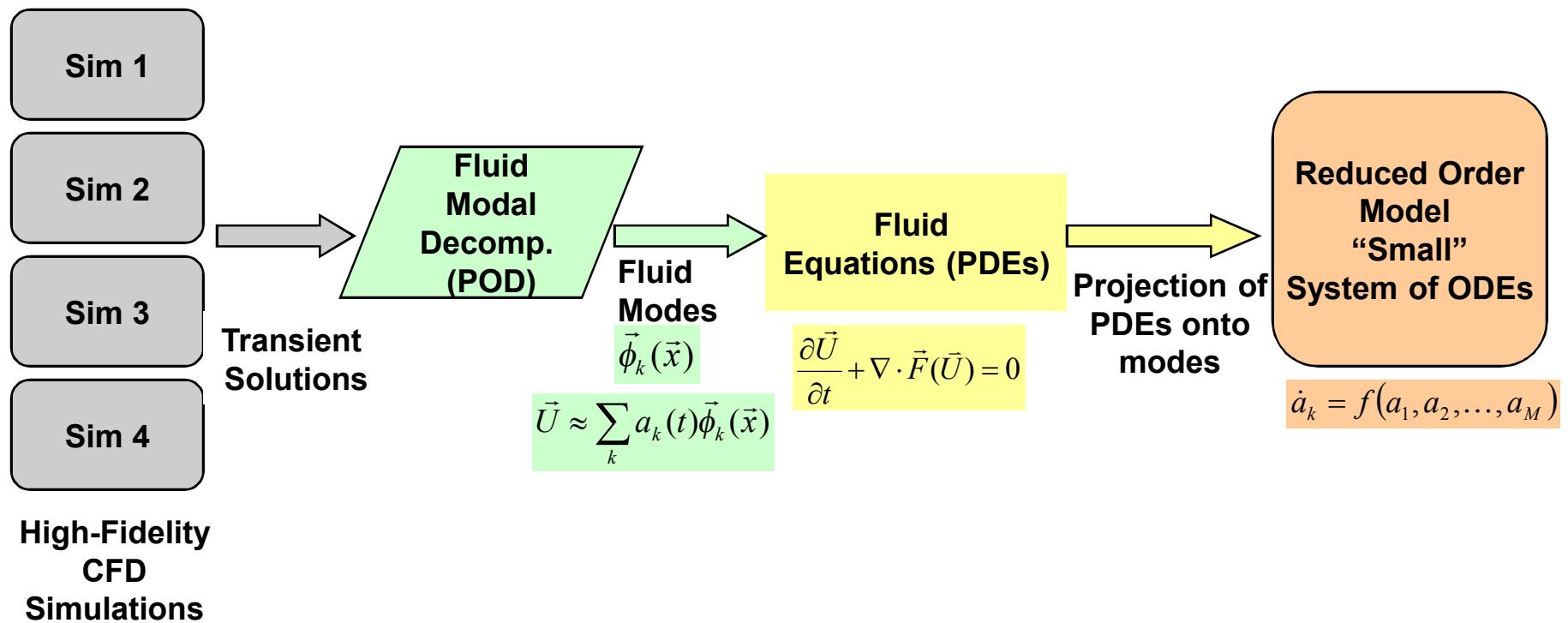
*Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000

Reduced Order Models (ROMs)

- **Goal of Reduced Order Modeling**
 - Construct a surrogate numerical model that captures the essential dynamics of a full numerical model but at much cheaper expense.
- **Applications in Fluid Dynamics**
 - Predictive modeling across a parameter space, e.g. aeroelastic flutter analysis
 - System model for active flow control
 - Long-time unsteady flow analysis, e.g. fatigue of a wind turbine blade under variable wind conditions



Reduced Order Modeling (ROM) Approach



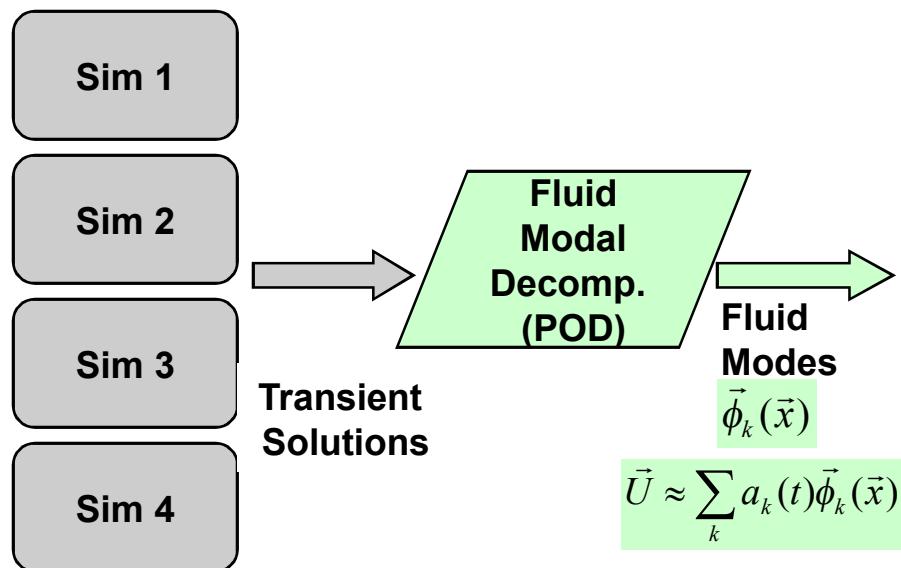
Predictive ROMs: Numerical Analysis

- The projection approach is really an alternative discretization of the governing PDEs (global Galerkin)
 - **Consistency with continuous PDE**: Loosely speaking, a ROM *can be* consistent with respect to the full simulations used to generate it.
 - **Stability**: Numerical stability is not guaranteed, in general. There are many examples of POD/Galerkin ROM instability.
 - **Convergence**: Consistency and stability are required.
 - **Accuracy**: Error estimates are often not available.
- This presentation is focused on **stability** of Galerkin ROMs. There are other important issues, connected with consistency, convergence, and accuracy.

Outline

- **A Stable Galerkin ROM approach**
 - Background (POD, Galerkin projection)
 - Development of the stable inner product
 - Boundary conditions that preserve ROM stability
- **Demonstration**
 - Stability for a random basis
 - 1D acoustic pulse in a uniform flow
 - 2D cylindrical pressure pulse in a uniform flow
- **Brief overview of stable coupled fluid/structure ROM method**

Step 1: Constructing Modes



High-Fidelity
CFD
Simulations

Proper Orthogonal Decomposition (POD)

Modal Decomposition of the Solution :

$$\mathbf{u}(\mathbf{x}, t) = \sum_j a_j(t) \boldsymbol{\phi}_j(\mathbf{x})$$

Ensemble of solutions from full simulation: $\{\mathbf{u}^k(\mathbf{x})\}$

Inner product, L^2 for example : $(u, v) = \int_{\Omega} u v \, d\Omega$

Time or ensemble averaging operator : $\langle \cdot \rangle$

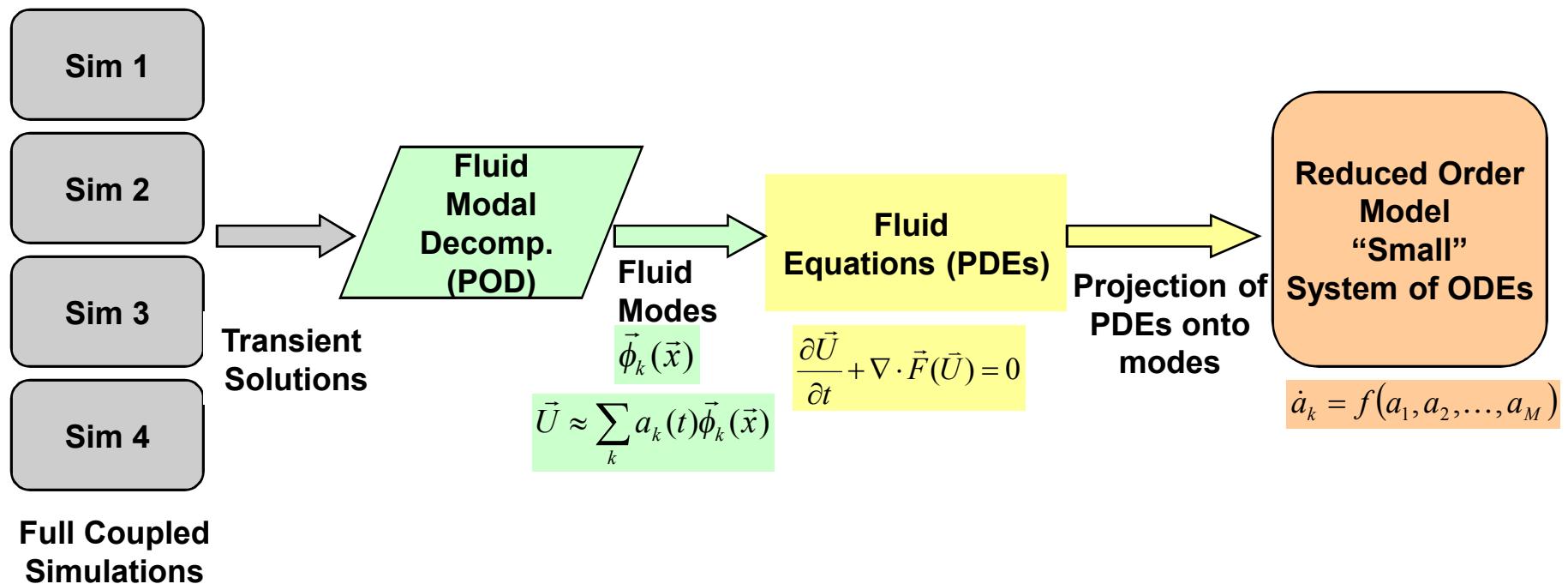
POD optimization problem :
$$\max_{\boldsymbol{\phi} \in H(\Omega)} \frac{\langle (\mathbf{u}, \boldsymbol{\phi})^2 \rangle}{\|\boldsymbol{\phi}\|^2}$$

POD eigenvalue problem* : $\mathbf{R}\boldsymbol{\phi} = \lambda\boldsymbol{\phi}$

(*C. W. Rowley *et al.*, *Physica D*, 2004)

$$\mathbf{R}\boldsymbol{\phi} \equiv \langle \mathbf{u}^k(\mathbf{u}^k, \boldsymbol{\phi}) \rangle$$

Step 2: Project the equations onto the modes



Galerkin Projection

Nonlinear PDE with linear term, quadratic and cubic nonlinearities

$$\frac{\partial \mathbf{u}}{\partial t} = \mathcal{L}\mathbf{u} + \mathcal{N}_2(\mathbf{u}, \mathbf{u}) + \mathcal{N}_3(\mathbf{u}, \mathbf{u}, \mathbf{u})$$

Project the PDE onto a set of modes using an inner product operator

$$\left(\frac{\partial \mathbf{u}}{\partial t}, \phi_j \right) = (\mathcal{L}\mathbf{u}, \phi_j) + (\mathcal{N}_2(\mathbf{u}, \mathbf{u}), \phi_j) + (\mathcal{N}_3(\mathbf{u}, \mathbf{u}, \mathbf{u}), \phi_j)$$

Substituting the modal decomposition $\mathbf{u}(\mathbf{x}, t) = \sum_j a_j(t) \phi_j(\mathbf{x})$ results in an ODE in the modal amplitudes, with pre-computable coefficients

$$\frac{da_k}{dt} = \sum_l a_l(\phi_k, \mathcal{L}(\phi_l)) + \sum_{l,m} a_l a_m(\phi_k, \mathcal{N}_2(\phi_l, \phi_m)) + \sum_{l,m,n} a_l a_m a_n(\phi_k, \mathcal{N}_3(\phi_l, \phi_m, \phi_n))$$



Numerical Stability of a ROM

- **A practical definition:** The numerical solution does not blow up in time unexpectedly.
- **A more precise definition:** The norm of the numerical solution remains bounded in a way that is consistent with exact solutions to the governing differential equations.
- **Method of analysis:** The **energy method** uses an equation for the evolution of numerical solution “energy” to determine stability.

Linearized Euler Equations

- Obtained by linearizing the full Euler equations about a steady base flow.
- Useful for aeroelasticity problems, aeroacoustics, flow instability analysis.

$$\mathbf{q}(\mathbf{x}, t) = \bar{\mathbf{q}}(\mathbf{x}) + \mathbf{q}'(\mathbf{x}, t)$$

$$\mathbf{q} = [u \ v \ w \ \zeta \ p]^T$$

$$\frac{\partial \mathbf{q}'}{\partial t} + \mathbf{A}(\bar{\mathbf{q}}) \cdot \nabla \mathbf{q}' + \mathbf{C}(\bar{\mathbf{q}}) \mathbf{q}' = 0$$

where

$$\mathbf{A}(\bar{\mathbf{q}}) \equiv [A_x(\bar{\mathbf{q}}), A_y(\bar{\mathbf{q}}), A_z(\bar{\mathbf{q}})]^T,$$

$$A_x = \begin{bmatrix} \bar{u} & 0 & 0 & 0 & \bar{\zeta} \\ 0 & \bar{u} & 0 & 0 & 0 \\ 0 & 0 & \bar{u} & 0 & 0 \\ -\bar{\zeta} & 0 & 0 & \bar{u} & 0 \\ \gamma \bar{p} & 0 & 0 & 0 & \bar{u} \end{bmatrix} \quad A_y = \begin{bmatrix} \bar{v} & 0 & 0 & 0 & 0 \\ 0 & \bar{v} & 0 & 0 & \bar{\zeta} \\ 0 & 0 & \bar{v} & 0 & 0 \\ 0 & -\bar{\zeta} & 0 & \bar{v} & 0 \\ 0 & \gamma \bar{p} & 0 & 0 & \bar{v} \end{bmatrix} \quad A_z = \begin{bmatrix} \bar{w} & 0 & 0 & 0 & 0 \\ 0 & \bar{w} & 0 & 0 & 0 \\ 0 & 0 & \bar{w} & 0 & \bar{\zeta} \\ 0 & 0 & -\bar{\zeta} & \bar{w} & 0 \\ 0 & 0 & \gamma \bar{p} & 0 & \bar{w} \end{bmatrix}$$

$$C = \begin{bmatrix} \frac{\partial \bar{u}}{\partial x} & \frac{\partial \bar{u}}{\partial y} & \frac{\partial \bar{u}}{\partial z} & \frac{\partial \bar{p}}{\partial x} & 0 \\ \frac{\partial \bar{v}}{\partial x} & \frac{\partial \bar{v}}{\partial y} & \frac{\partial \bar{v}}{\partial z} & \frac{\partial \bar{p}}{\partial y} & 0 \\ \frac{\partial \bar{w}}{\partial x} & \frac{\partial \bar{w}}{\partial y} & \frac{\partial \bar{w}}{\partial z} & \frac{\partial \bar{p}}{\partial z} & 0 \\ \frac{\partial \bar{\zeta}}{\partial x} & \frac{\partial \bar{\zeta}}{\partial y} & \frac{\partial \bar{\zeta}}{\partial z} & - \left(\frac{\partial \bar{u}}{\partial x} + \frac{\partial \bar{v}}{\partial y} + \frac{\partial \bar{w}}{\partial z} \right) & 0 \\ \frac{\partial \bar{p}}{\partial x} & \frac{\partial \bar{p}}{\partial y} & \frac{\partial \bar{p}}{\partial z} & 0 & \gamma \left(\frac{\partial \bar{u}}{\partial x} + \frac{\partial \bar{v}}{\partial y} + \frac{\partial \bar{w}}{\partial z} \right) \end{bmatrix}$$

Symmetrization of the Linearized Euler Equations

- The energy method can be used following “symmetrization” of the linearized Euler equations.
- Multiply the equations by the positive definite matrix:

$$H = \begin{bmatrix} \bar{\rho} & 0 & 0 & 0 & 0 \\ 0 & \bar{\rho} & 0 & 0 & 0 \\ 0 & 0 & \bar{\rho} & 0 & 0 \\ 0 & 0 & 0 & \alpha^2 \gamma \bar{\rho}^2 \bar{p} & \bar{\rho} \alpha^2 \\ 0 & 0 & 0 & \bar{\rho} \alpha^2 & \frac{(1+\alpha^2)}{\gamma \bar{p}} \end{bmatrix}$$

- Both H and all the HA_j are symmetric matrices

$$H \frac{\partial \mathbf{q}'}{\partial t} + HA_j \frac{\partial \mathbf{q}'}{\partial x_j} + HC \mathbf{q}' = 0$$

Stability of the Galerkin Approximation

- Define the “energy inner product” and corresponding norm:

$$(\mathbf{u}, \mathbf{v})_H \equiv \int_{\Omega} \mathbf{u}^T H \mathbf{v} \, d\Omega \quad \|\mathbf{q}'\|_H \equiv (\mathbf{q}', \mathbf{q}')_H^{1/2}$$

- Exact solutions to the linearized Euler equations satisfy:

$$\|\mathbf{q}'(x, t)\|_H \leq e^{\alpha t} \|\mathbf{q}'(x, 0)\|_H$$

- Introduce the approximate Galerkin solution

$$\mathbf{q}'_N = \sum_{k=1}^M a_k(t) \phi_k(\mathbf{x})$$

- It turns out that the Galerkin approximation satisfies the same energy expression as for the continuous equations, i.e. it is stable.

$$\|\mathbf{q}'_N(x, t)\|_H \leq e^{\alpha t} \|\mathbf{q}'_N(x, 0)\|_H$$

- For uniform flow, the Galerkin scheme satisfies the strong stability condition:

$$\|\mathbf{q}'_N(x, t)\|_H \leq \|\mathbf{q}'_N(x, 0)\|_H$$

Inner Product for Linearized Compressible Flow

The stability analysis dictates that we use the following “energy inner product” to both compute the POD modes and to perform the Galerkin projection.

$$(\mathbf{q}'^{(1)}, \mathbf{q}'^{(2)})_H = \int_{\Omega} \left[\bar{\rho} \left(u'^{(1)} u'^{(2)} + v'^{(1)} v'^{(2)} + w'^{(1)} w'^{(2)} \right) + \alpha^2 \gamma \bar{\rho}^2 \bar{p} \zeta'^{(1)} \zeta'^{(2)} + \frac{1 + \alpha^2}{\gamma \bar{p}} p'^{(1)} p'^{(2)} + \alpha^2 \bar{\rho} \left(\zeta'^{(2)} p'^{(1)} + \zeta'^{(1)} p'^{(2)} \right) \right] d\Omega$$

Construction of the Fluid ROM (No BC's)

- **Galerkin Projection Step**

$$\left(\phi_j, \frac{\partial \mathbf{q}'}{\partial t} \right)_H + (\phi_j, \mathbf{A}(\bar{\mathbf{q}}) \cdot \nabla \mathbf{q}')_H + (\phi_j, C(\bar{\mathbf{q}}) \mathbf{q}')_H = 0$$

- **Reduced Order Model**

$$\dot{a}_j = - \sum_{k=1}^M a_k (\phi_j, \mathbf{A}(\bar{\mathbf{q}}) \cdot \nabla \phi_k)_H - \sum_{k=1}^M a_k (\phi_j, C(\bar{\mathbf{q}}) \phi_k)_H, \quad j = 1, \dots, M$$

- **Matrix Form**

$$\dot{a}_j = A_{jk} a_k, \quad j = 1, \dots, M$$



Stable ROM Boundary Conditions

- In Galerkin projection step, integrate the following term by parts:

$$\begin{aligned} (\phi_j, \mathbf{A}(\bar{\mathbf{q}}) \cdot \nabla \mathbf{q}')_H &= \int_{\partial\Omega} \phi_j^T H(\bar{\mathbf{q}}) (\mathbf{A}(\bar{\mathbf{q}}) \cdot \mathbf{n}) \mathbf{q}' \, dS \\ &\quad - \int_{\Omega} (\nabla \cdot [\phi_j^T H(\bar{\mathbf{q}}) \mathbf{A}(\bar{\mathbf{q}})]) \mathbf{q}' \, d\Omega \end{aligned}$$

- Boundary conditions are implemented weakly by specifying this state in the boundary integral.
- Characteristic boundary conditions are used.

Energy stability is maintained if the boundary conditions are such that

$$\int_{\partial\Omega} \phi_j^T H(\bar{\mathbf{q}}) (\mathbf{A}(\bar{\mathbf{q}}) \cdot \mathbf{n}) \mathbf{q}' \, dS \geq 0$$

Numerical Implementation of Fluid ROM

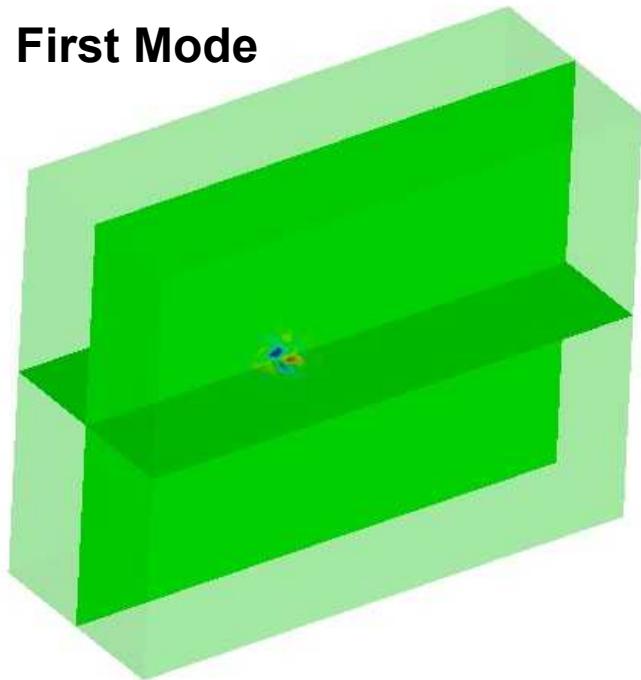
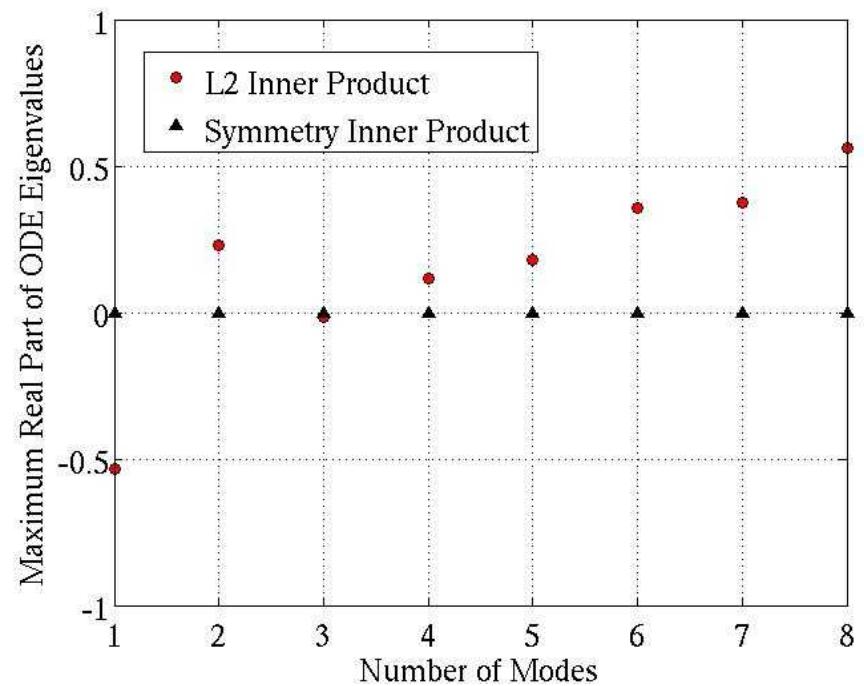
- So far, all the analysis is for continuous and smooth basis functions and exact evaluation of inner product integrals.
- A discrete implementation is required that preserves stability.
- **Solution:**
 - Define solution snapshots and POD basis functions using a piece-wise smooth finite element representation
 - Apply Gauss quadrature rules of sufficient accuracy to exactly integrate the inner products
 - Fairly general, works for any nodal mesh that can be represented using finite elements.

Computer Code to Generate ROMs

- For ROMs based on large CFD simulations, construction of the ROM is memory and CPU intensive
- A parallel computer code was developed to interface with a CFD code, and compute POD bases and Galerkin projection
 - Built using the parallel data structures and linear algebra routines from the Trilinos project, developed at Sandia
 - POD eigensolve performed in parallel using the RBGen Trilinos package
 - Core routines are general, with I/O interface required to handle data from different CFD codes and finite element infrastructure required to compute gradients and inner product integrals
 - Currently, only AERO-F code (C. Farhat, Stanford U.) interface is implemented, for unstructured tetrahedral meshes

Example: Purely Random Basis

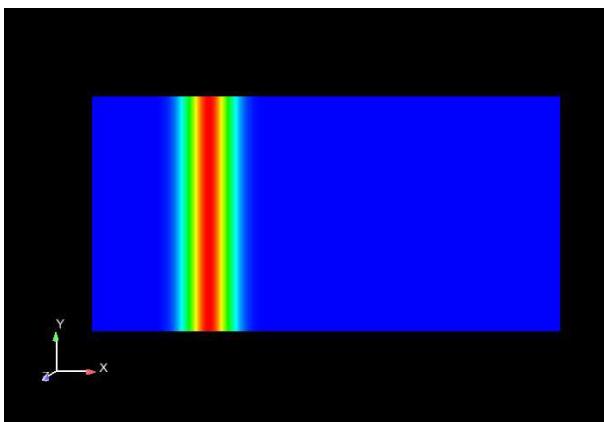
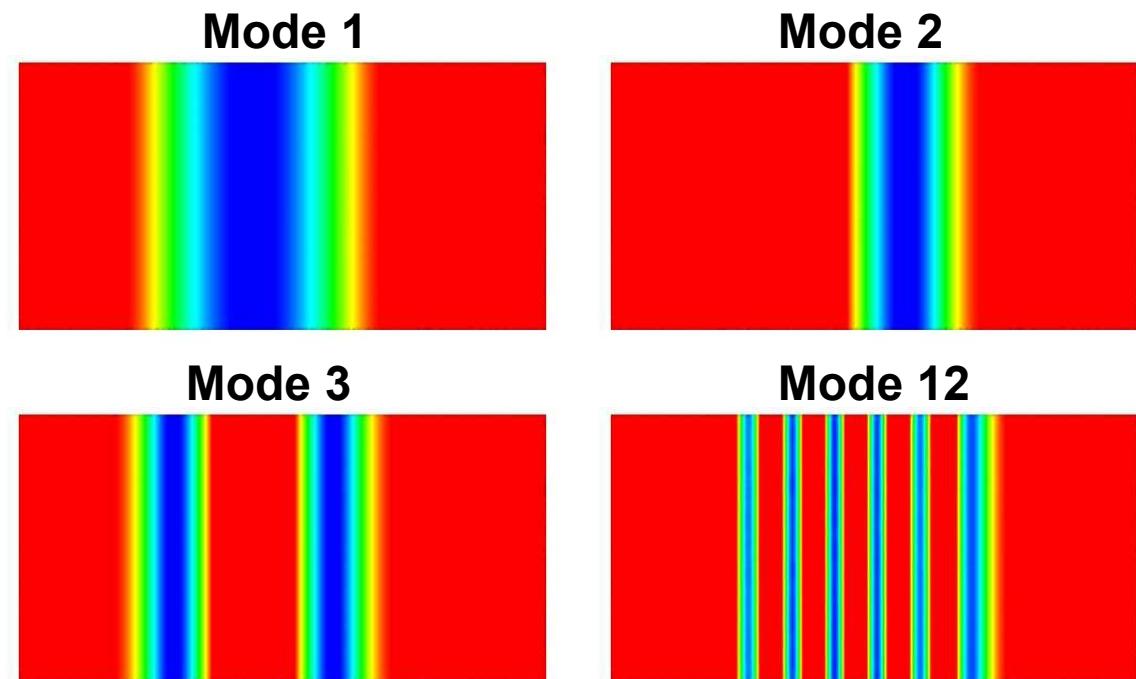
First Mode



- Each mode is a random disturbance field that decays to zero at the domain boundaries.
- Uniform steady base flow.
- Recall ROM form $\dot{a}_j = A_{jk}a_k$: positive real part of eigenvalues of A determine stability in time.
- Model problem for modes dominated by numerical error.

Example: 1D Acoustic Pulse

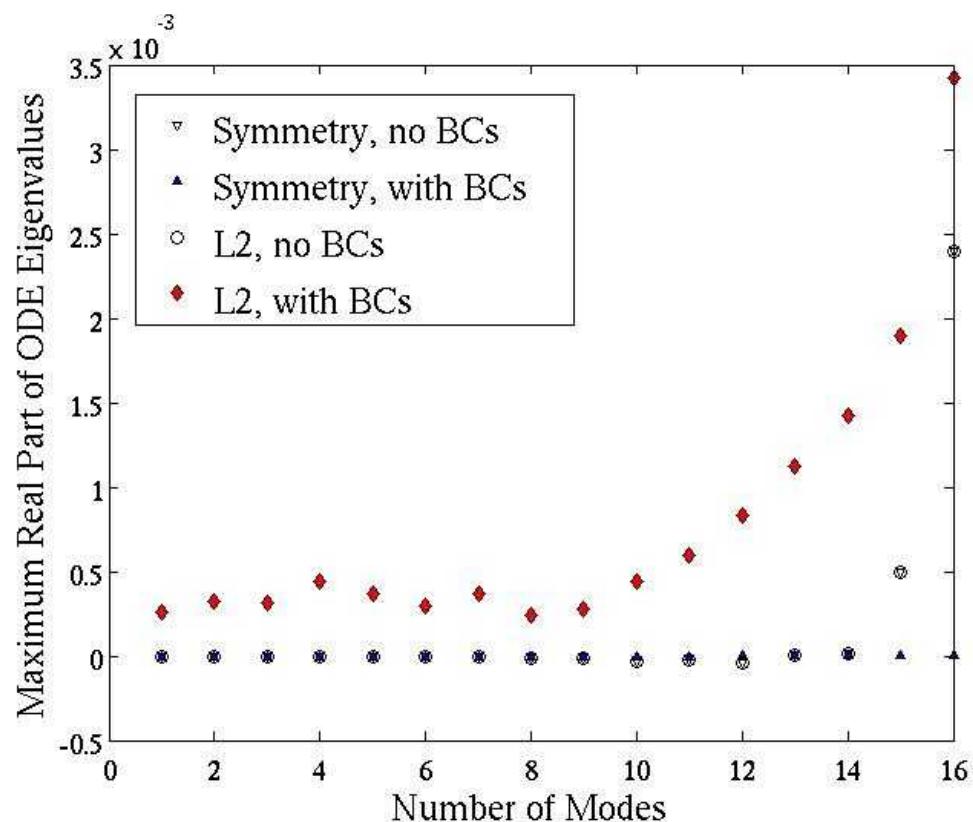
CFD animation: pressure



- Uniform base flow with velocity $U/c = M = 0.5$ in the x -direction
- Acoustic pulse prescribed as an initial condition, propagates in the x -direction with velocity $U+c$
- Slip wall boundary condition applied on the top, bottom, and side walls

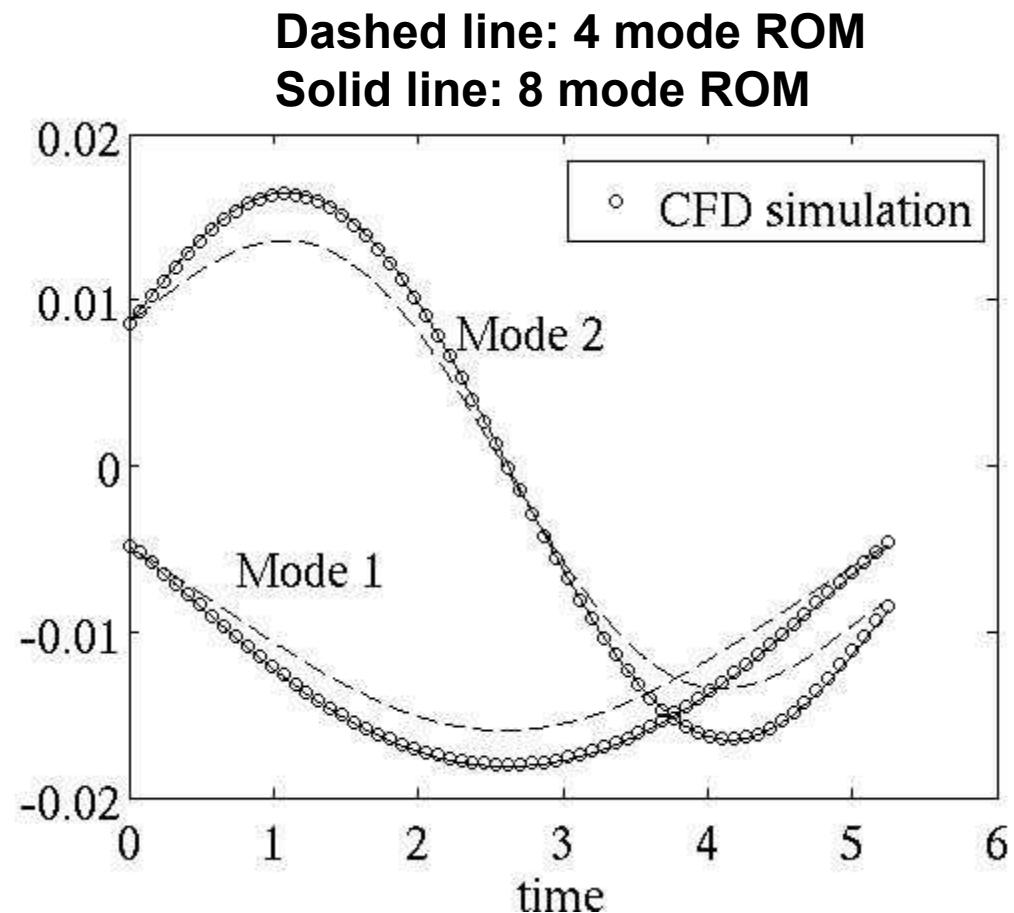
1D Pressure Pulse : Stability

- Four Galerkin schemes were used
 - Symmetry inner product, with and w/o boundary conditions
 - L2 inner product, with and w/o boundary conditions
- Only the symmetry inner product with boundary conditions remains stable



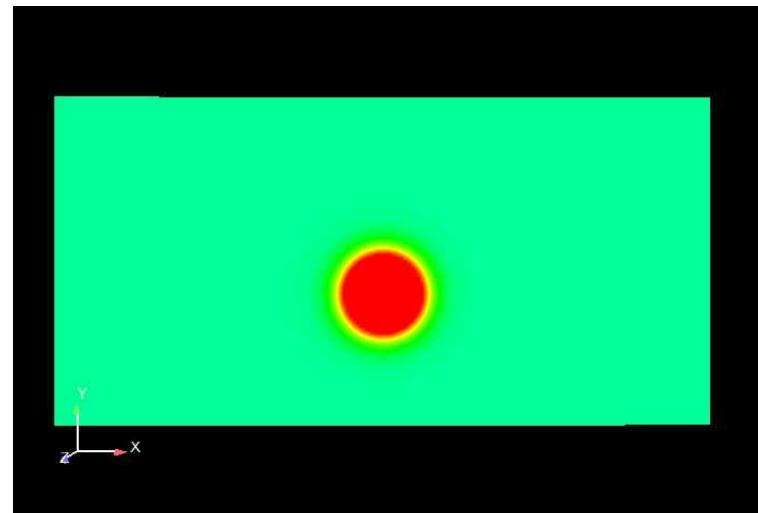
1D Pressure Pulse Results

- Comparison of the ROM result with the projection of the CFD simulation onto the POD modes
- This particular ROM appears to be convergent as the number of modes increases
- L2 ROM has comparable accuracy, since instability is weak

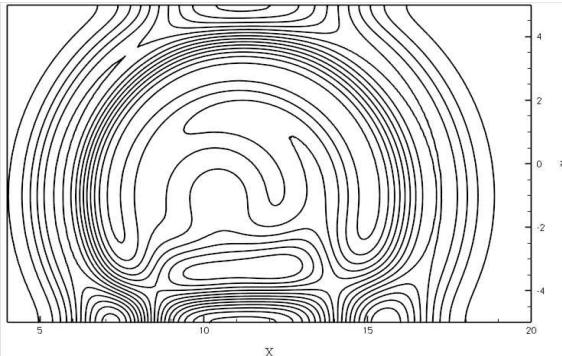


Example: 2D Pressure Pulse

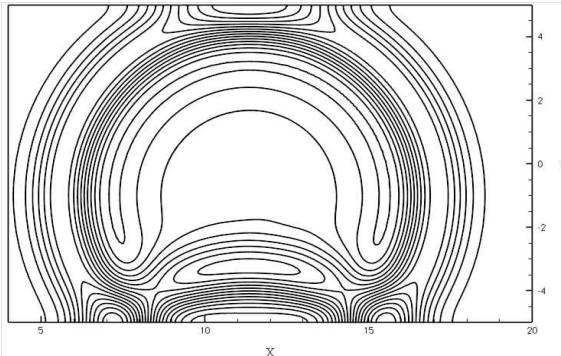
- $M=0.25$ uniform base flow, cylindrical Gaussian pressure pulse
- The ROM is stable
- Very good qualitative agreement with 12 mode ROM



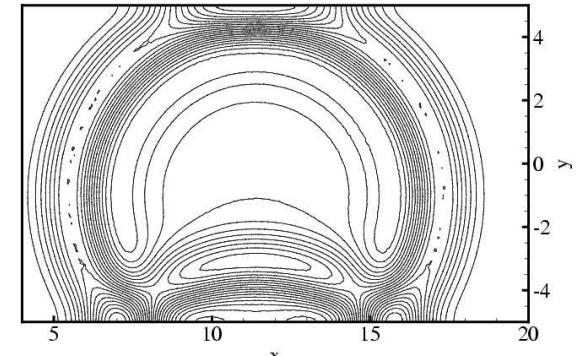
6 Mode ROM



12 Mode ROM



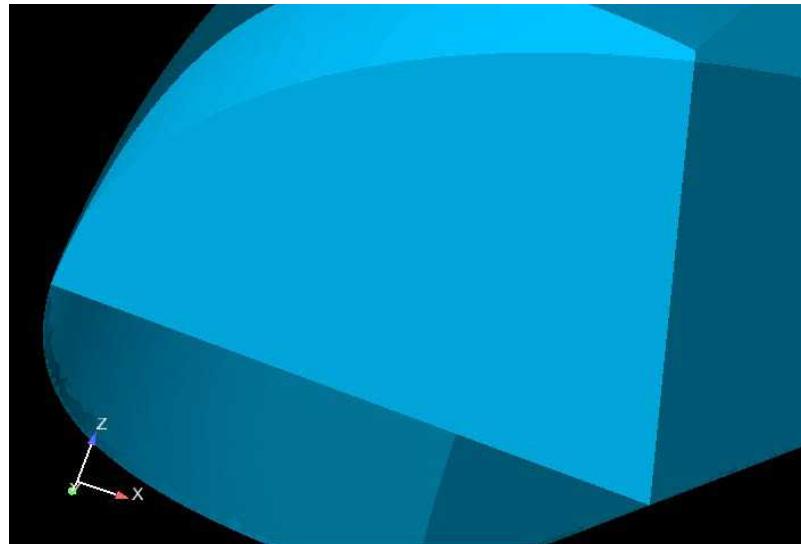
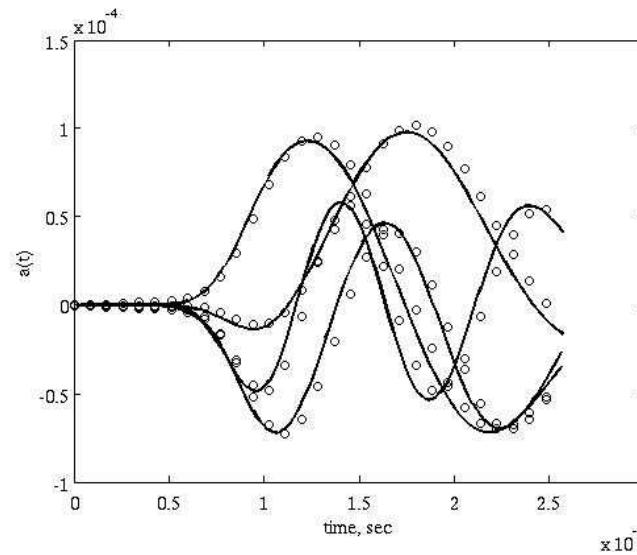
CFD



Coupled Fluid-Structure ROM

- The fluid ROM wall boundary condition allows for coupling of a fluid ROM to a structural dynamics ROM for the case of small (linear) structural displacements.
- Transfer of fluid pressure loading to the structure is possible using a fluid/structure boundary integral.

Forced Flexible Plate



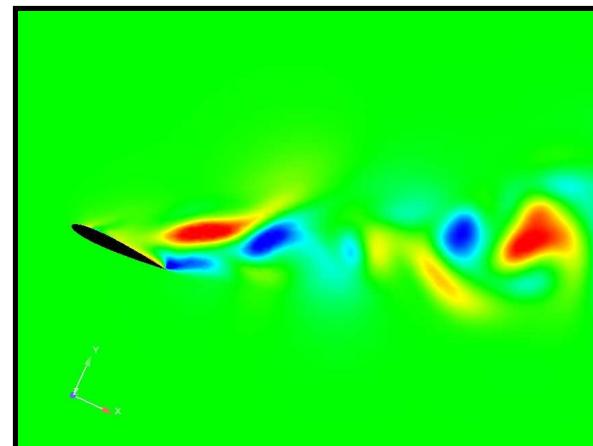
Summary

- **A Galerkin projection technique for linearized, compressible flow**
 - Numerically stable for any choice of basis
 - Weak boundary conditions that preserve stability
 - Numerical implementation using finite elements that preserves stability
- **ROMs using this scheme were demonstrated to be stable on several model problems**

Future Directions

- Examine ROM performance for more complicated systems.
 - Non-uniform base flow.
 - Coupled fluid-structure problem.
- Towards stable Nonlinear ROMs
 - Try out the linear symmetry inner product on the nonlinear equations.
 - The nonlinear Euler (and Navier-Stokes) equations can also be symmetrized, leading to an “entropy-stable” inner product.

Stalled Airfoil Wake



Acknowledgements

***This research was supported by the Sandia National Labs LDRD Program**

***Thanks to Charbel Farhat and Thuan Lieu for use of, and help with, the AERO-F code.**

Energy Expression for the Linearized Euler Equations

- Multiply by \mathbf{q}'^T , integrate by parts, and use the symmetry of H and HA_j to derive the global “energy” expression:

$$\begin{aligned}\frac{\partial}{\partial t} \int_{\Omega} \mathbf{q}'^T H \mathbf{q}' \, d\Omega = \\ - \int_{\partial\Omega} \mathbf{q}'^T H (A_j n_j) \mathbf{q}' \, dS + \int_{\Omega} \mathbf{q}'^T \left(\frac{\partial}{\partial x_j} (HA_j) - HC - C^T H \right) \mathbf{q}' \, d\Omega\end{aligned}$$

- Ignore the boundary integral for now
- The above equation leads to a statement of energy behavior for exact solutions to the linearized Euler equations:

$$\frac{\partial}{\partial t} \int_{\Omega} \mathbf{q}'^T H \mathbf{q}' \, d\Omega \leq 2\alpha \int_{\Omega} \mathbf{q}'^T H \mathbf{q}' \, d\Omega \quad \alpha \text{ is a constant}$$

- Define the “energy inner product” and corresponding norm:

$$(\mathbf{u}, \mathbf{v})_H \equiv \int_{\Omega} \mathbf{u}^T H \mathbf{v} \, d\Omega \quad \|\mathbf{q}'\|_H \equiv (\mathbf{q}', \mathbf{q}')_H^{1/2}$$