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⇒ Computational Simulations of Complex Highly Nonlinear Multiphysics

⇒Achieving Predictive Simulations of Complex Multi-physics Systems (PDEs)

 What are multi-physics systems? (A multiple-time-scale perspective)
These systems are characterized by a myriad of complex, interacting, nonlinear
multiple time and length scale physical mechanisms.

These mechanisms can balance to produce:

• steady-state behavior,

• nearly balance to evolve a solution on a dynamical time scale that is long
relative to the component time scales,

• or can be dominated by one, or a few processes, that drive a short
dynamical time scale consistent with these dominating modes.

e.g. Fusion Reactors (Tokomak -ITER; Pulsed - NIF & Z-pinch); Fission
Reactors (GNEP);  Astrophysics; Combustion; Chemical Processing; Fuel
Cells; etc.

 



Multiple-time-scale systems: Bifurcation Analysis of a Steady Reacting
H2, O2,, Ar, Opposed Flow Jet Reactor

O2, Ar

H2, Ar

70 steady state reacting flow solves
(10 species, 19 reactions)

Approx. Physical Time scales (sec.):
• Chemical kinetics: 10-12 to 10-4

• Momentum diffusion: 10-6

• Heat conduction: 10-6

• Mass diffusion: 10-5 to 10-4

• Convection: 10-5 to 10-4

• Diffusion flame dynamics:       (steady)!

Streamlines

Temperature (Min. 300oK, Max 2727oK)

OH (Min. 0.0, Max 0.177)

(w/ Pawlowski, Salinger – MPSalsa)



Multiple-time-scale systems: E.g. Driven Magnetic Reconnection with a 
Magnetic Island Coalescence Problem (Incompressible)   

Full 3D Simulation  (note:  non-axisymmetric mode)2D axisymmetric Simulation

Approx. Computational Time Scales:
• Ion Momentum Diffusion: 10-7 to 10-3

• Magnetic Flux Diffusion:  10-7 to 10-3
• Ion Momentum Advection: 10-4 to 10-2

• Alfven Wave                    : 10-4 to 10-2

• Whistler Wave                 : 10-7 to 10-1

• Magnetic Island Merging: 100



Z-pinch Double Hohlraum Schematic

Z Machine (Approximate Ranges)

100ns current rise time  for
      20 MA Electrical Current

250 ns plasma shell collapse
       and stagnation

10-30 ns X-ray power pulse
   ~200 TW power

A Recent Review: K. Matzen, et. al.,  POP 12, 055503 (2005)

Computational Stability Constraints:

Hyperbolic Operators: Δt < Δx/2c
• Alfven waves
• Pressure waves
• Material transport
• Radiation transport

Parabolic Operators: Δt < Δx2/D
• Magnetic Diffusion
• Heat Conduction

Hall Physics ->  Δt < Δx2/(VA di)



 

Advanced simulation algorithms for MHD are need for a variety of high-profile DOE science areas
• Fusion:

ITER will define whether fusion energy is a viable option as a futre energy source. The
Fusion Simulation Project (FSP) is being defined, with the goal of developing a first
principles simulation capability for a Tokamak device. Extended MHD (XMHD) will be an
essential component of this capability.

• Magnetic Reconnection: basic plasma physics
• plasma confinement disruptions in fusion devices. SciDAC center.
• Magnetospheric sub-storms
• Solar flares
• Formation of intergalactic jets

Relevance and Impact of Advanced Resistive and Extended MHD algorithms on
DOE Science



 

Overall Project Goals:
• Develop stable, accurate, physics compatible, scalable and efficient fully-implicit
computational formulations for xMHD and PTR  (e.g. SNL Cray XT3 12.5K nodes, 25K cores)
• Develop and evaluate scalable physics-based preconditioners, based on multi-level methods
• Produce comprehensive accuracy, convergence, stability and scalability studies employing
challenging prototype problems.
• Produce large-scale computational demonstrations on selected science / technology problems

Examples
•  Magnetic Reconnection Studies with application in
Astrophysics (solar flares, … ) and Fusion Energy
(instabilities, …)

• Hydro-Magnetic Rayleigh Bernard with application to
Astrophysics, Geodynamo

• Hydro-Magnetic Rayleigh-Taylor
   (e.g. Z-pinch [HEDP])

Driven Euler 
Simulation



Currently: Low Mach Number MHD Formulation(s)

 

Conservation Law System: Magnetic Flux

Involution:



Why Newton-Krylov Methods?

Newton-Krylov

Direct-to-steady-state Fully-implicit transient

Stability and Accuracy Properties

• Stable (stiff systems)

• High order methods

• Variable order techniques

• Local and global error control possible

• Can be stable and accurate run at the
dynamical time-scale of interest in
multiple-time-scale systems
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Why Newton-Krylov Methods?

Newton-Krylov

Direct-to-steady-state Fully-implicit transient

Convergence properties

• Strongly coupled multi-physics often
requires a strongly coupled nonlinear
solver

• Quadratic convergence near
solutions (backtracking, adaptive
convergence criteria)

• Often only require a few iterations to
converge, if close to solution,
independent of problem size
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Why Newton-Krylov Methods?

Newton-Krylov

Direct-to-steady-state Fully-implicit transient

Convergence
Properties

Characterization 
Complex Soln. Spaces

Parameter
Continuation

Bifurcation
Analysis

Stability
Analysis

Design
Optimization;

Inverse 
Problems;

Sensitivities 
& Error Est. for

Deterministic (UQ);

UQ Probabilistic
approaches:

• Sampling (e.g
quadrature, MC, etc.),

• Direct (e.g
Polynomial Chaos)



Why Newton-Krylov Methods?

Newton-Krylov

Direct-to-steady-state Fully-implicit transient

Convergence
Properties

Characterization 
Complex Soln. Spaces

Design 
Optimization Stability Accuracy Efficiency

Very Large Problems -> Parallel Iterative Solution of Sub-problems

Krylov Methods - Robust, Scalable and Efficient Parallel Preconditioners
• Approximate Block Factorizations
• Physics-based Preconditioners
• Multi-level solvers for systems and scalar equations

Sensitivities
 UQ

















Remarks about Physics based and approximate block factorization
For Navier-Stokes



Currently:
• 2D & 3D Low Mach Number Resistive MHD
• Fully-implicit: BE, TR, BDF2 & (Rhythmos);
• Unstructured Stabilized Finite Elements
• Formulations:

• 2D Vector Potential
• 2D&3D Projection and Lagrange Multiplier
Method;

• Direct-to-Steady-State (NOX); Continuation, Linear
Stability and Bifurcation (LOCA)
• Parallel Newton-Krylov:

• Additive Schwarz DD w/ Var. Overlap; (Aztec)
• Aggressive Coarsening Block AMG for
Systems; (ML) [w/ Tuminaro, Lin -SNL];

Next:
• Compressible Resistive / Extended MHD
• Physics Based Preconditioning [w/ L. Chacon LANL]
• High-resolution Hyperbolic Solver (FE-TVD/FCT)
• Physics Compatible Discretizations
       (e.g De Rham complex - [w/ Bochev, Ridzal SNL])

Stable, Accurate, Scalable, and Efficient TR / xMHD Solution Methods
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Hydro-Magnetic
Rayleigh-Bernard

Stability



Evectors for unstable
e-value at Bifurcation

Nonlinear Stable
Solution

Eigenvalue

1850 1860

1 -3.52E-02 3.74E-02

2 -4.01E-02 3.29E-02

3 -1.44E-01 -7.23E-02

4 -1.64E-01 -9.06E-02

Ra

Temp.

Vx

Vy

By

Bx

Vx

Bx

Temp.

Hydro-Magnetic Rayleigh-Bernard Stability



Solve extended system
with Newton’s method
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Stable Non-zero Magnetic Fields 
w/ No Flow

Stable Non-zero Magnetic Fields
 w / Thermal Convective Flow

Hydro-Magnetic Rayleigh-Bernard Stability



ML library: Multilevel Preconditioners

• Aggregation is used to produce a coarse operator
• Create graph where vertices are block

nonzeros in matrix Ak
• Edge between vertices i and j included if

block Bk(i,j) contains nonzeros
• Decompose graph into aggregates

(subgraphs) [Metis/ParMetis]
• Construction of simple restriction/interpolation

operators (e.g. piecewise constants on agg.)
• Construction of Ak-1 as Ak-1 = Rk-1 Ak Ik-1

Level 2 (36 nodes) Level 1 (9 nodes) Level 0 (3) nodes

2-level and N-level Aggressive Coarsening Graph-based Block AMG
(R. Tuminaro, M. Sala, J. Hu, M. Gee (UT Munich)]

• Nonsmoothed aggregation
• Domain decomposition smoothers

(sub-domain GS and ILU)
• Coarse grid solver can use fewer

processors than for fine mesh
solve (direct/approximate/iterative)

Visualization of effect of partition of matrix graph on mesh

Aggregation based Multigrid:
• Vanek, Mandel, Brezina, 1996
• Vanek, Brezina, Mandel, 2001

Aggregation used in DD:
• Paglieri, Scheinine, Formaggia, Quateroni, 1997
• Jenkins, Kelley, Miller, Kees, 2000
• Toselli, Lasser, 2000
• Sala, Formaggia, 2001



MHD Pump
Prototype

By - color
  B-Vector

Vx - color
 V-Vector

• 4096 processing nodes (single core per node)
• 12.8M FE nodes
• 64M unknowns
• Total Solve time 394 seconds (ML 3 level)

Red Storm - Cray XT3 Results:

Largest Calculation
2D MHD Pump
Vector Potential Formulation



• 20,000 cores (Dual core per node)
• 1.7M FE nodes
• 15.32M unknowns
• Total Solve time 495 seconds (DD 1 level)

Most Processors used
3D Flux Expulsion
Projection formulation

Red Storm - Cray XT3 Results:



Main Research Topics for  Proposed FY09 - FY011 Effort

 


