

Robust, Scalable, Accurate, and Efficient Computational Formulation and Solution Methods for Transport/Reaction and Extended MHD Simulations

John N. Shadid (PI)

P.B. Bochev

Roger P. Pawlowski

Ray S. Tuminaro

Sandia National Laboratories

Luis Chacon (PI)

Los Alamos National Laboratories (Soon ORNL)

Outline of Overview

- Motivation
- Goals
- Highlights of Previous funding period
 - Overview MHD for Resistive and Extended MHD
 - Some details
 - Scalable Resistive / Hall MHD
 - Scalable Unstructured FE Resistive MHD
 - Selected Impact Highlights

⇒ Computational Simulations of Complex Highly Nonlinear Multiphysics

⇒ Achieving Predictive Simulations of Complex Multi-physics Systems (PDEs)

What are multi-physics systems? (A multiple-time-scale perspective)

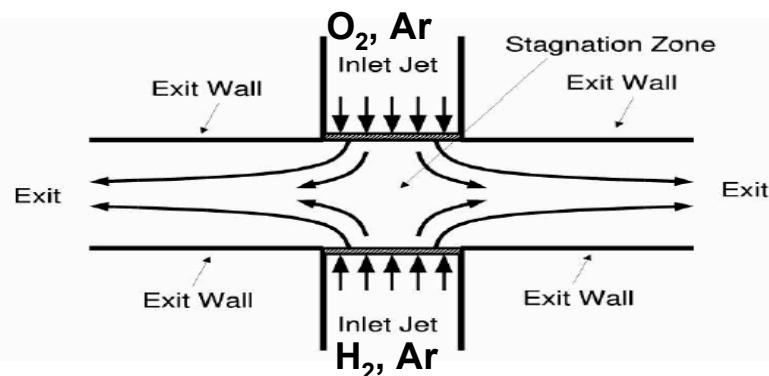
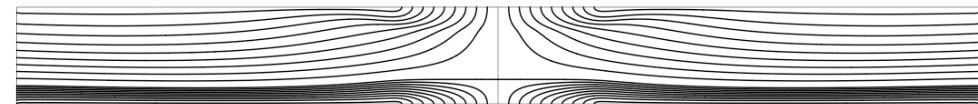
These systems are characterized by a myriad of complex, interacting, nonlinear multiple time and length scale physical mechanisms.

These mechanisms can balance to produce:

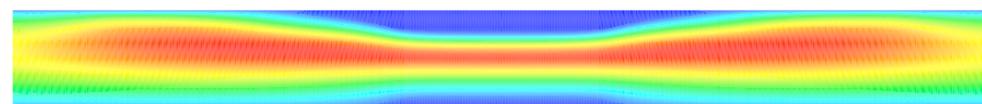
- steady-state behavior,
- nearly balance to evolve a solution on a dynamical time scale that is long relative to the component time scales,
- or can be dominated by one, or a few processes, that drive a short dynamical time scale consistent with these dominating modes.

e.g. Fusion Reactors (Tokomak -ITER; Pulsed - NIF & Z-pinch); Fission Reactors (GNEP); Astrophysics; Combustion; Chemical Processing; Fuel Cells; etc.

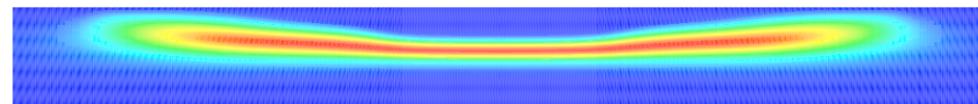
Multiple-time-scale systems: Bifurcation Analysis of a Steady Reacting $\text{H}_2, \text{O}_2, \text{Ar}$, Opposed Flow Jet Reactor



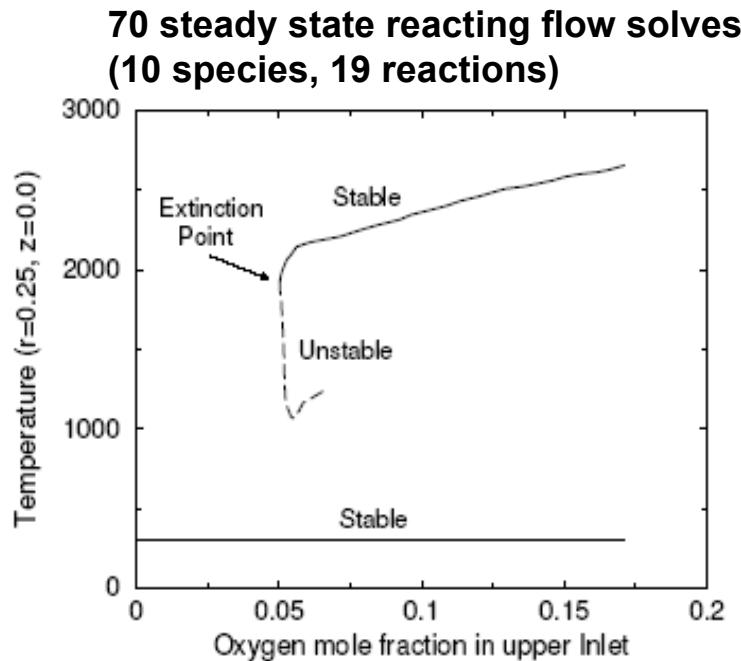
Streamlines



Temperature (Min. 300°K, Max 2727°K)



OH (Min. 0.0, Max 0.177)



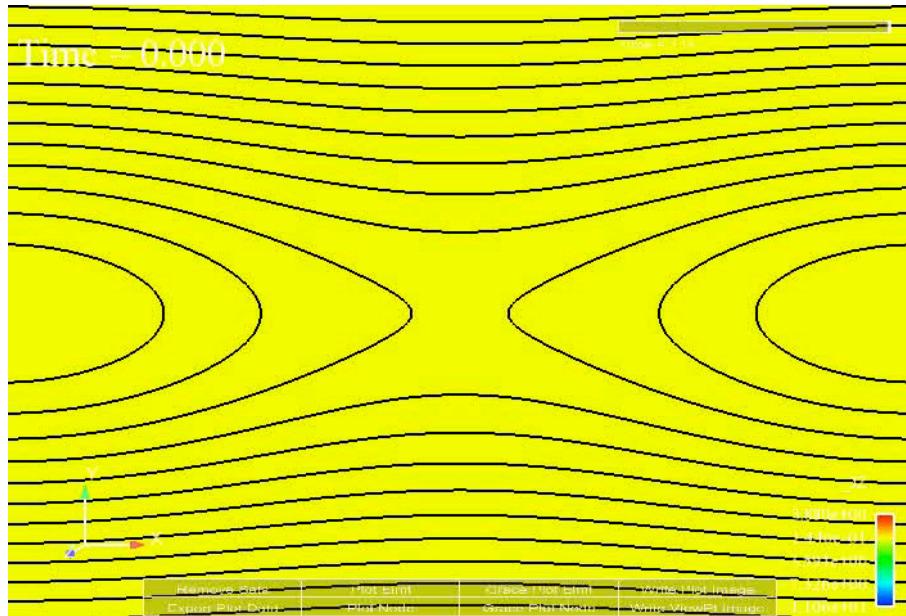
Approx. Physical Time scales (sec.):

- Chemical kinetics: 10^{-12} to 10^{-4}
- Momentum diffusion: 10^{-6}
- Heat conduction: 10^{-6}
- Mass diffusion: 10^{-5} to 10^{-4}
- Convection: 10^{-5} to 10^{-4}
- Diffusion flame dynamics: ∞ (steady)

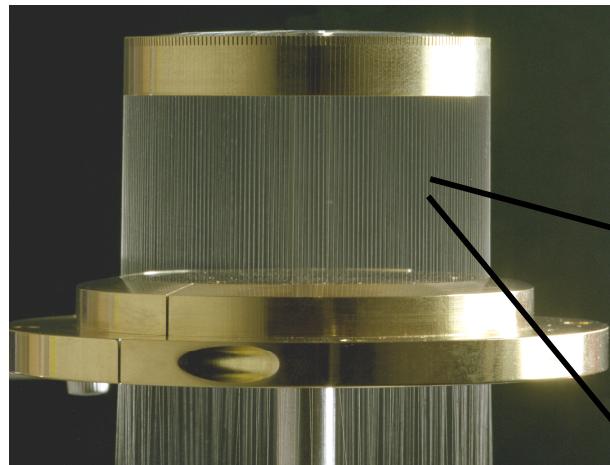
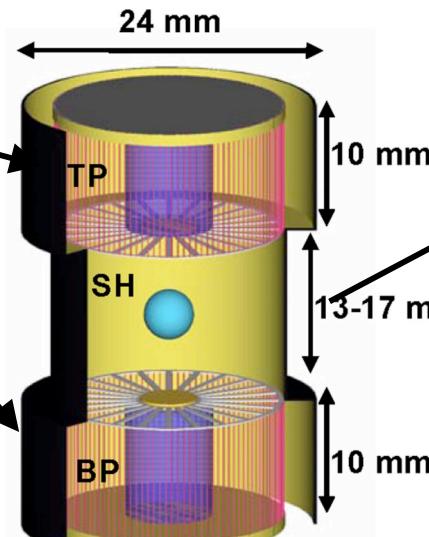
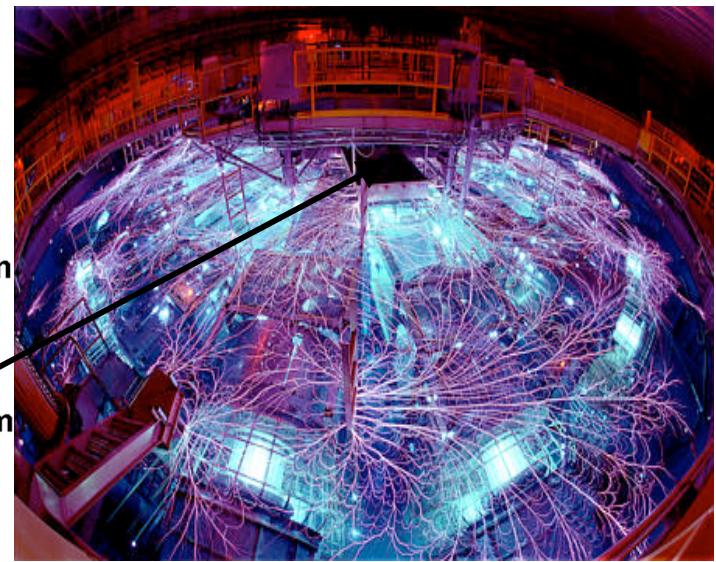
(w/ Pawlowski, Salinger – MPSalsa)

Multiple-time-scale systems: E.g. Driven Magnetic Reconnection with a Magnetic Island Coalescence Problem (Incompressible)

2D axisymmetric Simulation



Z-pinch Double Hohlraum Schematic



Z Machine (Approximate Ranges)

**100ns current rise time for
20 MA Electrical Current**

**250 ns plasma shell collapse
and stagnation**

**10-30 ns X-ray power pulse
~200 TW power**

A Recent Review: K. Matzen, et. al., POP 12, 055503 (2005)

Computational Stability Constraints:

Hyperbolic Operators: $\Delta t < \Delta x/2c$

- Alfvén waves
- Pressure waves
- Material transport
- **Radiation transport**

Parabolic Operators: $\Delta t < \Delta x^2/D$

- Magnetic Diffusion
- Heat Conduction

Hall Physics $\rightarrow \Delta t < \Delta x^2/(VA di)$

Relevance and Impact of Advanced Resistive and Extended MHD algorithms on DOE Science

Advanced simulation algorithms for MHD are need for a variety of high-profile DOE science areas

- **Fusion:**

ITER will define whether fusion energy is a viable option as a future energy source. The Fusion Simulation Project (FSP) is being defined, with the goal of developing a first principles simulation capability for a Tokamak device. Extended MHD (XMHD) will be an essential component of this capability.

- **Magnetic Reconnection: basic plasma physics**

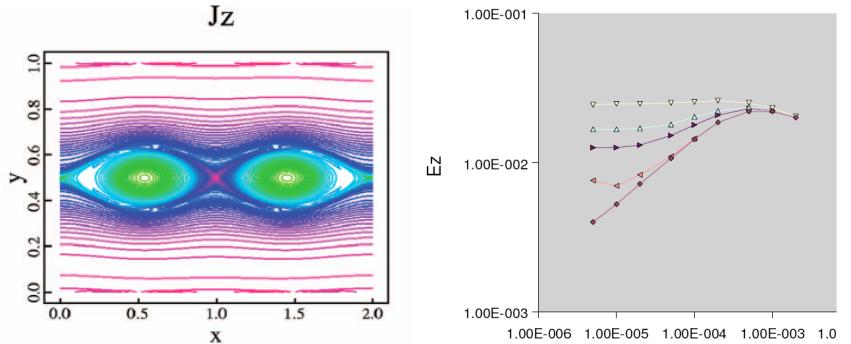
- **plasma confinement disruptions in fusion devices. SciDAC center.**
- **Magnetospheric sub-storms**
- **Solar flares**
- **Formation of intergalactic jets**

Overall Project Goals:

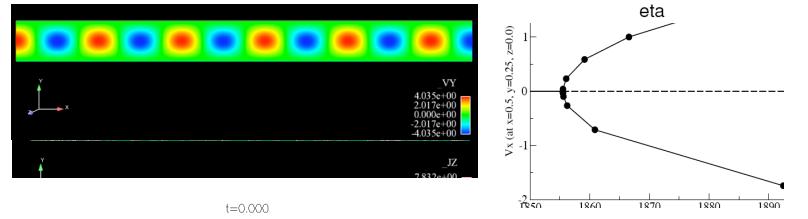
- Develop stable, accurate, physics compatible, **scalable and efficient fully-implicit** computational formulations for xMHD and PTR (e.g. SNL Cray XT3 12.5K nodes, 25K cores)
- Develop and evaluate **scalable physics-based preconditioners**, based on **multi-level methods**
- Produce **comprehensive accuracy, convergence, stability and scalability studies** employing challenging prototype problems.
- Produce **large-scale computational demonstrations** on selected science / technology problems

Examples

- **Magnetic Reconnection** Studies with application in Astrophysics (solar flares, ...) and Fusion Energy (instabilities, ...)

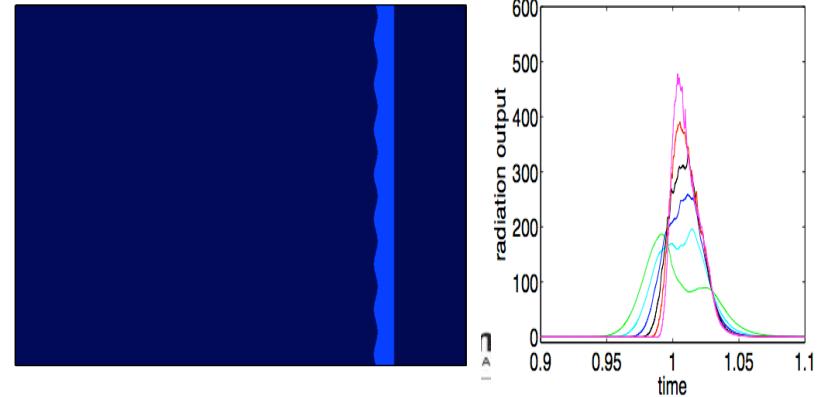


- **Hydro-Magnetic Rayleigh-Bernard** with application to Astrophysics, Geodynamo



- **Hydro-Magnetic Rayleigh-Taylor**
(e.g. Z-pinch [HEDP])

Driven Euler
Simulation



Currently: Low Mach Number MHD Formulation(s)

$$\frac{\partial(\rho\mathbf{u})}{\partial t} + \nabla \cdot [\rho\mathbf{u} \otimes \mathbf{u} + P\mathbf{I} + \mathbf{\Pi}] - \mathbf{J} \times \mathbf{B} = \mathbf{0}$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho\mathbf{u}) = 0$$

$$\frac{\partial E}{\partial t} + \nabla \cdot [E\mathbf{u}] + \gamma E \nabla \cdot \mathbf{u} + \mathbf{\Pi} : \nabla \mathbf{u} + \nabla \cdot \mathbf{q} = \eta \|\mathbf{J}\|^2 \quad E = e + \frac{1}{2} \|\mathbf{v}\|^2$$

$$\partial_t \mathbf{B} + \nabla \times \mathbf{E} = \mathbf{0} \quad \mathbf{E} = -\mathbf{v} \times \mathbf{B} + \eta \mathbf{J} + \underbrace{\frac{1}{en}(\mathbf{J} \times \mathbf{B} - \nabla \mathbf{P}_e)}_{\text{Hall}} \quad \mathbf{J} = \frac{1}{\mu_0} \nabla \times \mathbf{B}$$

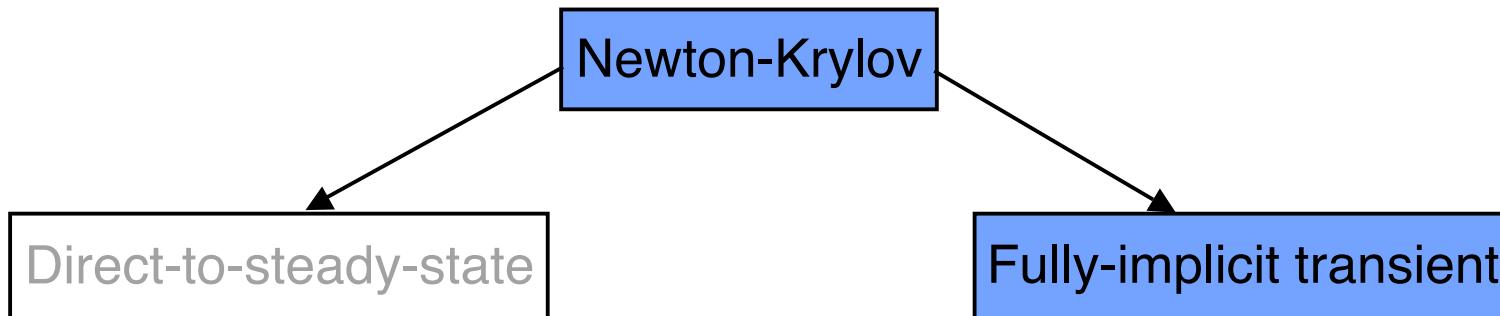
Conservation Law System: Magnetic Flux

$$\frac{\partial \mathbf{U}}{\partial t} + \nabla \bullet \mathbf{F} + \mathbf{S} = \mathbf{0}$$

$$\mathbf{U} = \begin{bmatrix} \rho \\ \rho\mathbf{v} \\ \Sigma_{tot} \\ \mathbf{B} \end{bmatrix} \quad \mathbf{F} = \begin{bmatrix} \rho\mathbf{v} \\ \rho\mathbf{v} \otimes \mathbf{v} - \frac{1}{\mu_0} \mathbf{B} \otimes \mathbf{B} - \mathbf{T} + \frac{1}{2\mu_0} \|\mathbf{B}\|^2 \mathbf{I} \\ \rho E \mathbf{v} - \mathbf{T} \cdot \mathbf{v} + \mathbf{E} \times \mathbf{B} + \mathbf{q} \\ \mathbf{v} \otimes \mathbf{B} - \mathbf{B} \otimes \mathbf{v} - \frac{\eta}{\mu_0} (\nabla \mathbf{B} - \nabla \mathbf{B}^T) \end{bmatrix} \quad \mathbf{S} = \begin{bmatrix} 0 \\ \mathbf{0} \\ Q^{rad} + Q \\ \mathbf{0} \end{bmatrix}$$

$$\Sigma_{tot} = \rho E + \frac{1}{2\mu_0} \|\mathbf{B}\|^2 \quad E = e + \frac{1}{2} \|\mathbf{v}\|^2 \quad \text{Involution: } \nabla \cdot \mathbf{B} = 0$$

Why Newton-Krylov Methods?



$$\mathbf{F}(\dot{\mathbf{x}}, \mathbf{x}, \lambda_1, \lambda_2, \lambda_3, \dots) = \mathbf{0}$$

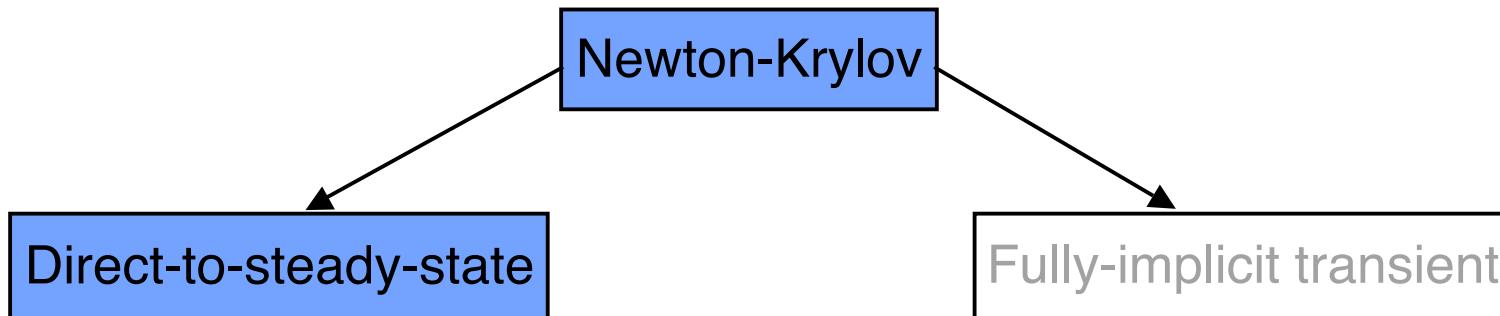
e.g.

$$\frac{\partial c}{\partial t}^{n+1} + \nabla \cdot (\rho c \mathbf{u})^{n+1} - \nabla \cdot (D^{n+1} \nabla c^{n+1}) + S_c^{n+1} = 0$$

Stability and Accuracy Properties

- Stable (stiff systems)
- High order methods
- Variable order techniques
- Local and global error control possible
- Can be stable and accurate run at the dynamical time-scale of interest in multiple-time-scale systems

Why Newton-Krylov Methods?



Convergence properties

- Strongly coupled multi-physics often requires a strongly coupled nonlinear solver
- Quadratic convergence near solutions (backtracking, adaptive convergence criteria)
- Often only require a few iterations to converge, if close to solution, independent of problem size

$$\mathbf{F}(\mathbf{x}, \lambda_1, \lambda_2, \lambda_3, \dots) = \mathbf{0}$$

Inexact Newton-Krylov

$$\text{Solve } \mathbf{J}\mathbf{p}_k = -\mathbf{F}(\mathbf{x}_k); \quad \text{until } \frac{\|\mathbf{J}\mathbf{p}_k + \mathbf{F}(\mathbf{x}_k)\|}{\|\mathbf{F}(\mathbf{x}_k)\|} \leq \eta_k$$

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \Theta \mathbf{p}_k$$

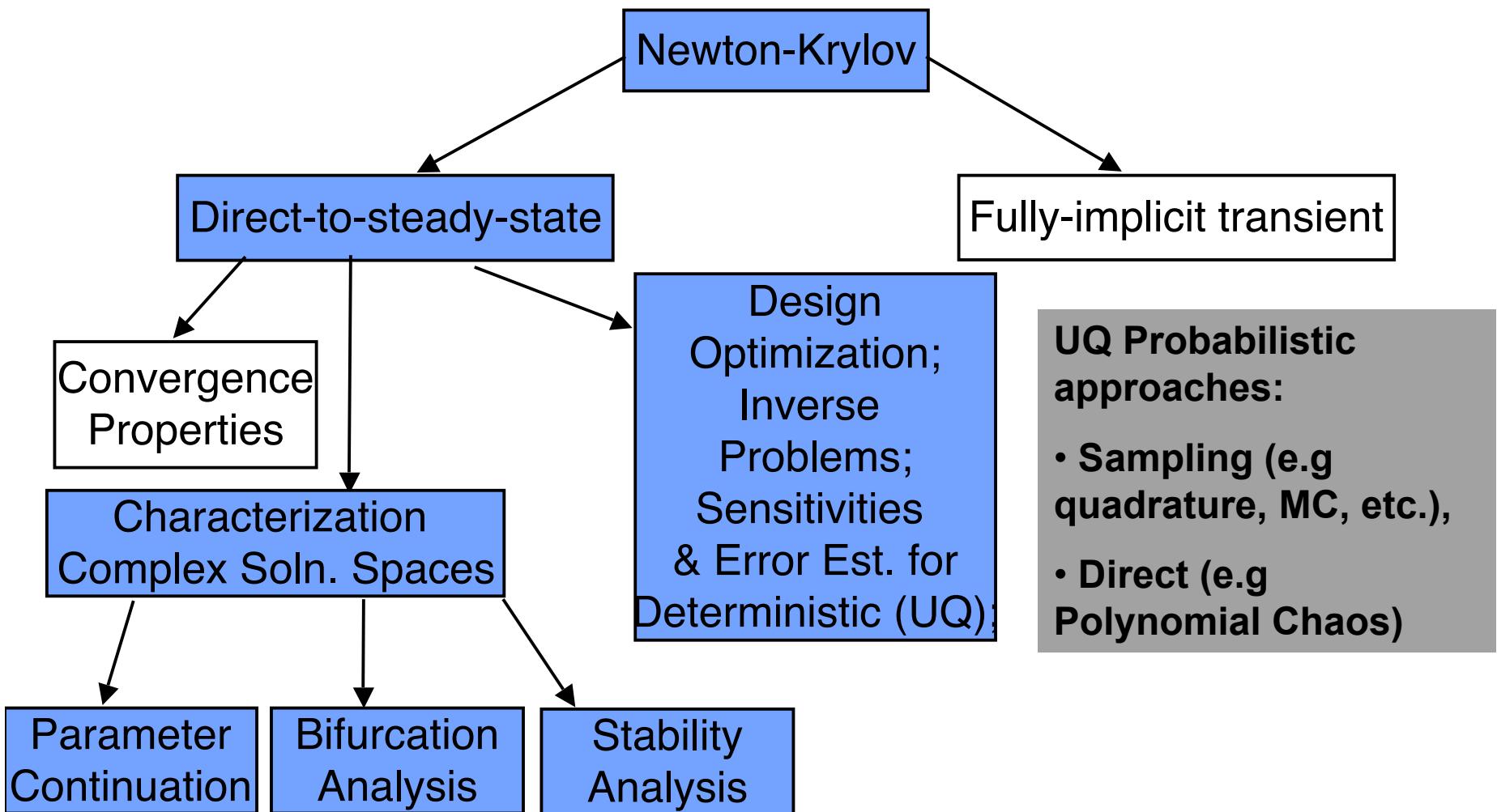
Jacobian Free N-K Variant

$$\mathbf{M}\mathbf{p}_k = \mathbf{v}$$

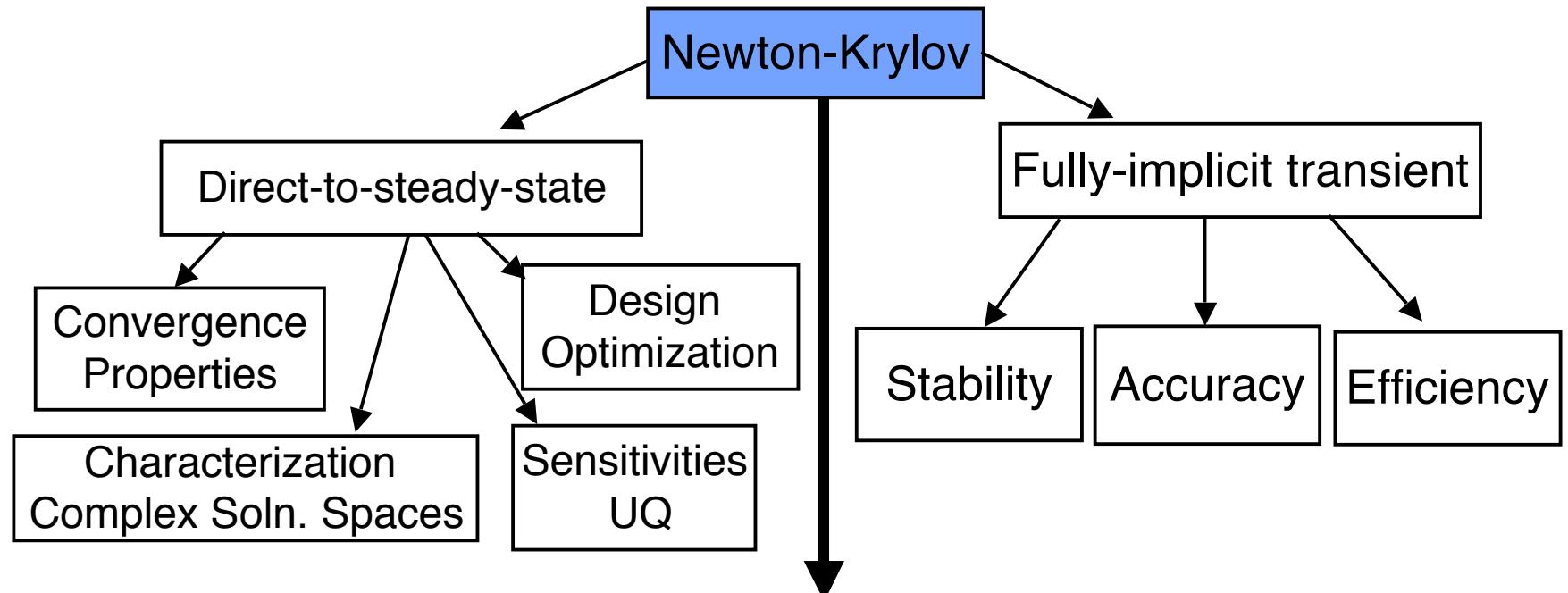
$$\mathbf{J}\mathbf{p}_k = \frac{\mathbf{F}(\mathbf{x} + \delta \mathbf{p}_k) - \mathbf{F}(\mathbf{x})}{\delta} ; \text{ or by AD}$$

See e.g. Knoll & Keyes, JCP 2004

Why Newton-Krylov Methods?



Why Newton-Krylov Methods?



Very Large Problems -> Parallel Iterative Solution of Sub-problems

Krylov Methods - Robust, Scalable and Efficient Parallel Preconditioners

- Approximate Block Factorizations
- Physics-based Preconditioners
- Multi-level solvers for systems and scalar equations

Algorithmic challenges in XMHD

- XMHD has mixed character, with **strongly hyperbolic** and **parabolic** components.
- Numerically, XMHD is a nonlinear algebraic system of **very stiff equations**:
 - Elliptic stiffness (diffusion): $\kappa(J) \sim \frac{\Delta t D}{\Delta x^2} \gg 1$
 - Hyperbolic stiffness (linear and dispersive waves): $\kappa(J) \sim \Delta t \omega_{fast} \sim \frac{\Delta t}{\Delta t_{CFL}} \gg 1$
- Brute-force algorithms will not be able to cover the span between disparate time/length scales, regardless of computer power (SBES report).
- Key algorithmic requirement: **SCALABILITY** [$CPU \sim \mathcal{O}(N/n_p)$]!
 - Minimize number of degrees of freedom N : **spatial adaptivity**.
 - Follow slowest time scales (application dependent): **implicit time stepping**.
- Scalable implicit methods require **MULTILEVEL** approaches:
 - A **fundamental component** of iterative ML methods is the **SMOOTHER**.
 - XMHD is **strongly hyperbolic** \Rightarrow **smoothing is a serious challenge** (diagonally submissive for $\Delta t > \Delta t_{CFL}$).
 - Previous attempts to use multilevel methods (two-level NKS, MG-NKS) on XMHD have failed to demonstrate a scalable XMHD solver.

Parabolization and Schur complement: an example

- PARABOLIZATION EXAMPLE:

$$\begin{aligned}\partial_t u &= \partial_x v, \quad \partial_t v = \partial_x u, \\ u^{n+1} &= u^n + \Delta t \partial_x v^{n+1}, \quad v^{n+1} = v^n + \Delta t \partial_x u^{n+1}.\end{aligned}$$

$$(I - \Delta t^2 \partial_{xx}) u^{n+1} = u^n + \Delta t \partial_x v^n$$

- PARABOLIZATION via SCHUR COMPLEMENT:

$$\begin{bmatrix} D_1 & U \\ L & D_2 \end{bmatrix} = \begin{bmatrix} I & UD_2^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} D_1 - UD_2^{-1}L & 0 \\ 0 & D_2 \end{bmatrix} \begin{bmatrix} I & 0 \\ D_2^{-1}L & I \end{bmatrix}.$$

Stiff off-diagonal blocks L, U now sit in diagonal via Schur complement $D_1 - UD_2^{-1}L$. The system has been "PARABOLIZED."

$$D_1 - UD_2^{-1}L = (I - \Delta t^2 \partial_{xx})$$

Resistive MHD Jacobian block structure

- The linearized resistive MHD model has the following couplings:

$$\delta\rho = L_\rho(\delta\rho, \delta\vec{v})$$

$$\delta T = L_T(\delta T, \delta\vec{v})$$

$$\delta\vec{B} = L_B(\delta\vec{B}, \delta\vec{v})$$

$$\delta\vec{v} = L_v(\delta\vec{v}, \delta\vec{B}, \delta\rho, \delta T)$$

- Therefore, the Jacobian of the resistive MHD model has the following coupling structure:

$$J\delta\vec{x} = \begin{bmatrix} D_\rho & 0 & 0 & U_{v\rho} \\ 0 & D_T & 0 & U_{vT} \\ 0 & 0 & D_B & U_{vB} \\ L_{\rho v} & L_{T v} & L_{B v} & D_v \end{bmatrix} \begin{pmatrix} \delta\rho \\ \delta T \\ \delta\vec{B} \\ \delta\vec{v} \end{pmatrix}$$

- Diagonal blocks contain advection-diffusion contributions, and are "easy" to invert using MG techniques. Off diagonal blocks L and U contain all hyperbolic couplings.

PARABOLIZATION: Schur complement formulation

- We consider the block structure:

$$J\delta\vec{x} = \begin{bmatrix} M & U \\ L & D_v \end{bmatrix} \begin{pmatrix} \delta\vec{y} \\ \delta\vec{v} \end{pmatrix} ; \quad \delta\vec{y} = \begin{pmatrix} \delta\rho \\ \delta T \\ \delta\vec{B} \end{pmatrix} ; \quad M = \begin{pmatrix} D_\rho & 0 & 0 \\ 0 & D_T & 0 \\ 0 & 0 & D_B \end{pmatrix}$$

- M is "easy" to invert (advection-diffusion, MG-friendly).

Schur complement analysis of 2x2 block J yields:

$$\begin{bmatrix} M & U \\ L & D_v \end{bmatrix}^{-1} = \begin{bmatrix} I & 0 \\ -LM^{-1} & I \end{bmatrix} \begin{bmatrix} M^{-1} & 0 \\ 0 & P_{Schur}^{-1} \end{bmatrix} \begin{bmatrix} I & -M^{-1}U \\ 0 & I \end{bmatrix},$$

$$P_{Schur} = D_v - LM^{-1}U.$$

- EXACT Jacobian inverse only requires M^{-1} and P_{Schur}^{-1} .
- Schur complement formulation is fundamentally unchanged in Hall MHD!

Physics-based preconditioner (I): small-flow approximation

- The Schur complement analysis translates into the following 3-step EXACT inversion algorithm:

$$\text{Predictor} : \delta\vec{y}^* = -\mathbf{M}^{-1}G_y$$

$$\text{Velocity update} : \delta\vec{v} = \mathbf{P}_{Schur}^{-1}[-G_v - L\delta\vec{y}^*], \quad P_{Schur} = D_v - L\mathbf{M}^{-1}U$$

$$\text{Corrector} : \delta\vec{y} = \delta\vec{y}^* - \mathbf{M}^{-1}U\delta\vec{v}$$

- MG treatment of P_{Schur} is impractical due to \mathbf{M}^{-1} .

Need suitable simplifications (SEMI-IMPLICIT)!

- We consider the small-flow-limit case: $\mathbf{M}^{-1} \approx \Delta t$
- This approximation is equivalent to splitting flow in original equations.

Serial performance (2D tearing mode)

Δt convergence study (128x128)

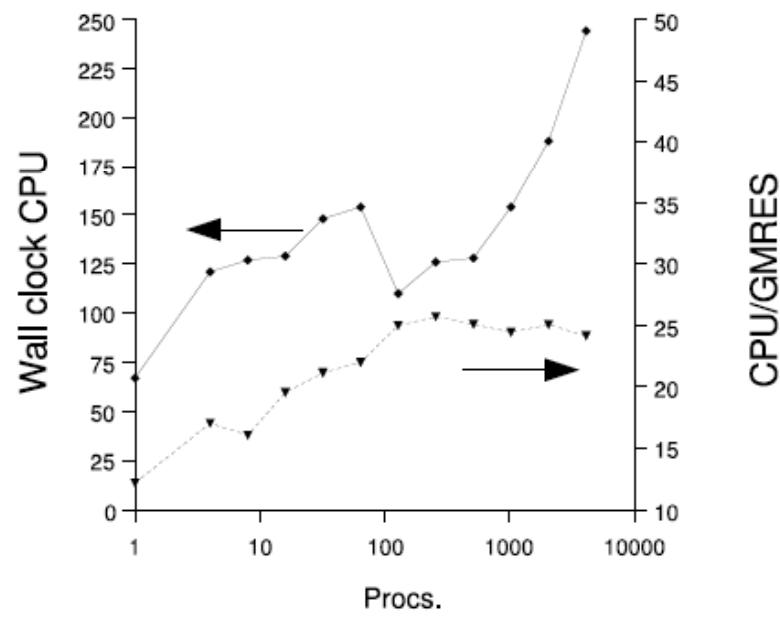
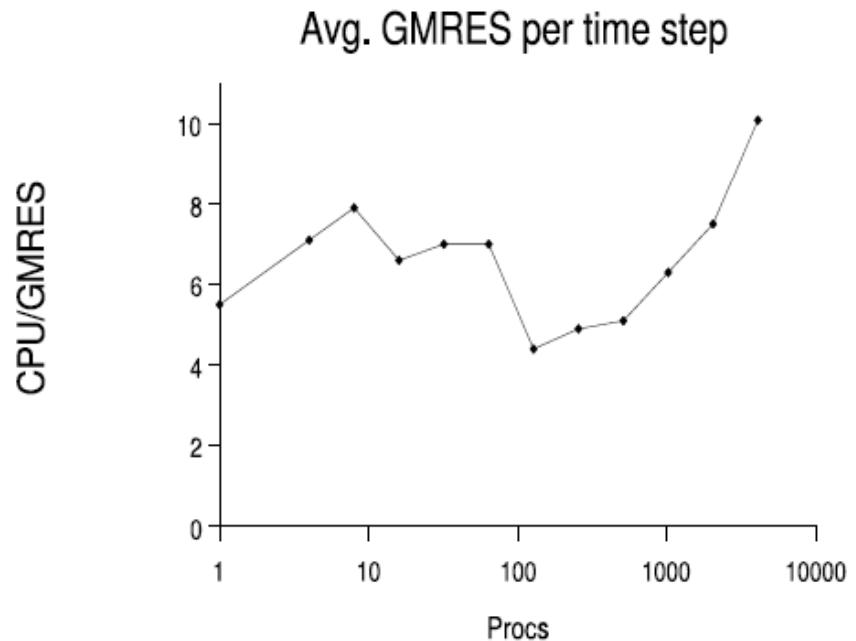
Δt	Newton/ Δt	GMRES/ Δt	CPU (s)	CPU_{exp}/CPU	$\Delta t/\Delta t_{CFL}$
0.5	5.0	8.0	526	8.0	380
0.75	5.5	9.5	607	10.0	570
1.0	5.0	11.2	684	12.7	760
1.5	5.6	14.6	856	14.6	1140

Grid convergence study ($\Delta t = 1200\Delta t_{CFL}$)

Grid	Δt	Newton/ Δt	GMRES/ Δt	CPU	\widehat{CPU}
32x32	6	6.0	38.1	145	5.3
64x64	3	5.9	24.2	350	20.4
128x128	1.5	5.6	14.6	856	84.2
256x256	0.75	5.4	9.7	2508	22.1

$CPU \sim \mathcal{O}(N)$ OPTIMAL SCALING!

Massively parallel performance with PETSc toolkit
(3D island coalescence, 16^3 grid points per processor,
on Franklin at NERSC)



Remarks about Physics based and approximate block factorization For Navier-Stokes

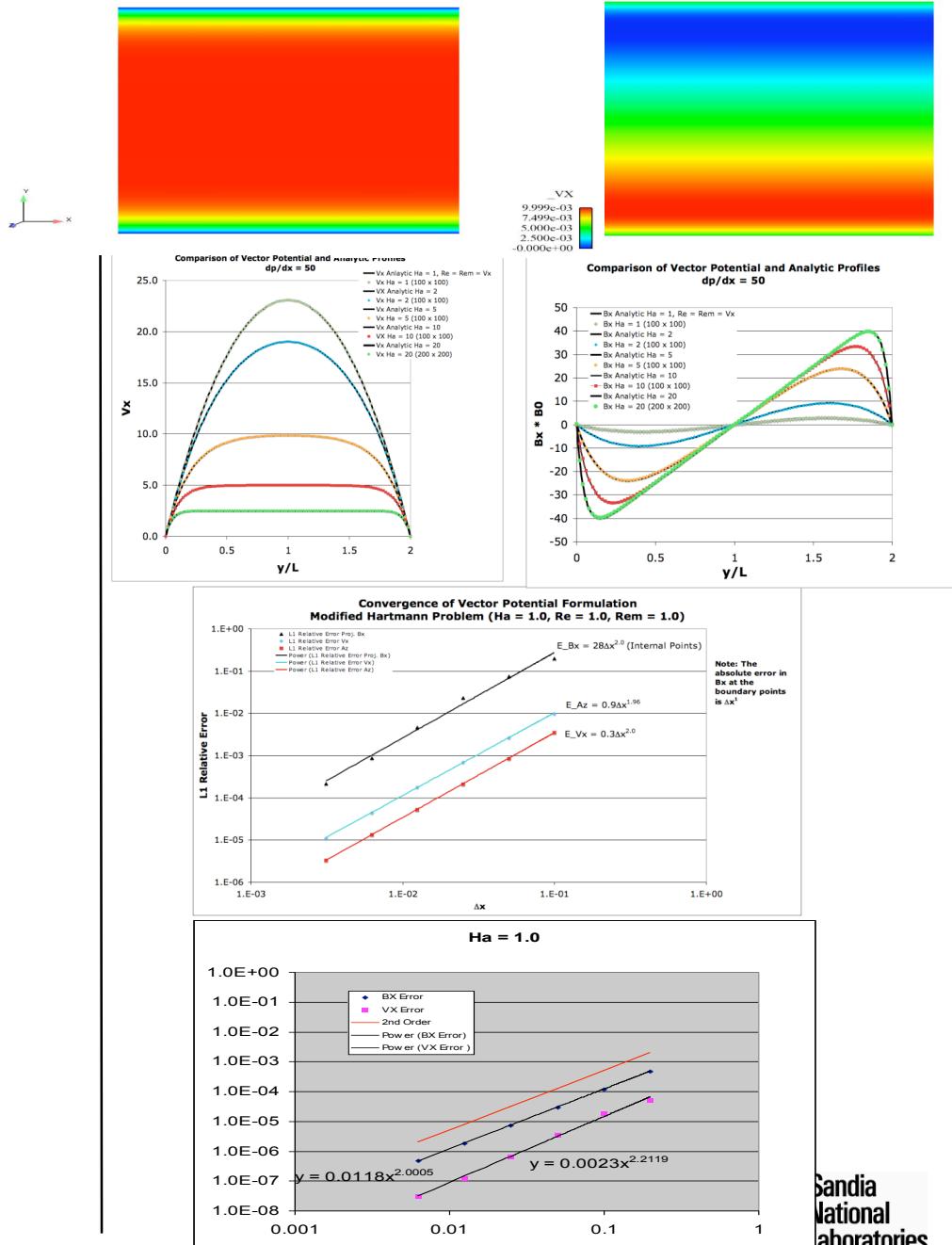
Stable, Accurate, Scalable, and Efficient TR / xMHD Solution Methods

Currently:

- 2D & 3D Low Mach Number Resistive MHD
- Fully-implicit: BE, TR, BDF2 & (Rhythmos);
- Unstructured Stabilized Finite Elements
- Formulations:
 - 2D Vector Potential
 - 2D&3D Projection and Lagrange Multiplier Method;
- Direct-to-Steady-State (NOX); Continuation, Linear Stability and Bifurcation (LOCA)
- Parallel Newton-Krylov:
 - Additive Schwarz DD w/ Var. Overlap; (Aztec)
 - Aggressive Coarsening Block AMG for Systems; (ML) [w/ Tuminaro, Lin -SNL];

Next:

- Compressible Resistive / Extended MHD
- Physics Based Preconditioning [w/ L. Chacon LANL]
- High-resolution Hyperbolic Solver (FE-TVD/FCT)
- Physics Compatible Discretizations
 - (e.g De Rham complex - [w/ Bochev, Ridzal SNL])

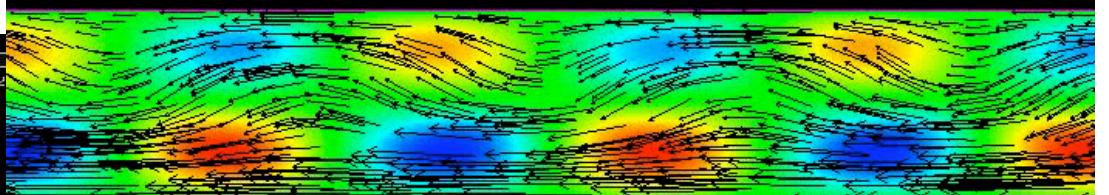
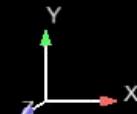
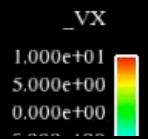


Hydro-Magnetic Rayleigh-Bernard Stability

Time = 0.0000

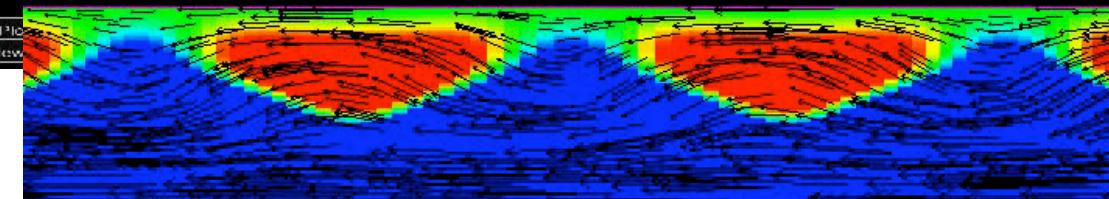
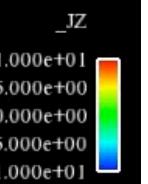


Time = 12

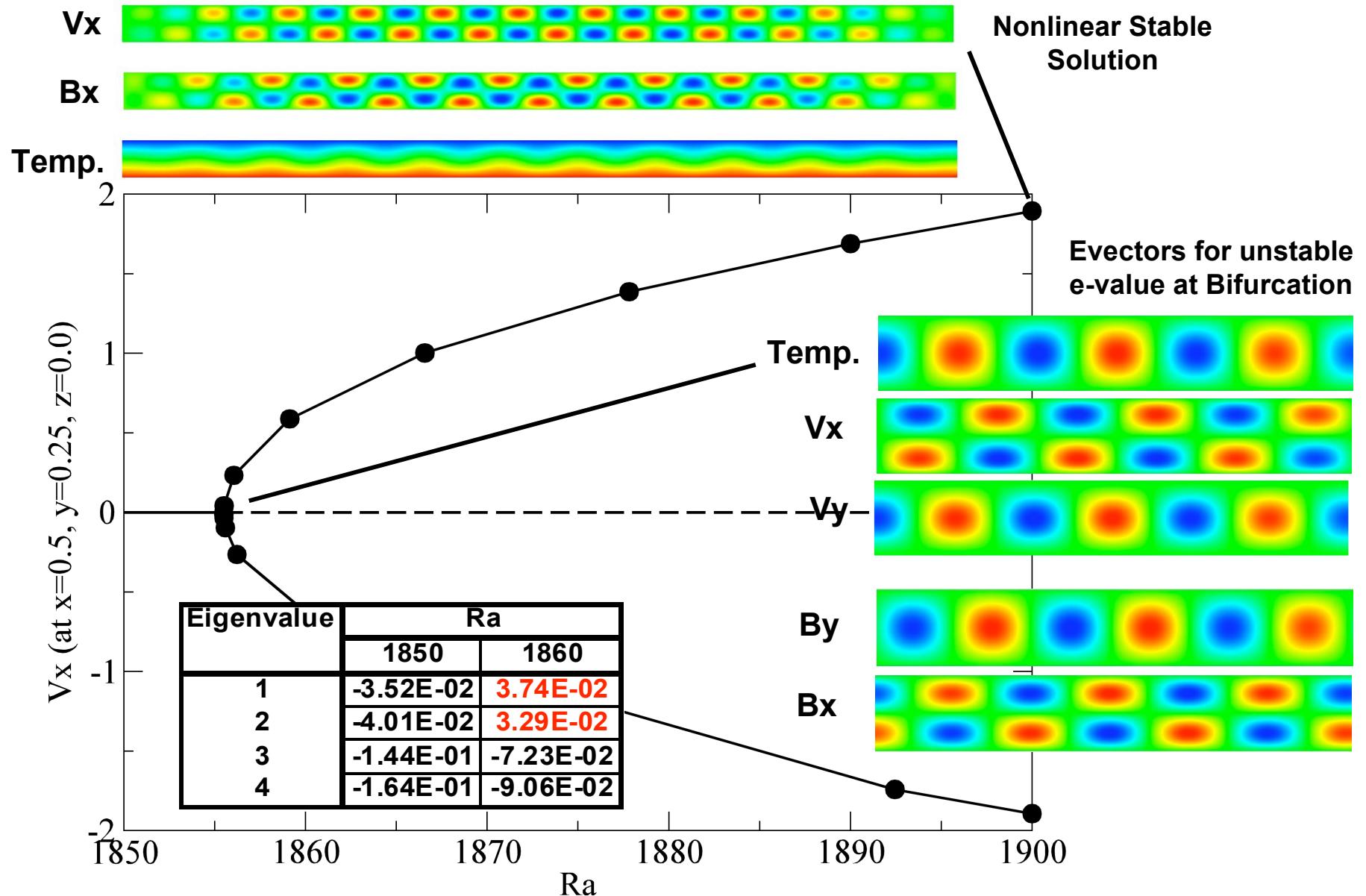


Time = 0.01000

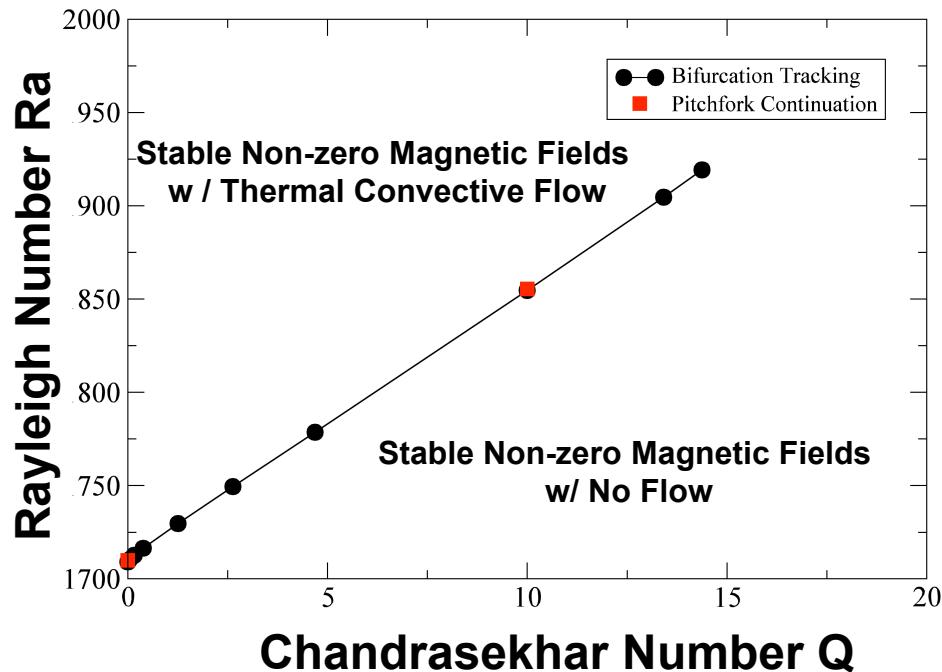
Remove Sets	Plot Elmt	Grace Plot Elmt	Write Plot
Export Plot Data	Plot Node	Grace Plot Node	Write View



Hydro-Magnetic Rayleigh-Bernard Stability



Hydro-Magnetic Rayleigh-Bernard Stability



$$\mathbf{F}(\mathbf{x}, Ra^*, Q^*) = \mathbf{0}$$
$$\mathbf{F}' \mathbf{v} = \mathbf{0}$$
$$\boldsymbol{\Gamma}^T \mathbf{v} - 1 = 0$$

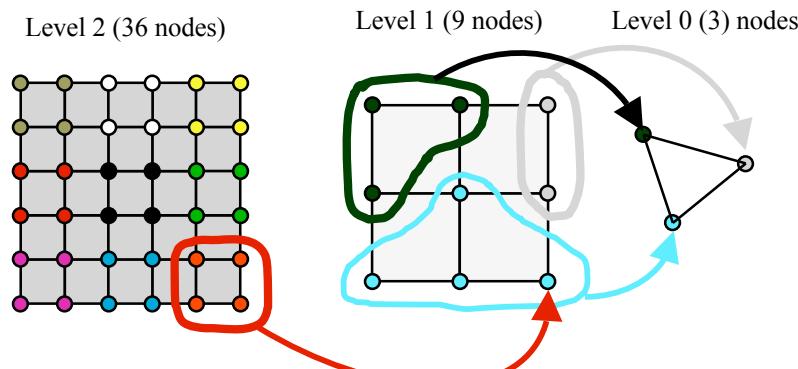
Solve extended system
with Newton's method

ML library: Multilevel Preconditioners

(R. Tuminaro, M. Sala, J. Hu, M. Gee (UT Munich)]

2-level and N-level Aggressive Coarsening Graph-based Block AMG

- Aggregation is used to produce a coarse operator
 - **Create graph where vertices are block nonzeros in matrix A_k**
 - **Edge between vertices i and j included if block $B_k(i,j)$ contains nonzeros**
 - **Decompose graph into aggregates (subgraphs) [Metis/ParMetis]**
- Construction of simple restriction/interpolation operators (e.g. piecewise constants on agg.)
- Construction of A_{k-1} as $A_{k-1} = R_{k-1} A_k I_{k-1}$
- Nonsmoothed aggregation
- Domain decomposition smoothers (sub-domain GS and ILU)
- Coarse grid solver can use fewer processors than for fine mesh solve (direct/approximate/iterative)



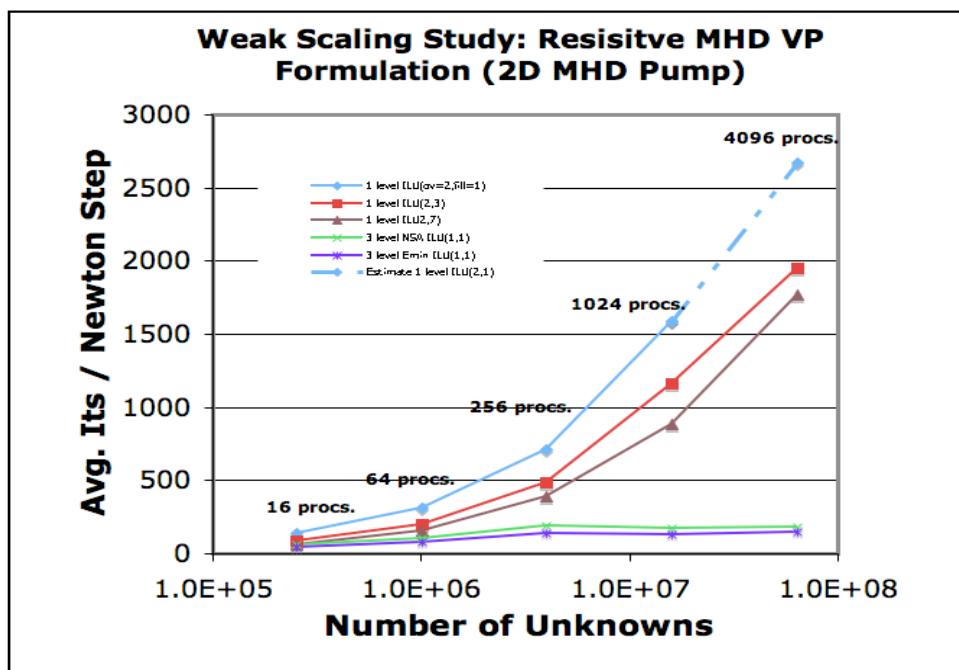
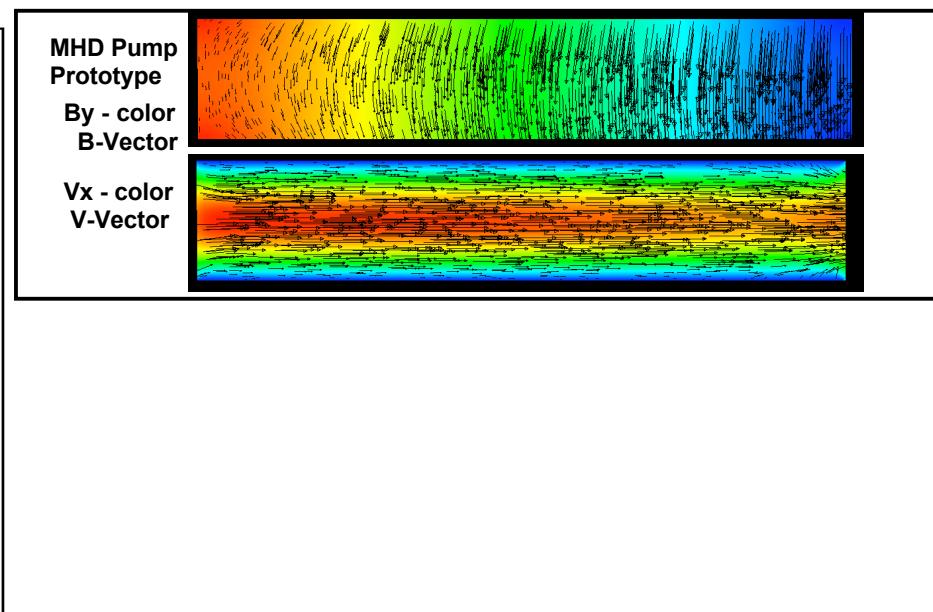
Visualization of effect of partition of matrix graph on mesh

Aggregation based Multigrid:
• Vanek, Mandel, Brezina, 1996
• Vanek, Brezina, Mandel, 2001

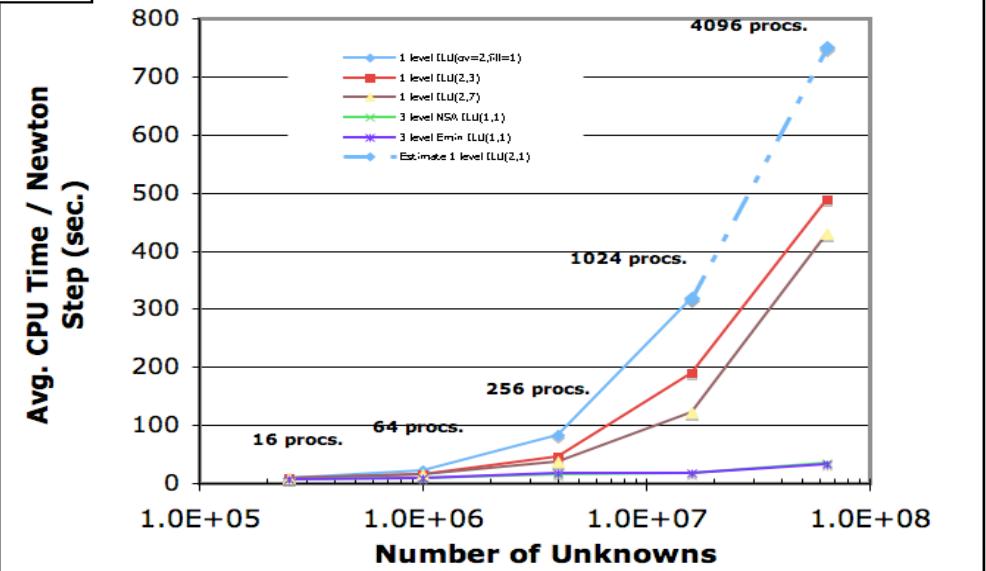
Aggregation used in DD:

- Paglieri, Scheinbine, Formaggia, Quateroni, 1997
- Jenkins, Kelley, Miller, Kees, 2000
- Toselli, Lasser, 2000
- Sala, Formaggia, 2001

Red Storm - Cray XT3 Results:



Weak Scaling Study: Resistive MHD VP Formulation (2D MHD Pump)

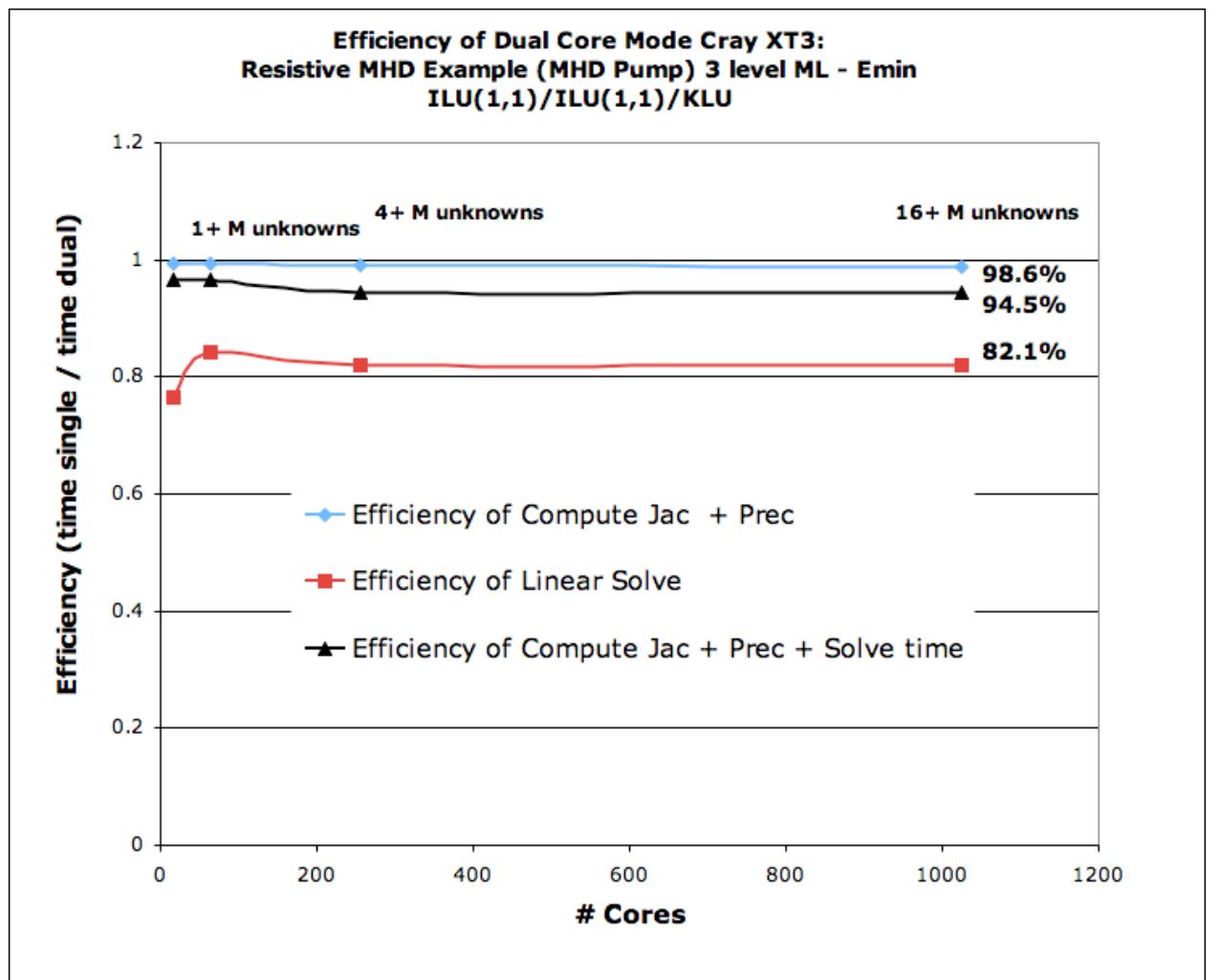


Largest Calculation
2D MHD Pump
Vector Potential Formulation

- 4096 processing nodes (single core per node)
- 12.8M FE nodes
- 64M unknowns
- Total Solve time 394 seconds (ML 3 level)

Most Processors used
3D Flux Expulsion
Projection formulation

- 20,000 cores (Dual core per node)
- 1.7M FE nodes
- 15.32M unknowns
- Total Solve time 495 seconds (DD 1 level)



Main Research Topics for Proposed FY09 - FY011 Effort

