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Reduced Order Models (ROMs)

• Goal of Reduced Order Modeling

– Construct a surrogate numerical model that captures the essential 
dynamics of a full numerical model but at much cheaper expense.

• Applications in Fluid Dynamics

– Predictive modeling across a parameter space, e.g. aeroelastic flutter 
analysis

– System model for active flow control

– Long-time unsteady flow analysis, e.g. fatigue of a wind turbine blade 
under variable wind conditions



Reduced Order Modeling (ROM) Approach
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Predictive ROMs: Numerical Analysis

• The projection approach is really an alternative discretization 
of the governing PDEs (global Galerkin)

– Consistency with continuous PDE: Loosely speaking, a 
ROM can be consistent with respect to the full simulations 
used to generate it.

– Stability: Numerical stability is not guaranteed, in general.  
There are many examples of POD/Galerkin ROM instability.

– Convergence: Consistency and stability are required.

– Accuracy: Error estimates are often not available.

• This presentation is focused on stability of Galerkin ROMs.  
There are other important issues, connected with consistency, 
convergence, and accuracy.



Outline

• A Stable Galerkin ROM approach
– Background (POD, Galerkin projection)

– Development of the stable inner product

– Boundary conditions that preserve ROM stability

• Demonstration
– Stability for a random basis

– 1D acoustic pulse in a uniform flow

– 2D cylindrical pressure pulse in a uniform flow

• Brief overview of stable coupled fluid/structure 
ROM method



Step 1: Constructing Modes
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Proper Orthogonal Decomposition (POD)

Inner product,     for example :

Time or ensemble averaging operator :

Modal Decomposition of the Solution :

POD eigenvalue problem* :

Ensemble of solutions from full simulation:

POD optimization problem :

(*C. W. Rowley et al., Physica D, 2004)



Step 2: Project the equations onto the modes
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Galerkin Projection

Nonlinear PDE with linear term, quadratic and cubic nonlinearities

Project the PDE onto a set of modes using an inner product operator

Substituting the modal decomposition                              results in an 

ODE in the modal amplitudes, with pre-computable coefficients



Numerical Stability of a ROM

• A practical definition: The numerical solution 
does not blow up in time unexpectedly.

• A more precise definition: The norm of the 
numerical solution remains bounded in a way that 
is consistent with exact solutions to the 
governing differential equations.

• Method of analysis: The energy method uses an 
equation for the evolution of numerical solution 
“energy” to determine stability.



Linearized Euler Equations

• Obtained by linearizing the full Euler equations about a steady base flow.
• Useful for aeroelasticity problems, aeroacoustics, flow instability analysis.



Symmetrization of the Linearized Euler Equations

• The energy method can be used following “symmetrization” of the 
linearized Euler equations.

• Multiply the equations by the positive definite matrix:

• Both     and all the         are symmetric matrices



Stability of the Galerkin Approximation

• Define the “energy inner product” and corresponding norm:

• Introduce the approximate Galerkin solution

• It turns out that the Galerkin approximation satisfies the same energy 
expression as for the continuous equations, i.e. it is stable.

• For uniform flow, the Galerkin scheme satisfies the strong stability 
condition:

• Exact solutions to the linearized Euler equations satisfy:



Inner Product for Linearized Compressible Flow

The stability analysis dictates that we use the following 
“energy inner product” to both compute the POD modes and to 
perform the Galerkin projection.



Construction of the Fluid ROM (No BC’s)

• Galerkin Projection Step

• Reduced Order Model

• Matrix Form



Stable ROM Boundary Conditions

• In Galerkin projection step, integrate the following term by parts:

• Boundary conditions are implemented weakly by 
specifying this state in the boundary integral.

• Characteristic boundary conditions are used.

Energy stability is maintained if the boundary conditions are such that



Numerical Implementation of Fluid ROM

• So far, all the analysis is for continuous and 
smooth basis functions and exact evaluation of 
inner product integrals.

• A discrete implementation is required that 
preserves stability.

• Solution:
– Define solution snapshots and POD basis functions 

using a piece-wise smooth finite element representation

– Apply Gauss quadrature rules of sufficent accuracy to 
exactly integrate the inner products

– Fairly general, works for any nodal mesh that can be 
represented using finite elements.



Computer Code to Generate ROMs

• For ROMs based on large CFD simulations, construction of 
the ROM is memory and CPU intensive

• A parallel computer code was developed to interface with a 
CFD code, and compute POD bases and Galerkin projection
– Built using the parallel data structures and linear algebra routines from 

the Trilinos project, developed at Sandia

– POD eigensolve performed in parallel using the RBGen Trilinos 
package

– Core routines are general, with I/O interface required to handle data 
from different CFD codes and finite element infrastructure required to 
compute gradients and inner product integrals

– Currently, only AERO-F code (C. Farhat, Stanford U.) interface is 
implemented, for unstructured tetrahedral meshes



Example: Purely Random Basis

• Each mode is a random disturbance field that decays to zero at the domain 
boundaries.

• Uniform steady base flow.
• Recall ROM form                 : positive real part of eigenvalues of    determine 

stability in time.
• Model problem for modes dominated by numerical error.

First Mode



Example: 1D Acoustic Pulse

CFD animation: pressure
Mode 1 Mode 2

Mode 3 Mode 12

• Uniform base flow with velocity U/c = M = 0.5 in the x-direction
• Acoustic pulse prescribed as an initial condition, propagates in 

the x-direction with velocity U+c
• Slip wall boundary condition applied on the top, bottom, and side 

walls



1D Pressure Pulse : Stability

• Four Galerkin schemes 
were used

– Symmetry inner 
product, with and w/o 
boundary conditions

– L2 inner product, with 
and w/o boundary 
conditions

• Only the symmetry inner 
product with boundary 
conditions remains stable



1D Pressure Pulse Results

• Comparison of the ROM 
result with the projection 
of the CFD simulation 
onto the POD modes

• This particular ROM 
appears to be convergent 
as the number of modes 
increases

• L2 ROM has comparable 
accuracy, since instability 
is weak

Dashed line: 4 mode ROM
Solid line: 8 mode ROM



Example: 2D Pressure Pulse

• M=0.25 uniform base flow, cylindrical 
Gaussian pressure pulse

• The ROM is stable

• Very good qualitative agreement with 
12 mode ROM

12 Mode ROM CFD6 Mode ROM



Coupled Fluid-Structure ROM

• The fluid ROM wall boundary condition allows for coupling of a fluid 
ROM to a structural dynamics ROM for the case of small (linear) 
structural displacements.

• Transfer of fluid pressure loading to the structure is possible using a 
fluid/structure boundary integral.

Forced Flexible Plate



Summary

• A Galerkin projection technique for linearized, 
compressible flow
– Numerically stable for any choice of basis

– Weak boundary conditions that preserve stability

– Numerical implementation using finite elements that preserves 
stability

• ROMs using this scheme were demonstrated to 
be stable on several model problems



Future Directions

• Examine ROM performance for more 
complicated systems.
– Non-uniform base flow.

– Coupled fluid-structure problem.

• Towards stable Nonlinear ROMs
– Try out the linear symmetry inner product 

on the nonlinear equations.

– The nonlinear Euler (and Navier-Stokes) 
equations can also be symmetrized, 
leading to an “entropy-stable” inner 
product.

Stalled Airfoil Wake
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Energy Expression for the Linearized Euler Equations

• Multiply by       , integrate by parts, and use the symmetry of     and         
to derive the global “energy” expression:

• Ignore the boundary integral for now

• The above equation leads to a statement of energy behavior for exact 
solutions to the linearized Euler equations:

• Define the “energy inner product” and corresponding norm:

is a constant


