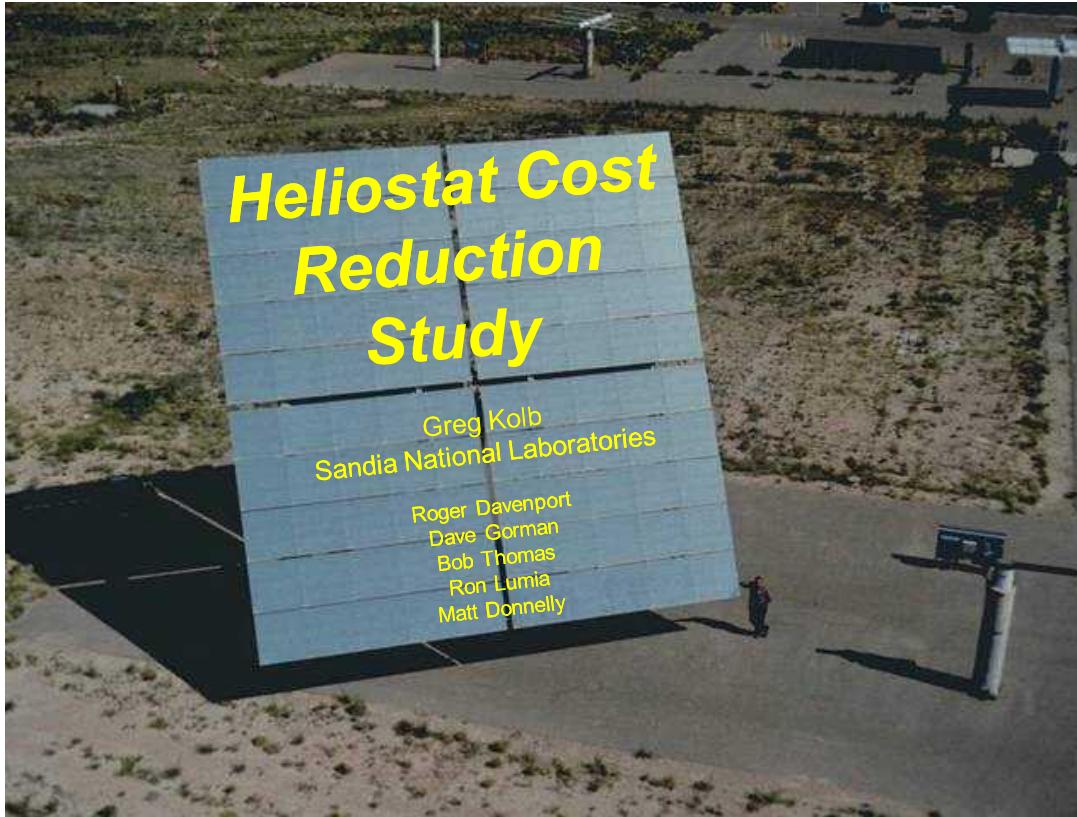

2008 Solar Annual Review Meeting

Session: CSP Advanced Systems – Advanced Heliostats
Company or Organization: Sandia National Laboratories
Funding Opportunity: DOE Program Funding

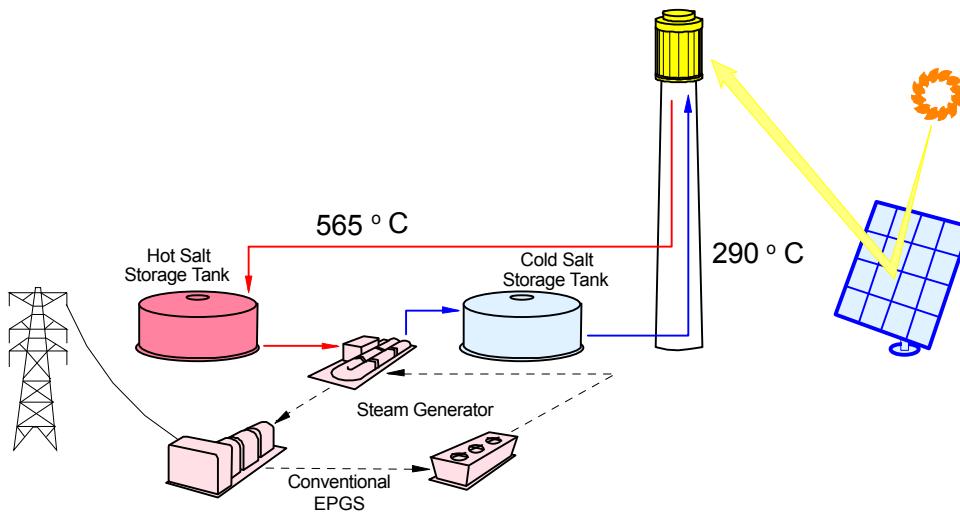
Greg Kolb
Sandia National Laboratories
MS 1127
Albuquerque, NM, 87185
gjkolb@sandia.gov



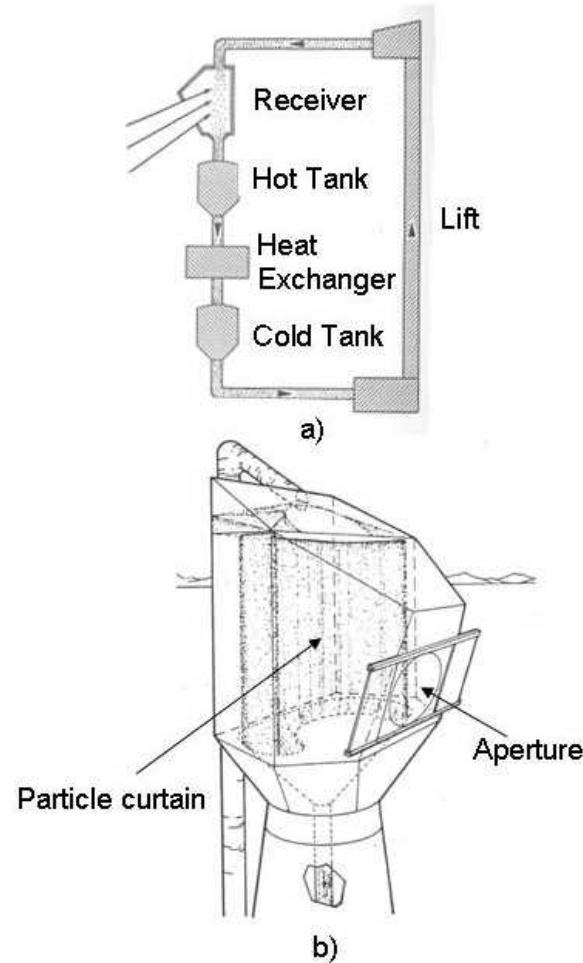
Relationship to Solar Program Goals

- General CSP program goal
 - “...to make CSP cost competitive in the intermediate power markets by 2015 (~7¢/kWh with 6 hours of storage) and in baseload power markets (~5¢/kWh with 16 hours of storage) by 2020.”
- Specific solar power tower goal
 - This is the first DOE R&D budget allocated for power towers in several years
 - Power tower goals do not currently exist in current version of the MYPP (2007 – 2011)

FY07 accomplishments


SAND2007-3293 issued in June 2007

Power Tower Systems


Solar electric power plant

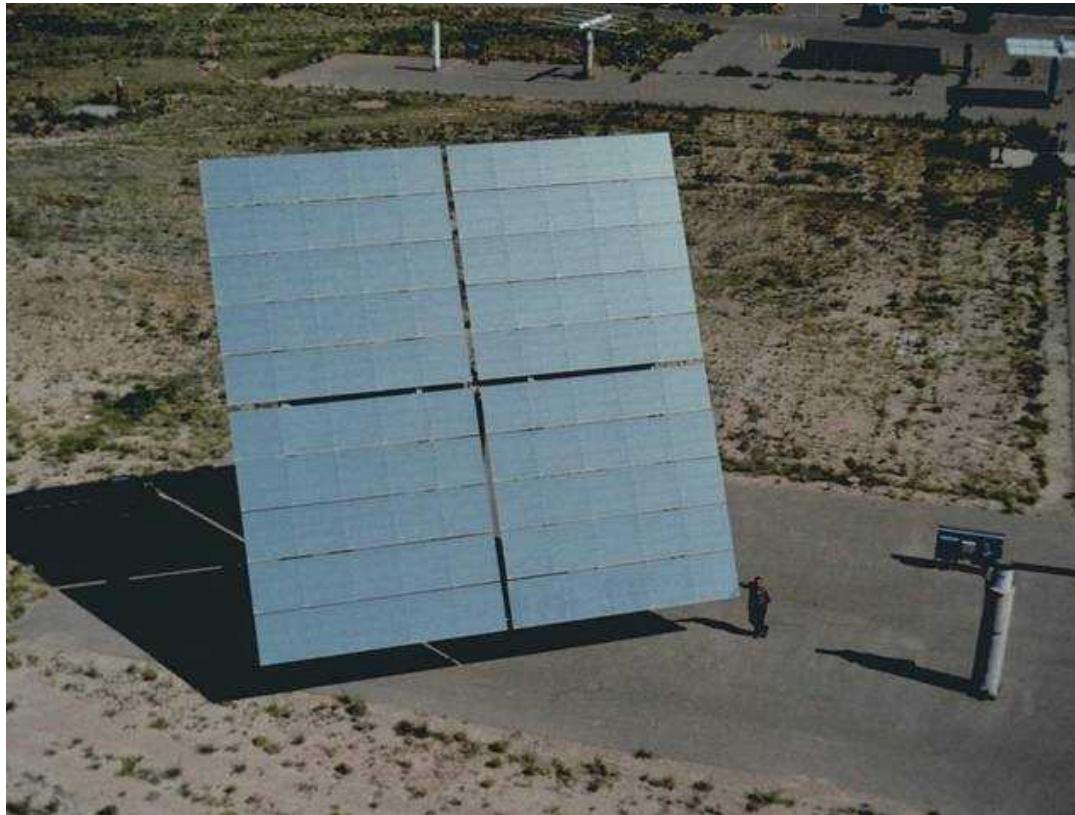
- 565 °C molten salt receiver
- 13 hrs molten salt storage

Solar hydrogen plant

- 950 °C solid particle receiver
- 13 hrs solid particle storage

Since heliostats contribute ~50% to plant capital cost, they have a large impact on power tower economics

Helio stat Cost	Molten Salt Power Tower (S&L economics)	Hybrid Sulfur Hydrogen Plant (H2A economics)
\$80/m ²	5.4 cents/kWh	\$2.6/kg
\$100/m ²	5.9 cents/kWh	\$2.9/kg
\$150/m ²	7.3 cents/kWh	\$3.5/kg
\$200/m ²	8.7 cents/kWh	\$4.1/kg
\$300/m ²	12 cents/kWh	\$5.4/kg

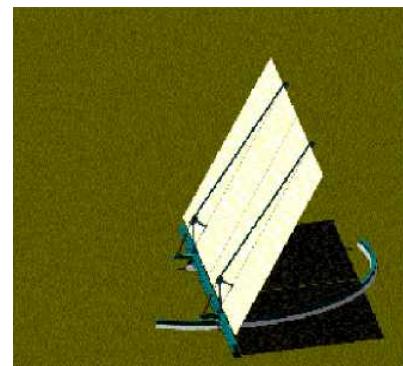
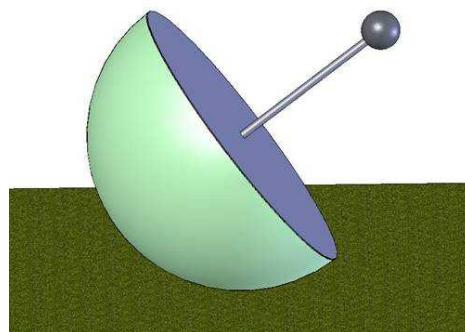

← Tentative
Goal

- Large optimum plants with mirror areas of 1.4 km² and 13 hrs of storage
- 100 MWe electric power tower and 100,000 kg/day hydrogen plant

Cost reduction potential was estimated relative to ATS base case

- ATS 148 m² is base case
 - Also base case in Sargent & Lundy study (DOE “Bible”)
 - 20 years of successful operation

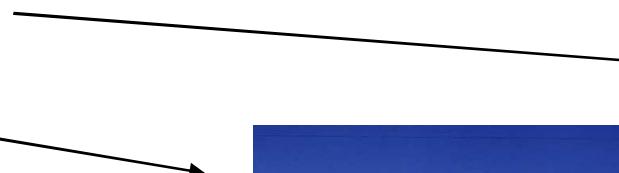
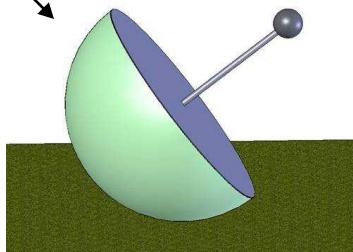
Baseline Heliostat Price in 2006 (\$/m²)



	5000 per year (60 MW)	50,000 per year (600 MW)
Mirror Module	26.5	23.1
Support Structure	23.3	21.2
Azimuth Drive	38.5	20.3
Elevation Drive	10.1	6.8
Electrical/Controls	4.8	3.7
Pedestal	18.7	17
Total Direct Cost:	122	92.1
Overhead/Profit (20%)	24.4	18.4
Total Fabricated Price:	146.4	110.5
Field wiring	8.1	7.4
Foundation	2.6	2.3
Field align/checkout	7.0	6.3
Total Installed Price:	\$164/m²	\$126.5/m²

The Azimuth Drive is the Only Solar-Unique Component

- If 60 are ordered, the price is \$100/m²

- If 5000/yr are ordered, ~\$3 M manufacturing plant is built and price is \$38.5/m²



30 international experts brainstormed several heliostat types

Evaluation of TIO's suggested the following R&D projects

- **Less-conservative azimuth gear drive**
- **“Pipe-in-pipe” azimuth drive**
- **Large carousel stretched-membrane heliostat**
- **Large fabric-based stretched-membrane facet**
- **Mega heliostat ($>300 \text{ m}^2$) with hydraulic drives**
- **Water-ballasted heliostat**

Incremental Improvements
vs.
Totally New Heliostat

Crystal Ball Prioritized R&D

R&D Budget	Mean Price Reduction	Less Conserv Az Drive	Pipe in Pipe Az Drive	Carousel SM Helio	Large Fabric SM Facet	Mega Helio
\$1 M	\$7.8/m ²					X
\$2 M	\$10.2/m ²	X				X
\$3 M	\$10.6/m ²			X		
\$4 M	\$13.8/m ²			X		X
\$5 M	\$15.8/m ²			X	X	X
\$6 M	\$16.4/m ²	X		X	X	X
\$7 M	\$16.4/m ²	X		X	X	X
\$8 M	\$16.6/m ²	X	X	X	X	X

Most Bang For Buck

Study Conclusions

- Heliostat price is strongly dependent on production rate
 - \$164/m² given 5,000/yr and \$126/m² given 50,000/yr
 - Price reduction dominated by lower cost azimuth drive
 - Key to achieving high production is to obtain multiple power purchase agreements
- ATS heliostat is the current low-cost baseline in the USA
 - Except for the azimuth drive, it uses common parts that are already mass produced
 - A prototype has successfully operated for 20 years
 - The current PS-10 and PS-20 tower projects in Spain use a heliostat similar to ATS

Study Conclusions (continued)

- Large heliostats are more cost effective than smaller ones
 - Detailed analysis suggests that optimum is 150 m² or larger, and no smaller than 50 m²
 - *However Micro developers LUZ2 and eSolar may disagree*
- Moderate investments in R&D should reduce heliostat price by \$17/m²
 - Lower cost az drive will benefit initial tower plants
 - Mega-helio or Carousel heliostat are longer term options
- Learning curve effects should result in an additional cost reduction
- \$100/m² cost goal appears to be achievable

FY 08 Progress Report

- Sandia received \$221 K from DOE in Jan 08 for heliostats and tower systems R&D
- Assume ~50% or \$110 K for heliostat R&D
- This is not enough money to implement any of the R&D plan described in the FY07 study
- What can we do for \$110 K??
 - With industry, develop R&D plan to reduce cost of Micro (1 to 10 m²) heliostats
 - Micro heliostats are being pursued by a few companies
 - Bright Source and eSolar
 - Micro should cost more, but may be a market entry strategy
 - In early March 08, Sandia contacted Micro suppliers and suggested that we work together
 - No response from Bright Source
 - eSolar is thinking about it ... concerned about release of their intellectual property

FY 08 Progress Report (cont.)

- What can we do for \$110 K?
 - Perform additional testing of existing large-area heliostats to resolve perceived-risk issues
 - For example SolarReserve's commercial-project investors need assurance that heliostats within very large fields will meet performance specs at distances of up to 1 mile away from tower
 - Furthest heliostats at Solar Two and PS10 -- 0.25 and 0.5 mile
 - For a portion of the \$110 K, the “1-mile” test can be done at Sandia
 - With industry, we will define other low-budget tests that resolve perceived risk issues

DOE has suggested that \$1M to \$2M may soon be available for heliostat R&D

- With this budget the R&D plan identified in the FY07 study can begin
 - R&D Path A will require 1.5 yrs
 - Contractor study of az-drive to achieve 33% cost reduction (\$500 K)
 - If cost target met, contractor builds new az prototype (\$500 K)
 - If cost target met, test new drive at Sandia (\$200 K)
 - Total cost of new low-cost az drive = $500 + 500 + 200 = \$1.2\text{ M}$
 - R&D Path B will require 2 yrs
 - Az-drive study completed and cost target not met (\$500 K)
 - Contractor study of Mega-helio to achieve \$15/m² cost reduction (\$500 K)
 - If cost target met, Mega-helio built and tested at Sandia (\$500 K)
 - Total cost leading to new Mega-helio = $500 + 500 + 500 = \$1.5\text{ M}$
- Alternatively, we can development an optimized micro heliostat

Heliostat R&D Vision -- FY07 through FY10

- FY07 (\$100 K to \$600 K)
 - Min budget – Micro heliostat R&D plan and/or risk reduction tests
 - Max budget – Design of low-cost azimuth drive
- FY08 (\$1M to \$2M)
 - Min budget – Build and test low-cost azimuth drive
 - Max budget – Design, build, and test Mega helio or Micro helio
- FY09 (\$1M to \$2M)
 - Min budget – Design of Carousel heliostat
 - Max budget – Build and test Carousel heliostat
- FY10 (\$1M to \$2M)
 - Min budget – Design of fabric facet for Carousel heliostat
 - Max budget – Build and test fabric facet