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Key Points: 

• Marsh platform relief increases with sea level rise rate 

• The nonlinear Spartina scheme is the most resilient scheme, and the linear Spartina 

scheme predicts the lowest unvegetated�vegetated ratio 

• Models become more sensitive to vegetation parameters for increasing sea level rise rates  
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Abstract 

A growing number of coastal eco-geomorphologic modeling studies have been conducted to 

understand coastal marsh evolution under sea-level rise (SLR). Although these models quantify 

marsh topographic change as a function of sedimentation and erosion, their representations of 

vegetation dynamics that control organic sedimentation differ. How vegetation dynamic schemes 

contribute to simulation outcomes is not well quantified. Additionally, the sensitivity of 

modeling outcomes to parameter selection in the available formulations has not been rigorously 

tested to date, especially under the influence of an accelerating SLR. In this paper, we used a 

coastal eco-geomorphologic model with different vegetation dynamic schemes to investigate the 

eco-geomorphologic feedbacks of coastal marshes and parametric sensitivity under SLR 

scenarios. We found that marsh platform relief increased with sea level rise rate. The simulations 

with different vegetation schemes exhibited different spatial-temporal variations in elevation and 

biomass. The nonlinear Spartina scheme presented the most resilient prediction with generally 

the highest marsh accretion and vegetation biomass, and the least elevation relief under SLR. But 

the linear Spartina scheme predicts the lowest unvegetated�vegetated ratio. We also found that 

vegetation-related parameters and sediment diffusivity, which were not well measured or 

discussed in previous studies, were identified as some of the most critical parameters. 

Additionally, the model sensitivity to vegetation-related parameters increased with SLR rates. 

The identified most sensitive parameters may inform how to appropriately choose modeling 

representations of key processes and parameters for different coastal marsh landscapes under 

SLR, and demonstrate the importance of future field measurements of these key parameters.  

Keywords: Landscape evolution, Eco-geomorphologic model, Coastal marsh, Sea level rise, 

Accretion, Vulnerability 
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1 Introduction 

Coastal marshes are unique landscapes that connect terrestrial and aquatic systems and 

provide important ecosystem services, such as sustaining wildlife habitats, protecting shorelines, 

attenuating floods, storing carbon, and filtering contaminants (Barbier et al., 2011; Costanza et 

al., 1997; Fagherazzi, 2014; FitzGerald & Hughes, 2019; Roulet, 1990; Tiner, 2013). Intensified 

climate change, especially accelerating sea level rise (SLR), storm surges and associated extreme 

sea levels, and reduced sediment transport to the coastal zone threaten the stability of coastal 

marsh ecosystems (Cahoon & Guntenspergen, 2010; Ratliff et al., 2015; Scavia et al., 2002; 

Yousefi Lalimi et al., 2020). The vertical accretion rate for coastal marsh surfaces is the 

difference between the sedimentation rate and the surface erosion rate and is controlled by 

complex eco-geomorphologic interactions at multiple scales.  To survive, the vertical accretion 

rate  must at least keep pace with the rate of  relative SLR (i.e. SLR + subsidence rate, Burkett & 

Kusler, 2000; Day et al., 2008; Kirwan et al., 2010; Marani et al., 2007; Reed, 1995). Therefore, 

investigating how eco-geomorphologic processes respond to SLR is a prerequisite for 

understanding the sustainability and resilience of coastal ecosystem structure and functions to 

SLR.  

The term eco-geomorphology, which highlights the interactions between landscapes and 

ecosystems, can be traced back to the concept of bio-geomorphology in the pioneering study by 

Viles [1988], who explicitly considered the interactive roles of biota and geomorphology in 

landscape development. Later, a more comprehensive description of the linkage between coastal 

hydrology, vegetation dynamics, and geomorphology was gradually established by early-stage 

modeling studies (Allen, 2000; D’Alpaos et al., 2007; French, 1993; Kirwan & Murray, 2007; 

Marani et al., 2007; Morris et al., 2002; Mudd et al., 2004, 2009; Randerson, 1979; van Wijnen 
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& Bakker, 2001). The diagram presented in Figure 1 includes the key components that control 

the eco-geomorphologic feedbacks in coastal ecosystems and provides a conceptual framework 

for model development and analysis. Here, the state and dynamics of a hydro-eco-geomorphic 

system is described in terms of three variables (marsh elevation, vegetation biomass, and ocean 

drivers including saltwater intrusion, tide, wave, storm surge, and sea level rise (SLR)) and three 

sediment fluxes (inorganic sediment deposition, organic soil production, and erosion) (Allen, 

2000; Marani et al., 2007, 2010). The elevation of marshland with respect to the mean sea level, 

which may change over time, is controlled by accretion through inorganic sediment deposition, 

organic soil production, and erosion, as well as by land subsidence (soil compaction and 

sediment decomposition) and SLR. Tidal currents, waves, and storm surges directly drive 

sediment dynamics via sediment deposition and erosion. Changes in tidal range affect the depth, 

frequency, and duration of flooding of marsh plants, and therefore changes soil salinity, oxygen 

and sulfide availability affecting plant growth (Silvestri & Marani, 2004). Vegetation plays a 

critical role in decreasing water velocity and dissipating wave energy, thereby reducing sediment 

erosion and increasing deposition (Carus et al., 2016; Ghisalberti & Nepf, 2005; Moller et al., 

2014; Nepf, 1999; Yang et al., 2012). Vegetation also contributes to sedimentation by directly 

trapping suspended sediment and by producing organic matter in the subsurface (Mudd et al., 

2004). Changes in marsh elevation produce changes in water levels on marshland, thereby 

affecting marsh plant development (Morris et al., 2002; Mudd et al., 2004).  

[Approximated location of Figure 1] 

Using this conceptual framework, a number of mathematical models have been 

developed to describe and understand the evolution of coastal marshes under SLR (e.g., Allen, 

2000; Best et al., 2018; Da Lio et al., 2013; D’Alpaos et al., 2007; Duvall et al., 2019; French, 
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1993, 2006; Kirwan et al., 2010; Kirwan, Temmerman, et al., 2016; Kirwan, Walters, et al., 

2016; Kirwan & Murray, 2007; Kirwan & Temmerman, 2009; Langston et al., 2020; Marani et 

al., 2007, 2013; Mariotti & Fagherazzi, 2010; Morris & Bowden, 1986; Mudd et al., 2009; 

Rogers et al., 2012; Schile et al., 2014; Schuerch et al., 2018; Stralberg et al., 2011; Thorne et al., 

2018; van Wijnen & Bakker, 2001). Although these models vary in complexity, all provide 

insights into coastal marsh vulnerability under SLR, especially for understanding whether the 

accretion rate of marshland can keep pace with the rate of SLR.  

For their representation of vegetation-related processes, some modeling studies assumed 

static vegetation with a constant influence of vegetation on hydrodynamics and sedimentation 

(Allen, 1995; D’Alpaos et al., 2011; French, 1993; Mudd et al., 2009; Rogers et al., 2012; Schile 

et al., 2014; Stralberg et al., 2011; van Wijnen & Bakker, 2001). Other studies modeled more 

detailed vegetation-water-land interactions by considering the impact of vegetation density, 

height, and submergence on water flow and sediment transport (e.g., Da Lio et al., 2013; 

D’Alpaos et al., 2007; Duvall et al., 2019; Mudd et al., 2004, 2009; Temmerman et al., 2005). 

Morris et al. (2002) first proposed a clear relationship between marsh vegetation biomass and its 

depth below mean highest tide level based on the field observation on the coastal marsh in South 

Carolina, USA. Other studies extended this work to explicitly integrate quantitative 

representations for vegetation dynamics into coastal marsh evolution by assuming 1) a linear 

relationship between Spartina-dominant vegetation and its inundation condition  (Belliard et al., 

2015; D’Alpaos et al., 2007), 2) a nonlinear relationship between Spartina-dominant vegetation 

and its inundation condition (Kirwan & Murray, 2007; Mariotti & Fagherazzi, 2010), or 3) a 

linear relationship between multiple vegetation species and their inundation condition (Belliard 
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et al., 2015; D’Alpaos et al., 2007, 2019; Marani et al., 2004, 2013; Silvestri et al., 2005). The 

detailed explanations are presented in Subsection 2.    

Many of these modeling studies evaluated the vulnerability of coastal marshes under SLR 

by using a lumped approach, where they treated coastal marshes as a single point or only focused 

on the marsh near the seaward boundary without an examination of the marsh spatial variation 

from the ocean to the upland in responding to SLR (D’Alpaos et al., 2011; French, 2006; Kirwan 

et al., 2010; Kirwan & Temmerman, 2009; Mudd et al., 2009; Temmerman et al., 2003; van 

Wijnen & Bakker, 2001). Other  studies investigated the spatial and temporal variation of coastal 

marsh evolution under SLR (D’Alpaos et al., 2007; D’Alpaos & Marani, 2016; Kirwan, Walters, 

et al., 2016; Marani et al., 2013; Ratliff et al., 2015). However, the response of coastal marsh 

evolution under SLR to varying representations of vegetation dynamic processes is still not well 

understood, especially the co-evolution of coastal marsh elevation and vegetation. Furthermore, 

as the complexity and sophistication of these coastal models continues to increase, there is a 

critical knowledge gap in how sensitive model predictions are to model parameterizations under 

different SLR conditions. This knowledge is critical for developing effective model 

parameterizations, and designing field studies to constrain those model parameters under 

different SLR scenarios. Currently, this knowledge gap limits our confidence in the application 

of these types of models to inform coastal wetland management and protection. 

In this study, we used a coastal eco-geomorphic model with different vegetation dynamic 

representations to investigate the eco-geomorphologic feedbacks in coastal marshes under future 

SLR conditions to address the following two questions:  

1) How will the selection of vegetation representations result in spatial and temporal 

differences in eco-geomorphologic outcomes of coastal marshes under SLR?   
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2) How will the different vegetation representations and different rates of SLR affect 

model parametric sensitivity?  

To address these questions we simulated the evolution of a one-dimensional coastal 

marsh transect using a well-established coastal eco-geomorphologic model from D’Alpaos et al. 

(2007). Specifically, under  two commonly-used future global mean SLR scenarios (SLR=0.005 

m/yr and SLR=0.01 m/yr, corresponding to RCP (Representative Concentration Pathways) 4.5 

and RCP 8.5 scenarios in Phase 5 of the Coupled Model Intercomparison Project (CMIP5) 

(Spencer et al., 2016), we explored three different dependencies of vegetation biomass on 

elevation above mean sea-level: linear and non-linear formulations for the Spartina-dominant 

vegetation (D’Alpaos et al., 2007; Mariotti & Fagherazzi, 2010; Morris et al., 2002); and the 

mixed-species linear function (D’Alpaos et al., 2007). After comparing the spatial and temporal 

variations of coastal marsh evolution under SLR with different vegetation equations, we used a 

global sensitivity approach to evaluate the sensitivity of eco-geomorphologic processes to model 

parameterizations spanning a wide range of the parameters.  

The paper begins by introducing process representation in Section 2, followed by model 

introduction, study site, experiment design, and model setting in Section 3. Then we analyze the 

marsh evolution and model sensitivity under different rates of sea level rise, vegetation schemes, 

and maximum organic soil production rates in Section 4. Finally, we discuss the implications of 

this study for understanding the vulnerability of coastal marsh under SLR, guiding data-model 

integration, representativeness, and uncertainties.  
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2. Background: process representation in eco-geomorphologic models 

Eco-geomorphologic models represent topographic change of coastal marsh as the net 

balance of sediment erosion and deposition (Fagherazzi et al., 2012). Based on mass 

conservation, the spatially-averaged dynamics of topographic elevation in a coastal landscape 

can be expressed as 

���� = ���� �	 − �� − 
,                                                          (1) 

where � is the surface elevation relative to the mean sea level with the dimension of [L]; � is 

time [T];  � is the porosity of bed sediment; 	 and � represent local sediment deposition and 

erosion rates with the dimensions of [LT-1], respectively; and 
 is the rate of sea level rise [LT-

1].  

However, the way each term in Eq. 1 is modeled may vary. For the erosion term (�) in 

Eq. 1, it may consist of erosion due to bed shear stress induced by currents and waves and/or 

due to wave breaking (Carniello et al., 2005; Marani et al., 2010; Mariotti & Fagherazzi, 2010; 

Van Rijn, 1993), namely, 

� = ������ + ������,                                                                    (2) 

where ������ is the erosion due to bed shear stress [LT-1]. Erosion occurs when the bed shear 

stress (��) exceeds the critical shear stress for erosion (��), viz 

������ = �� ���� − 1"       $% �� > ��0                        $% �� < ��,                                                 (3) 
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where � is the erosion coefficient. ������ in Eq. 2 is the erosion due to wave breaking [LT-1]. 

According to Mariotti and Fagherazzi (2010), ������ is a function of wave power dissipated by 

breaking: 

������ = �) � **+, − 1" /.                $% / > /0�          0                            $% / < /0� ,                                                 (4) 

where ) is the wave erosion coefficient; / is the wave power per unit area [WT-1L-2]; /0� is the 

threshold of wave power for wave erosion [WT-1L-2]; and . is the spatial interval over which 

wave breaking occurs [L]. 

The sedimentation rate, 	 in Eq. 1, is given by 

	 = 	� + 	� + 	1,                                                          (5) 

where 	� is the inorganic sediment settling rate [LT-1], which is a function of settling velocity 

(2�) [LT -1] (Cao et al., 2020), suspended sediment concentration (3), bed shear stress (��) due 

to water flow [ML-3T-2], and critical shear stress for sedimentation (��) [ML -3T-2] (Krone, 

1962), namely, 

	� = �2�3 �1 − ���4"   $% �� < ��0                        $% �� > �� .                                                   (6) 

	� in Eq. 5 is the inorganic sediment trapping rate due to the effect of vegetation canopy [LT-1], 

which can be represented by an empirical form 

	� = 356.�7�min [ℎ�, ℎ>]                                                      (7) 

where 5 is the water flow velocity [LT-1]; 6 is a capture efficiency of vegetation stems, ℎ> is 

the water flow depth [L], and several vegetation characteristics, such as plant stem diameter 

(.�), stem density (7�), and vegetation height (ℎ�) (Mudd et al., 2004; Palmer et al., 2004). 
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Additionally, 	1 in Eq. 5 is the organic matter production rate [LT-1], which is a function of 

plant biomass, viz 

	1 = @� AABCD,                                                                   (8) 

where @� is the maximum production rate of belowground organic material [LT-1]; E is the 

aboveground plant dry biomass at the current time [ML -2]; and EF�G is the maximum 

vegetation biomass [ML-2]. The growth of coastal marsh vegetation is controlled by several 

factors related to nutrient inputs (e.g., nitrogen and phosphorous) and soil environmental stress 

(e.g., oxygen availability, salinity, and sulfide concentration) (Silvestri & Marani, 2004).  

Morris et al. (2002) proposed a relation between vegetation biomass and the depth of the marsh 

surface below the mean highest tidal level based on observations at a coastal marsh in South 

Carolina, USA. Based on this relation, several empirical functions were derived to represent 

equilibrium vegetation biomass under different ponding conditions. The empirical function can 

be expressed as a linear (D’Alpaos et al., 2007) or a parabolic (Morris et al., 2002) function of 

salt marsh elevation relative to tide level. For the linear dependency, the lowland area with 

frequent flooding is more favorable for salt-tolerant and flood-tolerant species, such as Spartina 

alterniflora. The vegetation biomass is proportional to inundation depth. Quantitatively, the 

biomass equation can be written as (see the blue line in Fig. 2) 

E� = � �HIJK�LMNOBNP���LMNOBCD�LMNOBNP " EF�G  $% QRST − 	�U1F�G ≤ � ≤ QRST − 	�U1FUW        0                                        $% QRST − 	�U1F�G > � XY � > QRST − 	�U1FUW,      (9) 

where E� is the time-averaged aboveground biomass density [ML -2]; EF�G is the maximum 

biomass density [ML-2]; QRST represents the mean highest tide level [L]; 	�U1F�G and 	�U1FUW 

are the highest and lowest depth below MHTL, respectively, which bounds the upper and lower 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

limits of vegetation growth range (D’Alpaos et al., 2007). QRST − 	�U1FUW and QRST −
	�U1F�G represent the elevations of the upper and lower boundaries for vegetation growth (the 

dashed lines in Fig. 2). Whereas, some mixed species on marshland prefer higher elevation 

region with less flooding and better aerated soil (see the orange line in Fig. 2), namely 

EZ =
[\]
\̂                        0                          $% QRST − 	�U1F�G > �                                       ����HIJK�LMNOBCD�LMNOBCD�LMNOBNP " EF�G     $% QRST − 	�U1F�G ≤ � ≤ QRST − 	�U1FUW EF�G                         $% � > QRST − 	�U1FUW                               

,           (10) 

where EZ is the time-averaged aboveground biomass density for mixed species [ML-2] 

(D’Alpaos et al., 2007). Besides these linear functions, a parabolic formulation describes that 

the plant biomass goes to zero when the marsh surface elevation reaches the upper (QRST −
	�U1FUW) or lower bound (QRST − 	�U1F�G), and the biomass reaches its peak at a certain 

elevation between QRST − 	�U1FUW and QRST − 	�U1F�G  (see the yellow line in Fig. 2): 

E_ = `                        0                          $% QRST − 	�U1F�G > � XY � > QRST − 	�U1FUW EF�G�a	 + b	Z + c�   $% QRST − 	�U1F�G ≤ � ≤ QRST − 	�U1FUW ,   (11) 

where E_ is the time-averaged aboveground biomass density [ML -2] (Morris, 2006); D is the 

ratio between QRST − 	�U1FUW − � and 	�U1F�G − 	�U1FUW; a, b, and c are fitting coefficients.  

[Approximated location of Figure 2] 

The representation of marsh hydrodynamics driven by tides and waves is also an 

essential part of eco-geomorphologic modeling because both erosion and sedimentation are 

fundamentally tied to surface water flow (Scheidegger, 1961). The shallow water equations, 

derived from the depth-integrated Navier–Stokes equations, have been widely used to compute 

hydrodynamics in coastal regions where the water horizontal length scale is much greater than 

the vertical length scale (Vreugdenhil, 2013). Specifically, the shallow water equations consist 
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of two conservation equations: 1) conservation of mass and 2) conservation of momentum. 

Namely, in a one-dimensional (1-D) domain,  

3X7deYfa�$X7 X% gadd: iji� + i�jk�iG = 0,                                 (12) 

and 

3X7deYfa�$X7 X% gXge7�lg: iki� + l i�k�iG = −m i���iG − m k|k|op� = 0,         (13) 

where ℎ is the water surface elevation = land surface elevation (�) + local water flow depth (q) 

[L], thus ℎ varies not only depending on the change in water depth, but also the simultaneous  

morphological change; l is the flow velocity [LT-1]; m is the gravitational acceleration [LT-2]; 

r is the spatial direction along the 1-D domain [L]; and C is the Chezy’s friction coefficient.  

3 Methodology 

3.1 Numerical model  

We used a 1-D version of the coastal eco-geomorphologic model developed by 

D’Alpaos et al. (2007) (hereinafter referred to as D-model) focusing on the interaction between 

land and ocean without lateral water and sediment fluxes, such as tidal channels.  The D-model 

integrates all the hydro-eco-geomorphologic components introduced in Fig. 1, including 

sediment settling (Eq. 6), sediment trapping (Eq. 7), vegetation organic matter production (Eq. 

8), and sediment erosion due to tidal currents (Eq. 3), except sediment erosion due to waves 

because the effect of waves in controlling the spatial and temporal variation of coastal marsh 

evolution was well studied by Duvall et al. (2019) and Mariotti and Fagherazzi (2010), and 

vegetation can significantly mitigate waves if the waves are not too strong, thus wave-induced 

erosion is not a focus in this study. We focused on conditions with regular semi-diurnal tidal 
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cycle and background SLR. For the representation of vegetation biomass, the original D-model 

included functions (e.g., Eqs. 9 and 10) that assume a linear relationship between annual 

averaged biomass and the elevation relative to mean sea level and considered different 

responses of Spartina and mixed vegetation species (see details in Section 2). To have a 

comprehensive understanding of the differences of the eco-geomorphologic feedbacks under 

different representations of vegetation dynamics, we incorporated the nonlinear function (e.g., 

Eq. 11) into the D-model as well. For the computation of hydrodynamics, the D-model uses an 

approach similar to the kinematic-wave form that assumes a balance between water surface 

slope and friction in the momentum equation (Eq. 13) (D’Alpaos et al., 2007; Rinaldo et al., 

1999). The detail of the hydrodynamic component is referred to the supplementary information 

Text. S1 and D’Alpaos et al. (2007), and the detail for the sediment transport component is 

referred to Section 2 above and D’Alpaos et al. (2007).  

3.2 Numerical Experiment 

We used a 1-D transect based on a marsh platform along the Delaware Bay, USA, as a 

prototype for our simulations (the black solid line in Fig. 3c). Marsh surface elevation in the 1-

D transect is at a level close to the mean highest tide level (MHTL, gray dashed line in Fig. 3c), 

consistent with observations in Delaware Bay based on the CoNED coastal elevation database 

(Danielson et al., 2016) and NOAA (National Oceanic and Atmospheric Administration) tide 

observations (NOAA, 2001), which indicates that the landscape is at or close to an equilibrium 

state under the current sea level conditions (D’Alpaos et al., 2007).  

This study simplifies the 1-D transect topography by using a linear interpolation of the 

observed topography (red line in Fig. 3c) as the initial land surface elevation for the numerical 

experiments. The origin of the 1-D model domain is placed at the seaward boundary (x=0), 
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whereas the upland boundary is located at x=L. Water and sediment can only flow through the 

seaward boundary with zero flux flowing through the upland boundary. The current mean sea 

level (MSL) is at -0.13 m above NAVD88 (North American Vertical Datum of 1988), and the 

averaged tide amplitude is about 0.8 m based on the NOAA tide and current observation at 

station Cape May, NJ [8536110] (the red star in Fig. 3b). We used a constant suspended 

sediment concentration (C0=20 mg/L) at the ocean boundary (x=0). The value of C0 falls at the 

lower bound of the range of sediment concentration used in the previous coastal eco-

geomorphologic modeling studies (e.g., Kirwan, Walters, et al., 2016). Thus, this study makes a 

conservative prediction of coastal marsh change under SLR. However, a comparable numerical 

experiment with the same model settings but with a higher suspended sediment concentration 

(C0=100 mg/L) was also conducted, and the results can be found in the supplementary 

information (see Figs. S2 and S3).  

[Approximated location of Figure 3] 

In order to speed-up simulations to geomorphologically relevant time scales, the 

simulations adopted a morphological scaling factor (MSF, e.g., Lesser et al. (2004); Roelvink 

(2006); Zhang et al (2016)), which effectively assumes that changes in the topographic profile 

over time scales smaller than the scaling factor do not appreciably affect the flow field and the 

eco-geomorphic dynamics. Hence, elevation change is computed offline by applying sediment 

fluxes determined in a tidal cycle, assumed to be constant for a period of time equal to the MSF. 

Thus, in this study, the simulations were run for 500 years (consistent with the simulation time 

in D’Alpaos et al. (2007) to make sure the landscape reaches an equilibrium state) with a spatial 

interval of 1 m and a time interval of 10 minutes for hydrodynamics in a single tidal cycle and 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

MSF=50 for the eco-geomorphologic change of 50 tidal cycles. The same numerical settings 

were applied to the M-model simulations in the supplementary information.   

We designed several focused numerical experiments to characterize eco-

geomorphologic feedbacks under different representations of vegetation dynamics and SLR 

scenarios for the future 500 years. We adopted two commonly used future global mean SLR 

scenarios from global climate model predictions, including (1) the relatively low SLR rate 

(0.005 m/yr) (Da Lio et al., 2013; Ganju et al., 2020; Kirwan & Temmerman, 2009; Spencer et 

al., 2016) and (2) the relatively high rate of SLR (0.01 m/yr) (Ganju et al., 2020; Kirwan, 

Walters, et al., 2016; Orson et al., 1985; Spencer et al., 2016). In addition, we considered three 

different representations of vegetation dynamic processes, such as the Spartina-dominant linear 

function, Spartina-dominant nonlinear function, and mixed species linear function. Also, in 

simulating vegetation organic soil production, we incorporated two different rates of maximum 

organic production rates: 1) @� = 0.003 g/uY, a commonly used maximum organic production 

rate under current climate (Langley et al., 2009; Morris et al., 2016) and 2) @� = 0.005 g/uY, 

a larger maximum organic production rate, reflects the increase of belowground biomass 

productivity under elevated atmospheric CO2 in the future (Ratliff et al., 2015). Specifically, 

based on a comprehensive literature review, Ratliff et al. (2015) found that biomass productivity 

increased about 33% for a 400 ppm increase in atmospheric CO2. Here, we assumed a present-

day maximum organic production rate of 3 mm/yr. Under the RCP 8.0 climate scenario (the 

most ambicis future CO2 emission scenario), the CO2-equivalent levels was projected to exceed 

1200 ppm, which means an additional 800 ppm with respect to present (Hayhoe et al., 2017). 

This leads to a future maximum organic production rate equal to 0.00498 m/yr ≈ 0.005 m/yr. 
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Scenario details are listed in Table 1. The parameters for these individual simulations are listed 

in the fourth column in Table 2.  

[Approximated location of Table 1] 

3.3 Sensitivity analysis 

There are many sensitivity analysis approaches available to understand parametric 

sensitivity of model behavior (see Song et al. (2015) for a detailed review).  In this study, we 

used a widely applied sensitivity analysis approach, the Fourier Amplitude Sensitivity Test 

(FAST) technique (Cukier et al., 1973; Xu & Gertner, 2011, 2008a).  FAST is computationally 

efficient and can be used for both nonlinear and non-monotonic relationships between 

parameters and model outputs (Xu & Gertner, 2011). FAST uses a periodic sampling strategy to 

assign a characteristic periodic signal for each parameter. Within FAST, a Fourier 

transformation is used to decompose the variance in model outputs into partial variance 

contributions by individual model parameters based on the assigned signals. The ratio of partial 

variance contributed by a specific parameter to the total variance of a model output is defined as 

the first-order sensitivity index to measure the importance of each model parameter. The FAST 

analysis has been incorporated into a software tool, the UASA ToolBox 

(https://sites.google.com/site/xuchongang/uasatoolbox) by Xu and Gertner (2008b) and 

provides a rigorous way of defining, executing, and analyzing experiments for model 

parametric sensitivity.  

This study selected 11 common parameters that have been used in many coastal eco-

geomorphologic models (see the list of the parameters in Table. 2). Based on this selection, the 

UASA ToolBox was used to generate 1,100 groups of parameters for the model ensemble 
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simulations to quantify the models’ individual parametric sensitivities. The range of each 

parameter is estimated based on our literature survey and empirical knowledge. However, 

because there is not enough data to derive informative probability density distributions, we used 

a uniform distribution for our sensitivity analysis. 

Model sensitivity is defined in terms of relevant quantitative metrics describing the final 

state of the system: 1) the difference between the MHTL and the elevation at the seaward 

boundary (MHTL minus elevation, hereinafter referred to as Depth_m), 2) the difference 

between minimum and maximum elevations (hereinafter referred to as elevation relief) from 

each ensemble simulation under different scenarios, 3) domain averaged sediment fluxes, 4) the 

vegetation biomass at the seaward boundary, and 5) the vegetation biomass at the upland 

boundary. Notably, the first metric, Depth_m, measures how the landscape elevation (at least 

the seaward boundary) responds to SLR. While the second metric (elevation relief) measures 

the difference of elevation at the seaward boundary and inland and possible inland depression 

on the 1-D marshland.  

[Approximated location of Table 2] 

4. Results  

4.1 Topographic evolution and sediment fluxes under different SLR rates 

4.1.1 Topographic change across individual simulations 

We first used the twelve individual simulations (cases 1 to 12 in Table. 1) as examples 

to compare the elevation change under different vegetation equations for biomass estimation 

and SLR scenarios simulated by the D-model over 500 years (see Fig. 4). The corresponding 

sediment fluxes at the end of the 500 years are illustrated in Fig. 5. Domain-wide, the elevations 
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in the cases with a higher maximum organic production rate (Kb) (the first column in Fig. 4) 

were higher than the elevation in the lower Kb cases (the second column in Fig. 4). At the 

seaward boundary, the relative locations between elevation and MHTL near the seaward 

boundary in all vegetation-covered scenarios remained constant after 400 years’ simulation (not 

shown at here) due to a balance between sediment fluxes (Fig. 5), which indicate that 1) the 

elevations near the seaward boundary reached a new equilibrium state under future SLR and 2) 

the marshland near the seaward boundary kept pace with the rates of SLR. In contrast, the cases 

without vegetation showed clear declines of elevation near the ocean boundary (gray dashed 

lines in Fig. 4) due to erosion (the black lines in Fig. 5d and k) and lack of organic accretion 

and inorganic trapping. The final elevations with vegetation coverage reached the level of 

MHTL (solid lines in Fig. 4), except in the high SLR and low Kb scenario (Fig. 4c), where the 

elevation was 0.2-0.3 m below the MHTL, and in the low SLR and high Kb scenario (Fig. 4b), 

where the simulated marsh surface elevation with the mixed-vegetation equation (hereinafter 

referred to as mixed-veg case) was equal to the MHTL because the organic production rate is 

equal to the SLR (see the sediment flux in Fig. 5j).  

Moving landward, the marsh elevations declined due to a decrease in sedimentation rate 

landward. Some of the marshland became totally submerged in water as the elevation was 

below the final mean sea level (final MSL indicated by the blue dashed lines in Fig. 4). With a 

higher Kb, a shorter portion of the marshland was below the final MSL because a higher Kb 

resulted in a higher organic sedimentation rate, which dominantly contributed to the accretion 

rate at the upland area where inorganic sediment from the ocean was restricted to this region.  

High SLR caused a larger elevation relief up to 5m (Figs. 4a and c), compared to the 

low SLR scenarios that only had a maximum elevation relief of 0.48 m in the higher Kb case 
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(Fig. 4b) and 2.85m in the lower Kb case (Fig. 4d), respectively. Notably, in the lower SLR 

scenario with a higher Kb, the elevation only slightly declined landward (Solid lines in Fig. 4b), 

which means that the accretion rate domain-wide can always keep pace with the rate of SLR as 

illustrated in Fig. 5h, i, and j. 

[Approximated location of Figure 4] 

Different vegetation schemes also highlight different influences on the topographic 

outcomes. Among all the vegetation cases, the Spartina-nonlinear case showed the highest final 

elevation and the least elevation relief due to the highest sedimentation rate throughout the 

domain, particularly due to organic soil production in the middle and upper portions of the 

transect. Elevation declined closer to the ocean boundary in the mixed-veg cases than the 

elevations with Spartina-dominant linear and nonlinear functions (hereinafter referred to as 

Spartina-linear case and Spartina-nonlinear case, respectively) (thick and thin black solid lines 

in Fig. 4). Notably, in the mixed-veg case under low SLR and high Kb (gray solid line in Fig. 

4b), the elevation reached a level similar to the MHTL. This was because the vegetation growth 

in the mixed-veg case is greater at lower inundation levels. Thus, vegetation continued growing 

even when the elevation was at the same level of the MHTL. In the Spartina-dominant cases, 

the Spartina-nonlinear cases showed the declines of elevation started closer to the seaward 

boundary than the elevation decline in the Spartina-linear cases (black solid lines in Fig 4a, c, 

and d).  

The simulations with a higher suspended sediment concentration in the ocean 

(Co=100mg/L), a higher SLR rate (0.01 m/yr), and a higher Kb (0.005 m/yr) showed similar 

profiles with the simulations under a lower suspended sediment concentration from the ocean: 

the marsh elevation near the ocean boundary was at the similar level with the future MHTL, and 
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the marshland at the upland was drowning (see Fig. S2 in the supplementary information) at the 

end of the 500 years’ simulation. However, with a higher sediment supply from the ocean, we 

observed a longer portion of the marsh elevation (~300 m from the ocean boundary) can keep 

pace with the increase of sea level, compared with the elevation profile in the lower sediment 

concentration cases. The high sediment concentration case also predicted less elevation relief 

than that in the low sediment concentration case due to a higher sediment supply from the 

ocean.  

For the contributions of sediment fluxes to marshland accretion, in general, sediment 

settling rate contributed more than sediment trapping rate and organic production rate near the 

seaward boundary (light blue lines in Fig. 5) in all vegetation-covered cases, except the mixed-

veg cases (Figs. 5j and n) where the organic production rate was higher than the other fluxes. 

This is because the mixed-veg case assumes that vegetation can grow better under lower 

inundation or no inundation conditions where vegetation organic production always plays a role 

in contributing to marsh accretion, but inorganic sediment settling contributes less due to 

limited delivery of sediment landward. Given that the elevation near the seaward boundary 

accreted faster than the inland area, the inundation depth near the seaward boundary was 

shallower than the inland, which provided a more favorable condition for mixed vegetation 

species to grow near the seaward boundary, resulting in a higher organic production rate there.  

Moving landward, the inorganic sediment settling rate was still a dominant sediment 

flux contributing to the accretion rate, except the cases with a lower SLR rate and higher Kb, 

where the organic production rate was dominant (purple lines in Figs. 5h, i, and j). The spatial 

patterns of the sediment fluxes reflected the different assumptions of the vegetation schemes. 

For example, the patterns of fluxes were very different between the mixed-veg cases (the third 
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row) and Spartina-dominant case (the first and second row) due to the different assumptions of 

the favorable growth condition for vegetation. We did not observe erosion under this regular 

tidal cycle and sea level rise condition in the vegetation-covered cases because vegetation 

reduced water flow velocity and prevented erosion in these experiments.   

[Approximated location of Figure 5] 

4.1.2 Model parametric sensitivity from ensemble simulations 

We explored the model parametric sensitivity represented by the ratio of individual 

parametric variance to the total variance from the ensemble simulations across different 

combination of parameters spanning wide ranges of their values (see Table. 2).  

4.1.2.1 Parametric sensitivity for topographic change 

For the sensitivity of modeled Depth_m (defined as MHTL minus elevation in 

Subsection 3.3) to parameterization (Fig. 6a), vegetation-related parameters showed a larger 

influence on Depth_m under the higher SLR rate scenarios (e.g., the first three columns in 

Fig.6a).  While, under the lower SLR rate scenarios, the sediment-related parameters, especially 

the “sediment concentration”, were the dominant parameters (the last three columns in Fig. 6a). 

For the different vegetation dynamic schemes, the mixed-veg cases were highly sensitive to the 

“maximum organic production rate” indicating that the Depth_m was highly dependent on the 

organic matter production rate regardless of the rates of SLR because some species in the 

mixed-veg cases can grow under more prolonged flooding condition, and the other species are 

adapted to less frequent and prolonged flooding condition, such that the vegetation processes 

can contribute to sedimentation in all conditions. While, in the Spartina-dominant cases, the 

vegetation can only grow under more prolonged flooding condition driven by SLR and tide. 
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Thus, the parametric sensitivities in the Spartina-linear and -nonlinear cases (the first, second, 

fourth, and fifth columns in Fig. 6a) were controlled by the inundation condition, the sediment 

settling, and vegetation processes and did not present a huge difference among parameters, 

compared to the mixed-veg cases. The relatively more sensitive parameters are “maximum 

organic production rate”, “maximum biomass”, “water depth for plant growth”, “sed 

concentration”, and “critical shear stress for deposition”. Among these parameters, the 

“maximum organic production rate” was the most sensitive parameter in the high SLR scenario 

(the first and second columns inf Fig. 6a). In contrast, “sediment concentration” was the most 

sensitive parameter in the low SLR scenarios (the fourth and fifth columns in Fig. 6a). This is 

because the high rate of SLR has a larger potential to cause a higher inundation condition by 

high tides, a favorable condition for Spartina to grow. Therefore, the vegetation effect had a 

larger contribution to sedimentation than the contribution from vegetation in the low SLR cases.  

For the sensitivity of elevation relief, in the high SLR scenario (the first, second, and 

third columns in Fig. 6b), the model simulations were more sensitive to “sediment diffusivity”, 

an important parameter in the sediment diffusion equation that controls how much sediment 

could diffuse landward. “Tide amplitude” was also one of the most sensitive parameters in the 

Spartina-linear and -nonlinear cases. The vegetation-related parameters showed relatively low 

sensitivity under the higher SLR rate (the first and second columns in Fig. 6b), which means 

that the elevation relief was more dependent on how much sediment can transport landward and 

deposit under a high SLR rate. However, in the mixed-veg case, the “maximum organic 

production rate” along with “sediment diffusivity” were the most sensitive parameters, which 

reflects the tolerance of the growth of mixed vegetation species in different conditions. For the 

lower SLR scenario (the fourth to sixth columns), the vegetation-related parameters showed 
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higher sensitivity, which means that the vegetation processes were more dominant to the change 

of elevation relief, especially for the Spartina-linear and nonlinear cases under a low rate of 

SLR. The values of sensitivity for each parameter in each scenario can be found in Tables S1 

and S2. 

[Approximated location of Figure 6] 

4.1.2.2 Parametric sensitivity for sediment fluxes 

The parametric sensitivities of sediment fluxes to model parameterization are similar to 

corresponding vegetation cases under both SLR scenarios. For example, the Spartina-linear 

cases (the first to third columns in Fig. 7a and first to third columns in Fig. 7b) under both the 

high and low SLR scenarios show a similar parametric sensitivity for each corresponding 

sedimentation processes.  

Specifically, for the sediment settling process, all the cases (the first, fourth, and seventh 

columns in Fig. 7a and the first, fourth, and seventh columns in Fig. 7b) were most sensitive to 

the “maximum organic production rate”, which may be because the organic production 

influences elevation changes that indirectly control sediment settling process. Besides the 

“maximum organic production rate”, the model simulations were also sensitive to some 

sediment settling-related parameters, such as “sediment concentration”, “settling velocity”, and 

“critical shear stress for deposition”, which are the key parameters directly control sediment 

settling process. For the organic soil production by vegetation, all the cases (the second, fifth, 

and eighth columns in Fig. 7a and the second, fifth, and eighth columns in Fig. 7b) were most 

sensitive to the “maximum organic production rate”, the key parameter in organic soil 

production process. For the sediment trapping process, the sensitivity was almost evenly 
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distributed for each parameter because sediment settling, sediment diffusion and advection, and 

vegetation all influence sediment trapping, however, the parameters of “sediment diffusivity” 

and “sediment concentration” that control the distribution of sediment concentration showed 

slightly higher sensitivity. The values of sensitivity for each parameter in each scenario can be 

found in Tables S3 and S4. 

[Approximated location of Figure 7] 

4.2 Vegetation dynamics with the change in surface topography 

4.2.1 The spatial and temporal variation of vegetation biomass from individual simulations 

The different formulations for vegetation growth in response to inundation conditions 

(illustrated in Fig. 2) lead to distinct patterns in biomass distributions and marsh response to 

tidal and SLR induced flooding. Figure 8 showed the spatial variation of vegetation biomass at 

the end of 500 years in the simulations under the different vegetation dynamic schemes, rates of 

SLR, and Kbs. In general, the spatial patterns of vegetation biomass corresponded to the marsh 

elevation profiles in Fig. 4. For example, the locations of dramatic declines of vegetation 

biomass in the high SLR scenarios are well-aligned with the topographical depression area in 

Fig. 4a and c. In this low-lying region, the marsh elevations approach an unfavorable inundation 

condition for vegetation growth with high ponding water detrimental to vegetation growth. In 

contrast, the vegetation biomass even increased landward in the lower SLR and higher Kb 

scenario because the entire domain kept pace with the SLR rate, and the inundation condition 

was still within the vegetation’s growth range (see the elevation profiles in Fig. 4b). Notably, 

the vegetation biomass of the mix-veg case reached its maximum biomass across the entire 

model domain (the gray dashed line in Fig. 8). However, with the lower Kb, the simulation 
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shows an abrupt decrease when the marshland was submerged in water (Fig. 8d), similar to the 

final biomass profile in the high SLR scenarios.  

For the mixed-veg cases, despite the different locations of the abrupt decreases, they 

showed similar patterns under the lower Kb (Fig. 8c and d), but different responses under the 

higher Kb (Fig. 8a and b). In the low SLR condition with the higher Kb (Fig. 8b), the mixed 

vegetation biomass was relatively uniform and greatly exceeded the linear and non-linear single 

species simulations across the entire model domain (the gray dashed line). In contrast, under the 

high SLR and higher Kb scenario (Fig. 8a), the mixed vegetation biomass outpaced the single 

species within ~100 m from the seaward boundary, but then rapidly decreased landward of this 

location to zero.  The Spartina-linear and -nonlinear formulations increased approximately 

linearly and then decreased to zero at further locations landward, compared with the mixed-veg 

cases. The Spartina-nonlinear cases showed a higher estimated vegetation biomass than the 

biomass in the Spartina-linear cases, but the biomass started to decrease to zero closer to the 

seaward boundary in the Spartina-nonlinear cases, which reflected the nature of the differences 

in the assumptions in the vegetation equations.  

[Approximated location of Figure 8] 

In order to examine the temporal evolution of biomass across the marsh, we plotted the 

time series at three locations: the seaward boundary, and 100 m and 400 m landward of the 

boundary (Figure 9). Across the 12 simulation cases, the temporal evolution of biomass may be 

divided into three stages, though not all stages are presented at all locations or every scenario. 

Rapid change characterizes the first stage. With the exception of mixed vegetation 

(Figure 9 c, f, i, and l),  all locations exhibited rapid increases in biomass for the first 100 to 200 

years of the simulation. During the second stage, biomass continued to adjust but at 
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significantly slower rates than the first stage. These adjustments are seen at the seaward 

boundary and 100 m locations in the Spartina-linear simulations under both SLR forcings and 

Kb values (orange and cyan circles in Figure a, d, g, and j) and Spartina-nonlinear simulations 

(orange and cyan circles in Figure 9b, e, h, and k). A dramatic exception to the gradual 

adjustments in Stage 2 is the 400 m location in the Spartina-linear and -nonlinear rapid SLR 

scenarios (green circles in Figs 9a, b, d, and e) and the low Kb scenarios (green circles in Figs. 

9d, e, j, and k) in which biomass rapidly drops back to a value of zero between 100 and 300 

years.  

The third stage is the period when a system enters a stable state or equilibrium state, 

which indicated that a new equilibrium or quasi-equilibrium state was reached under the new 

rate of SLR. Examples of this stability include the limited changes in vegetation biomass near 

the seaward boundary and at the 100 m locations in all the cases. This is because the vertical 

accretion rate at these locations in all the cases always kept pace with the rates of SLR.  

Throughout the entire vegetation evolution process, the Spartina-linear and -nonlinear 

cases predicted higher vegetation biomass at the location 100 m from the seaward boundary and 

lower vegetation biomass near the seaward boundary. Conversely, the mixed-veg cases 

predicted a higher vegetation biomass near the seaward boundary and lower vegetation biomass 

at the location 100 m from the seaward boundary. This difference demonstrated the difference 

in the assumption of favorable inundation conditions in the single-species and mixed-species 

vegetation equations.  

[Approximated location of Figure 9] 
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4.2.2 Parametric sensitivity for vegetation dynamics 

After analyzing the spatial and temporal variation of vegetation biomass change, we 

computed the sensitivity of biomass estimation at the seaward boundary and upland boundary to 

model parameterization based on the ensemble simulations. The biomass estimations were more 

sensitive to the vegetation-related parameters, especially the parameters of “maximum organic 

production rate” and “maximum biomass” (Fig. 10). For the vegetation biomass at the upland 

(the second, fourth, and sixth columns in Fig. 10a and b), “maximum organic production rate” 

and “maximum biomass” were the two most dominant parameters that control the estimation of 

biomass. However, the vegetation biomass near the seaward boundary was also sensitive to 

sediment settling-related parameters. Specifically, in the higher SLR scenario, the biomass 

estimations near the seaward boundary (the first, third, and fifth columns in Fig. 10a) were also 

sensitive to all the other parameters, except the parameters for erosion (e.g., “erosion 

coefficient”). In contrast, in the low SLR scenario, the most sensitive sediment settling-related 

parameters were only “sediment concentration” and “settling velocity” in the Spartina-

dominant cases (the first and third columns in Fig. 10b). The vegetation biomass estimation 

near the seaward boundary in the mixed-veg case was more sensitive to “maximum biomass” 

and “maximum organic production rate” than the rest parameters. The values of sensitivity for 

each parameter in each scenario can be found in Tables S5 and S6. 

[Approximated location of Figure 10] 
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5 Discussion 

5.1 Coastal marsh vulnerability under accelerating SLR 

5.1.1 Will coastal marsh survive under future SLR? 

Our numerical experiments examined the spatial and temporal variation of coastal marsh 

evolution under three different representations of vegetation dynamic processes. The results 

presented similar features of final elevation profiles under the three vegetation schemes: 1) the 

elevation near the seaward boundary kept pace with both the high and low SLR rates (e.g., 0.01 

m/yr and 0.005 m/yr) and the high and low Kb (0.005 m/yr and 0.003 m/yr), even with a 

conservative sediment concentration (e.g., C0=20 mg/L) at the seaward boundary (Fig. 4) and 2) 

the elevation landward declined and part of it drowned in water for the high SLR scenarios and 

low SLR with low Kb. The elevation near the seaward boundary started to approach a new 

equilibrium state under the rising SL conditions around 100 years (e.g., the cyan circles in Fig. 

9a, b, d, e, g, h, j, and k), which was consistent with the findings in previous studies (D’Alpaos 

et al., 2011; Kirwan et al., 2008; Kirwan, Temmerman, et al., 2016; Kirwan & Temmerman, 

2009; Temmerman et al., 2003; van Wijnen & Bakker, 2001). This pattern of lower accretion 

rates in the interior of marshes has been previously documented in both modeling (D’Alpaos et 

al., 2007, 2019; Kirwan, Walters, et al., 2016; Langston et al., 2020; Marani et al., 2013; 

Mariotti, 2016; Ratliff et al., 2015; Thorne et al., 2018) and field studies (Friedrichs & Perry, 

2001; Palinkas & Engelhardt, 2019; Schepers et al., 2017; Temmerman et al., 2003). 

Eventually, the interior marshland died-off and turned into water pools as shown in Fig. 9 

(especially the temporal change of biomass at the 400 m location). Schepers et al. (2017) also 
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reported that the size of water pools would expand through time, influencing the connectivity 

between marshland and channels.   

Under climate change, if the maximum organic soil production rate (Kb) increases to a 

similar level as the rate (0.005 m/yr) used in this study due to the increase of temperature and 

CO2 in the future , the spatial and temporal variations of vegetation biomass are relatively small 

and vary within the vegetation growth range (Figs. 8b and 9g, h, and i) under the lower SLR 

rate (0.005 m/yr). Based on these results, a SLR of 0.005m/yr does not appear to threaten the 

survival of coastal marsh systems characterized by these types of vegetation on a 500-year 

scale. However, for a Kb rate commonly observed today (0.003m/yr), all the SLR scenarios 

showed clear declines of surface elevation starting near the middle or upper of the domain 

(solid lines in Fig. 4a) and continuing to the upland boundary illustrating that the accretion rate 

at the inland portion of the coastal marsh cannot keep pace with the future SLR rates. These 

inland areas turned into open water habitats with  degradation and  marsh vegetation mortality 

occurring after 200-300 years in these locations (Figs. 8a and 9a and b), which may lead to the 

change of coastal marsh ecosystem functions and hydrological regime shift (Ganju et al., 2020).  

The simulations above used a conservative sediment concentration rate from the ocean 

boundary (C0=20 mg/L), which limited the delivery of sediment landward under the high SLR 

rate, resulting the drowning of upland marsh. However, in our simulations with a higher 

sediment concentration from the ocean (C0=100 mg/L), more sediment entered the domain and 

improved the potential for survival of coastal marshland under a high rate of SLR. However, 

simulations with the higher sediment concentration delayed, but didn’t prevent upland 

submergence, which further demonstrated that coastal marsh is largely vulnerable under the 

high rate of SLR (0.01 m/yr) (see Figs. S2 and S3 in the supplementary information). A 
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microtidal regime (tidal range =1.6 m) was used in the individual simulations. However, the 

elevation profile would be subject to change under various tidal conditions because different 

tidal conditions would cause different inundation conditions that would results in distinct marsh 

vertical accretion. The role of different tidal regime in controlling marsh evolution was also 

demonstrated by our ensemble sensitivity analysis, where we identified the “Highest tide 

amplitude” as one of the most sensitive parameters for elevation relief (e.g., Fig. 6b).   

5.1.2 Marsh vulnerability due to vegetation representation  

The experimental cases with different vegetation schemes consistently predicted coastal 

marsh vulnerability under future SLR. Under a conservative sediment concentration from the 

ocean (C0=20 mg/L), at the seaward boundary, marsh elevation accretion should keep pace with 

future SLR, regardless the rate of SLR and Kb values. Landward, the inland part of the coastal 

marsh was resilient under the lower rate of SLR (0.005m/yr) and simultaneously with the higher 

Kb, but potentially vulnerable to collapse under high rate of SLR or with the lower Kb.  

Our simulations also highlighted marsh response to increased ponded water depth under 

future SLR. The mixed-veg scheme was the most resilient scenario under the lower SLR and 

with the higher Kb (gray solid line in Fig. 4b): the marsh accretion rate was equal to the SLR 

rate throughout the entire domain due to less inundation condition and high organic soil 

production rate. However, the mixed-veg scheme was the most vulnerable scenario under the 

higher SLR or with the lower Kb (see the mixed-veg cases in Figs. 4 and 8): the decline of 

marsh elevation started closer to the seaward boundary due to unfavorable high inundation 

conditions for vegetation growth. Except for the mixed-veg case under the lower SLR and 

higher Kb, the Spartina-nonlinear scheme was the most resilient scheme in all cases—it 

predicted the largest elevation increases throughout the domain, the least elevation depression 
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(Fig. 4), and the highest vegetation biomass (Fig.8). These most resilient predictions from the 

Spartina-nonlinear treatment were attributed to the assumption of the nonlinear relationship 

between vegetation biomass and inundation condition. Vegetation biomass reaches its peak 

when the inundation depth is at the middle level or near the middle level of the vegetation 

growth range (defined by the Dbiomax and Dbiomin) and does not have to be at the highest 

inundation level, compared with the Spartina-linear scheme. However, we also found that the 

elevation and vegetation biomass started to decrease closer to the seaward boundary in the 

Spartina-nonlinear case, compared with the Spartina-linear case, which implies that the 

Spartina-nonlinear case predicted a bit higher unvegetated�vegetated marsh ratio (UVVR) as 

defined in Ganju et al. (2017).  

In addition, our simulation depicted the evolution of vegetation biomass with the 

evolution of marsh landscape (Fig. 9), reflecting some of the plant life-history traits (Schwarz et 

al., 2018). The vegetation biomass of our studied marshland varied through different trajectories 

at the seaward boundary, mid-marshland, and the upland (Fig. 9). In general, vegetation 

biomass at the seaward boundary and mid-land reached an equilibrium state at around 100-200 

years and dropped dramatically at the upland with the drowning of marshland, revealing the 

different vegetation responses at different location to boundary drivers and geomorphological 

change. Notably, the mixed-vegetation scheme predicted that vegetation landward would die 

out quicker under the high SLR rate (Fig. 9c) than the vegetation in the other vegetation cases. 

The similarity and distinction of vegetation evolution represented by the different vegetation 

schemes can potentially describe different vegetation colonization behaviors and cross-species 

competition during the evolution of coastal marsh (D’Alpaos et al., 2019; Schwarz et al., 2018).     
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5.2 Implication to data-model integration and future coastal eco-geomorphologic modeling 

Our sensitivity analysis captured the overall parametric sensitivity of the eco-

geomorphologic processes in the model and highlighted how different representations of 

vegetation dynamics and SLR conditions affect the parametric sensitivity. We found that the 

“sediment concentration” and “tidal amplitude” are the most sensitive parameters for coastal 

marsh evolution, which are in agreement with the findings in prior studies (D’Alpaos et al., 

2007; Kirwan et al., 2010; Kirwan, Walters, et al., 2016; Temmerman et al., 2003). More 

importantly, this study also identified additional parameters that are highly sensitive for the 

spatial and temporal variations of key landscape characteristics, such as 1) the Depth_m (depth 

between MHTL and marsh elevation at the seaward boundary), 2) elevation relief, 3) averaged 

sediment fluxes, and 4) vegetation biomass near the seaward boundary and at the upland. These 

parameters include “sediment diffusivity”, “maximum organic production rate”, and “maximum 

biomass”. Thus, this sensitivity analysis highlights the need for future modeling and field 

observations to better measure and parameterize these controls on marsh evolution.  

In particular, our sensitivity analysis identified the parameter of “sediment diffusivity” 

as one of the most sensitive parameters for predicting marshland evolution, especially 

controlling elevation relief, which implies the importance of hydrodynamic process that brings 

water and sediment landward and back to ocean. Although the evaluation of coastal 

hydrodynamics is outside the scope of this study, a good representation of coastal 

hydrodynamics as a function of coastal boundary condition (e.g., tide and wave), topographic 

gradient, and vegetation effect (e.g., influencing surface roughness) is critical for predicting 

sediment budget accurately and is worth deeper investigation in future modeling studies (Best et 

al., 2018; Duvall et al., 2019).  
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5.3 Representativeness of the model simulations 

In this study, we selected the parameter values and the rates of SLR that were widely 

used in previous modeling studies or were established in the literature from field measurements 

to ensure that the simulations were realistic and representative. Additionally, the formulations 

used to represent the dominant processes were selected from broadly used sedimentation, 

erosion, and vegetation dynamic equations. Thus, the individual simulations should reflect 

current model capabilities and formulations used to understand process interactions and marsh 

response to SLR. Based on the ensemble simulations, we generated a large number of 

parameter samples for the sensitivity analysis. Thus, the results of the sensitivity analyses 

reasonably reflected the overall sensitivity of the model processes over their physical parameter 

ranges.  

To further demonstrate that the D-model appropriately captures the behavior of coastal 

evolution under SLR, we conducted some of the same simulations by using another well-

established coastal eco-geomorphologic model developed by Mariotti and Fagherrazi (2010) 

(hereinafter referred to as M-model). Similar to the D-model, the M-model integrates all the 

hydro-eco-geomorphological components introduced in Fig. 1, including sediment settling (Eq. 

6), sediment trapping (Eq. 7), vegetation organic matter production (Eq. 8), and sediment 

erosion due to tidal currents (Eq. 3), as well as sediment erosion due to waves (Eq. 4). To make 

the simulations by the D- and M-model comparable, we turned off the process of erosion due to 

waves in the M-model, but kept the process of erosion due to tidal currents. For the 

representation of vegetation biomass, the M-model only integrated the Spartina-dominant 

nonlinear function as the original model was developed. An introduction to the M-model may 

be referred to the Text. S2 in the supplementary information and Mariotti and Fagherazzi 
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(2010), and its simulation results can be found in Figs S4 to S8. The simulations from the M-

model showed consistent topographic outcomes and vegetation biomass distribution with the D-

model simulations under different rates of SLR and Spartina-nonlinear scheme (M-model only 

uses the Spartina-nonlinear scheme) (see Figs. S4 to S7). The simulations from the M-model 

also identified similar most sensitive parameters for different scenarios. For example, the 

sensitivity of Depth_m in the M-model to vegetation-related parameters also increased with the 

SLR rates. The most sensitive parameters for elevation relief under the higher SLR were also 

“sediment diffusivity”, “sed concentration”, and “Highest tide amplitude”. The “maximum 

organic production rate” was a more dominant parameter for elevation relief under the lower 

SLR. Meanwhile, the most sensitive parameters for sediment fluxes and vegetation biomass 

were also the “maximum organic production rate” and “maximum biomass”.  

Both the D- and M-models predicted the elevation relief of marshland under the higher 

SLR (0.01 m/yr) was up to 2.5 to 5 meters (Figs. 4a and 4c and Fig. S4). This is an 

accumulative effect of the different accretion rate between the marsh near the ocean boundary 

and the interior marsh over the 500-year scale, which reflected the model behaviors under 

different process representations, parameters, and external drivers. It also highlighted the 

transition zone between more resilient marshland near the river/ocean boundary and more 

vulnerable interior marsh. Future work is needed to validate the reality of this transition zone 

with a better field measurement of sedimentation, vegetation biomass, and other marsh 

accretion-related parameters in these areas.    

5.4 Uncertainties and future work 

We used two maximum organic production rates (0.003 m/yr and 0.005 m/yr) in the 

individual simulations in this study. The former one was adopted from the previous studies by 
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Langley et al. (2009) and Morris et al. (2016), representing an averaged value of the maximum 

production rate under the present climate condition. The latter one was calculated based on 

Ratliff et al. (2015) and the adoption of the IPCC highest CO2 emission scenario (Hayhoe et al., 

2017), reflecting an increase of vegetation belowground organic production rate under a 

warming climate. The use of both rates illustrated model parametric sensitivity and the role of 

organic sedimentation in controlling future marsh elevation change. However, there are still 

some uncertainties that may affect the organic production rate under a warming climate. On the 

one hand, the models did not consider the increase of organic soil decomposition rate under the 

warming climate, which could be comparable or even higher than the organic production rate 

(Kirwan & Blum, 2011; Langley et al., 2009). On the other hand, it is possible that the soil 

organic decomposition rate won’t increase much due to the constraint from soil aeration level, a 

factor controlling soil organic decomposition (Roner et al., 2016; Silvestri & Marani, 2004). 

Therefore, the balance/imbalance between organic soil production and decomposition will be 

the key to a better understanding of organic accretion in coastal marsh evolution. Thus, future 

work should focus on better quantifying the organic accretion components (organic soil 

production and decomposition), as well as the drivers and limits that control these components.  

Our sensitivity analysis showed the importance of “maximum biomass” and “organic 

production rate” for the prediction of marshland elevation changes.  Within most of the current 

eco-geomorphologic models, they are fixed through time. However, future climate changes, 

higher temperature and CO2 conditions might change the value of these parameters gradually in 

the evolution process. Therefore, to improve the prediction accuracy, it is critical to have 

process-based models that can incorporate the impact of a dynamic future climate on vegetation 

production and litter decomposition through time. 
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The simulations used a no-flow boundary condition at the upland boundary, which 

limits the water and sediment supply from uplands through upland surface and subsurface 

environments. An appropriate consideration of the hydrologic and geomorphologic connectivity 

with the upland region may improve the flexibility of our test model in realistically representing 

a wider variety of settings, in terms of the relevant hydrodynamic and sediment transport 

processes (Wohl et al., 2019; Zhang et al., 2018), especially for intertidal areas  receiving water 

and sediment from both riverine and ocean sources (Gleichauf et al., 2014; Kirwan, Walters, et 

al., 2016; Wolfram et al., 2016; Yousefi Lalimi et al., 2020). Also, water and sediment fluxes 

from tidal channel to marshland were not considered in these 1-D simulations. Tidal channel 

can compensate for the spatial discrepancy in sediment accretion by routing water and sediment 

from upstream to the coastal area or from the ocean boundary to the upland (Belliard et al., 

2016). At the seaward boundary, the models used constant sediment concentration in 

rivers/ocean, while variability in this concentration could contribute to the uncertainty in 

predictions of the accretion rate on coastal marshes. In addition, a more precise estimation of 

sediment concentration in the aquatic systems by using high resolution field measurements or a 

high-resolution, process-based coastal ocean model would improve the predictive capability of 

coastal marsh eco-geomorphologic models (Stumpf, 1983; Temmerman et al., 2003).  

6 Conclusion  

We used a coastal eco-geomorphologic model with different vegetation dynamic 

representations to investigate eco-geomorphologic feedbacks on the coastal marsh and changes 

in model parametric sensitivity under various future SLR conditions. We conducted model 

simulations by using a standard set of test cases with consistent model settings and parameters. 

This study explored coastal marsh evolution under SLR not only from the domain averaged 
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features, but also from the spatial and temporal variations of key landscape characteristics, such 

as the elevation relief and biomass at the seaward boundary and upland. We found that 

evaluating the spatial and temporal coastal marsh evolution under different representations of 

vegetation dynamic process provides new insights to better understanding the uncertainty of 

predicting coastal marshes vulnerability facing future accelerating SLR from different process 

representations.  

Qualitatively, the three vegetation dynamic schemes (Spartina-linear, Spartina-

nonlinear, and mixed-vegetation linear equations) produce consistent evaluations of the 

vulnerability of the coastal marsh under high and low SLR rates. However, the Spartina-

nonlinear scheme predicted the highest vegetation biomass and organic production rate, 

yielding the highest accretion rate and elevation, except for the mixed-veg case under the low 

SLR. The mixed-veg case represents the most resilient marsh type under low SLR with high Kb, 

but is the most vulnerable case under high SLR. Except the mixed-veg case under the low SLR, 

all the Spartina-linear cases predicted the largest marsh extent and smallest open water area.  

The sensitivity analysis study identified the parameters whose values most critically 

affect model outcomes under different SLR conditions. The parametric sensitivity of the eco-

geomorphologic models (e.g., the D- and M-model used in this study) were not the same under 

the high and low SLR conditions. For example, the most sensitive parameter, such as the 

maximum organic production rate, in the simulation under the high SLR, was not the most 

sensitive parameter in the low SLR scenario.  The differences in parametric sensitivity 

highlighted the importance of evaluating parametric sensitivity under different external drivers. 

The identified most sensitive parameters can help inform how to appropriately model 

key processes in different coastal marsh landscapes under SLR and vegetation evolution. These 
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identified key parameters under different climate change conditions can also serve to inform 

future field measurements studies. 
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Table 1. The numerical experiment cases for the individual simulations. 

 
Spartina-dominant 

linear function 

Spartina-dominant 

nonlinear function 

Mixed species 

linear function 

High SLR rate 
(0.01 m/yr) and 

High K b 

(0.005 m/yr) 

Case 1 Case 2 Case 3 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

Low SLR rate 
(0.005 m/yr) and 

High K b 

(0.005 m/yr) 

Case 4 Case 5 Case 6 

High SLR rate 
(0.01 m/yr) and 

Low K b 

(0.003 m/yr) 

Case 7 Case 8 Case 9 

Low SLR rate 
(0.005 m/yr) and 

Low K b 

(0.003 m/yr) 

Case 10 Case 11 Case 12 

 

Table 2. Key hydro-eco-geomorphic parameters used in the individual simulations and parameter ranges 

used for ensemble simulations in the sensitivity analysis. 

Processes 
Parameter 

description 

Symbol in the 

D model 
Range 

Individual 

simulation 
References 

Erosion 

Erosion coefficient 

(
xyzp{|}) 

� 
[2.00E-09, 

4.12E-04] 
1.12E-04 

(D’Alpaos 

et al., 

2007; 

Mariotti & 

Fagherazzi, 

2010) 

Critical shear stress 

for erosion (P�) 
τ� [0.03, 2] 0.4 

(Thompson 

et al., 

2004) 

Sedimentation 
Critical shear stress 

for deposition (P�) 
τ� [0.05, 2] 0.1 

(Parchure 

Trimbak 

M. & 
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Mehta 

Ashish J., 

1985) 

Sediment 

concentration at 

seaward boundary 

(
zy�����) 

C� [1, 800] 20 
(Kirwan et 

al., 2010) 

Suspended sediment 

diffusivity (
zp

{ ) 
�e.�U�� [0.005, 1] 0.3 

(Brush Jr., 

2012) 

Sediment settling 

velocity (
z{ ) 

w{ 
[5.00E-05, 

6.00E-04] 
1.00E-04 

(Riazi & 

Türker, 

2019) 

Belowground 

organic production 

(
z��) 

@� [0, 0.0135] 

0.003 

and 0.005 

(Morris et 

al., 2016; 

Mudd et 

al., 2010; 

Ratliff et 

al., 2015) 

Forcing Tidal amplitude (m) AmpTide [0.1, 4] 0.8 

(National 

Ocean 

Service, 

2018) 
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Biomass 

Minimum depth 

between MHTL and 

land surface (m) 

D���z�� [0, 0.1] 0.1 
(Morris, 

2006) 

Maximum depth 

between MHTL and 

land surface (m) 

D���z�� [0.8, 0.95] 0.8 
(Morris, 

2006) 

Maximum biomass 

(
yzp) 

Bz�� [0, 3000] 2000 
(Mudd et 

al., 2004) 

Hydro-

dynamics 

Chezy coefficient 

(
z�.�

{ ) 
CHI 10 10 

(D’Alpaos 

et al., 

2007) 

 

Maximum water 

velocity (
z{ ) 

Uz�� 0.2 0.2 

(D’Alpaos 

et al., 

2007) 
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Figure 1. The linkage of hydro-ecogeomorphologic components in coastal marsh systems. The words in 
red and blue describe the components and sediment fluxes, respectively. 

 

 

Figure 2 The dynamics of vegetation biomass under different marsh inundation depth normalized by the 
vegetation growth range bounded by QRST − 	�U1FUW and QRST − 	�U1F�G.  QRST represents the 

mean highest tide level. 	�U1F�G and 	�U1FUW are the highest and lowest inundation depth below MHTL, 
respectively. 
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Figure 3 The geographic location and the elevation profile of a 1-D transect at Delaware Bay. (a) and (b) 
indicate the location of the 1-D transect. The black solid line in (c) shows the actual elevation profile of 
the 1-D transect. The red line is a simplified elevation profile. The gray dashed lines indicate the MHTL 

(mean highest tide level) and MSL (mean sea level) 
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Figure 4. Elevation profiles after 500 years simulation by the D-model from the seaward boundary (x axis 
= 0 m) to the upland boundary (x axis = 500 m) for (a) the higher rate of SLR and higher Kb scenario, (b) 
the lower rate of SLR and higher Kb scenario, (c) the higher rate of SLR and lower Kb scenario, and (d) 
the lower rate of SLR and lower Kb scenario. The black dashed lines show the initial elevation profile 
(0.67 m above NAVD88 datum). The thicker and thinner black lines indicate the simulated elevation 

profiles by using Spartina dominant linear equation and Spartina dominant nonlinear equation, 
respectively. The gray solid lines are the elevation profiles by using the mixed vegetation linear equation. 
The gray dashed lines are the simulated elevation profiles without vegetation. The light blue dashed lines 

indicate the final MHTL and MSL. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

 

Figure 5. Spatial distribution of the sediment fluxes at the end of 500 years in the D-model simulations. 
The plots with various colors represent different fluxes in different scenarios. 

 

 

Figure 6. Parametric sensitivity of elevation change from the D-model simulations under (a) high SLR 
scenario and (b) low SLR scenario. The colors indicate model sensitivity with a high sensitivity coded in 
dark blue and low sensitivity coded in light blue. The values in each grid represents the sensitivity of the 

model to the corresponding parameter and simulation case. 
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Figure 7. Parametric sensitivity of the sediment fluxes from the D-model simulations under (a) high SLR 
scenario and (b) low SLR scenario. The colors indicate model sensitivity with a high sensitivity coded in 
dark blue and low sensitivity coded in light blue. The value in each grid represents the sensitivity of the 

model to the corresponding parameter, flux, and simulation case. 

 

 

Figure 8. The spatial distribution of vegetation biomass from the D-model simulations at the end of 500 
years throughout the marsh domain under (a) the high SLR and higher Kb scenario, (b) the low SLR and 

higher Kb scenario, (c) the higher SLR and lower Kb scenario, and (d) the lower SLR and lower Kb 
scenario. 
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Figure 9. Temporal variation of vegetation biomass for different vegetation cases from the D-model 
simulations in different SLR scenarios. The circles in different colors indicate the biomass at different 

locations of the marsh domain.  

 

 

Figure 10. Parametric sensitivity of vegetation biomass from the D-model simulations under (a) high SLR 
scenario and (b) low SLR scenario. The colors indicate model sensitivity with a high sensitivity coded in 
dark blue and low sensitivity coded in light blue. The value in each grid represents the sensitivity of the 

model to the corresponding parameter, biomass, and simulation case. 
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