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Goal of this talk

• Motivate a need to look closer at how to model 
RE and impurity interaction

• Outline some of the atomic physics that we need 
to take into account

• Some examples of how improved atomic physics 
data impacts disruption relevant discharges with 
minority RE
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Motivation
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Motivation: Impurities are vital for intended ITER operation

• Neon/argon for disruption mitigation
• Nitrogen for steady-state operation 
• Be/W sputtering is inevitable
• Whatever the future of ITER brings…

When these impurities are 
present we want to know:

• Charge state population, n
• Zeff
• Radiative power loss, RPL(n)
• (As much as we can…)



6

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Motivation: Impurities are vital for intended ITER operation

• Neon/argon for disruption mitigation
• Nitrogen for steady-state operation 
• Be/W sputtering is inevitable
• Whatever the future of ITER brings…

When these impurities are 
present we want to know:

• Charge state population, n
• Zeff
• Radiative power loss, RPL(n)
• (As much as we can…)



7

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

How to model these quantities?

Charge state population, n
Zeff 

Radiative power loss, RPL(n)

Collisional-Radiative
modeling

Assumptions:
Optically thin (tokamak, generally assumed low enough ne)
Through this talk we focus on steady-state (LHS=0) – reasonable for RE plateau
Two atomic species defined by nX and nD densities
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CR modeling
• State vector, n, of excited states of each 

possible ion charge state

• Transitions between states populate rate 
matrix elements, Ri,i+1, describing excitation
and ionization collisions, radiative decays, 
radiative recombination, autoionization & 
electron capture
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CR models in the fusion community

• US groups have long used KPRAD to couple with plasma 
codes and probe experiments on DIII-D, C-MOD [Whyte et al.
Proceedings of the 24th European Conference on Controlled Fusion and Plasma 
Physics 21A:1137 (1997)]

• EU groups have used ADAS at a mature level [Summers et al. AIP 
Conference Proceedings 901, no. 1 (2007)]

• HEDP often uses FLYCHK [Chung et al. HEDP 1 3 (2005)]

General idea of this work:
Do we need to do anything different from standard modeling to 
describe impact of runaways, and does it make a difference?
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Relativistic electron 
impact scattering
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Interaction of EEDF with inelastic cross-sections

Typical inelastic ICS

Typical thermal
EEDF
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Interaction of EEDF with inelastic cross-sections

Addition of runaway tail

Typical inelastic ICS

Typical thermal
EEDF
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Relativistic inelastic scattering
• Non-relativistic e- - e- scattering well served by Coulomb interaction
• Near light speed, e- experience additional sizeable interactions

• QED formulations of generalized Breit or Møller interaction [Fontes et 
al. PRA 47 2 (1993)]

• Historically employed for binding energy calculations and collisions under 
'thermal' plasma conditions but not for collisions in ultra-relativistic limit

e- - e- interaction = Coulomb interaction + magnetic correction + retarded correction  
Repulsive electric 

potential
Finite c, delayed signal

of electric force

Breit interaction

Møller interaction

O(v_1 v_2  /c^2)
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Interaction of EEDF with inelastic cross-sections

Relativistic rise via
QED corrections

Addition of runaway tail

Typical inelastic ICS

Typical thermal
EEDF
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Sidebar: Even higher Z targets
• For higher Z targets, the relativistic enhancement can be the 

dominant part of inelastic scattering
• Example: K shell Gold Z=79 [Wang et al. J. Phys. B 51 145201 (2018)]

Gold Z=79 is 
close to 

Tungsten 
Z=74…
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Our CR approach 

• Developing fork of superconfiguration (n only) FLYCHK CR, 
flychklite, to allow relativistic corrections, scaled near-neutral cross 
sections, arbitrary EEDF. Retain excited states.

• Modify base excitation and ionization ICS in FLYCHK to transition to 
a relativistic ICS, also use BEB scaling* for NR cross sections of 
neutral and singly-ionized targets

• Simulate relativistic effect via Møller-Bethe-like analytic relativistic-
rise

*YKK scaling - Yong-Ki Kim PRA 64 032713 (2001), PRA 65 022705 (2002)

~



17

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Modeling relativistic effect via Møller-Bethe-like 
analytic form

• Møller-Bethe-like form not a new thing

• Back to stopping power work of 1930s
• Moller Annalen der Physik 406 5 (1932)
• Bethe Z. Physik 76 5 (1932)
• Recently Hollmann et al. Nucl. Fusion 59 106014 (2019)

• Provides a general prescription we can apply to any inelastic collision
• But we try to benchmark and tune general formulas against QM 

calculations that are available
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Example cross section benchmarking

BSR – B-Spline R matrix calculations of Zatsarinny & Bartschat available online at www.lxcat.net
Reike – Reike & Prepejchal PRA 6 4 (1972)

http://www.lxcat.net/
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Example cross section benchmarking
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How does this 
relativistic correction 

change things?
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A simple comparison
• Lets compare effect of RE tail plus relativistic ICS
• Vary bulk thermal Te
• Simplest f(E) assumption – Maxwellian or Bi-Maxwellian

• Ttail = 10 MeV – gives RE tail peak at approx. 5 MeV
• Fixed ion densities: nD=nAr or nD=nNe = 1x1020 m-3 

• Fixed nRA = 5x1016 m-3  - roughly a 5MA ITER-like RE current

• Let’s compare for neon and argon with varying f(E) and cross sections:
• base thermal case
• with RE tail but NR cross sections
• with RE tail and relativistic corrections
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<Z> for this comparison

Neon Argon

D+ D+

nD=nAr =1x1020 m-3 , nRA = 5x1016 m-3nD=nNe =1x1020 m-3 , nRA = 5x1016 m-3

Ne needs 
higher Te for 
equiv. Ar <Z> 
- higher ion 
stage 
thresholds

Closed shell 
stages
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RPL for this comparison – line emission

Neon Argon

Converge to thermal curve at 
higher Te – due to closed shell 
Ne higher threshold energies

nD=nAr =1x1020 m-3 , nRA = 5x1016 m-3nD=nNe =1x1020 m-3 , nRA = 5x1016 m-3
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CSD with reducing Te

Neon Argon
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CSD with reducing Te

Neon Argon

Not just a change 
in <Z>

A broader range of
ion stages present



26

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Clear spectral differences

Isolated 4.1485 - 4.8737 nm of 
2s22p53d/2s22p53s → 2s22p6  

transition of Ne-like Ar (Ar+8)

Clear qualitative 
difference –
smeared lines

High E/small λ Ne-
like line…

Exp. diagnostic 
options?

Thermal

With RE

Te = 2 eV
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So we have a model – what about a more 
realistic scenario? 
• Experimental point of 

reference from DIII-D 
measurements in 
Lvovskiy et al. NF 60 
056008 (2020)

• Presents a nice 
reconstructed f(E) from 
HXR spectra

• Peak around 5-6 MeV, 
roll off to approx. 20 MeV Reproduced from page 4 of Lvovskiy et al. NF 

60 056008 (2020)
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DIII-D-inspired example
• Experimental point of reference 

[Lvovskiy et al. NF 60 056008 
(2020)]

• Reconstructed f(E) from HXR 
spectra

• Simulate conditions prior to D2
puff – this window of time

• nD=1.25x1019 m-3

• nAr=2.5x1019 m-3

• nRE to produce 180 kA RE 
current, approx. 1016 m-3 Reproduced from page 3 of Lvovskiy et al. NF 

60 056008 (2020)
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Analytic trial functions for DIII-D-inspired f(E)

Integrate over pitch

• Experimental point of reference 
[Lvovskiy et al. NF 60 056008 
(2020)]

• Fit f(E) from reconstructed data
• Normalize and align to measured 

peak
• fM with Te=10 MeV*
• fMJ with Te= 3 MeV
• LSQ fit fG with μE = 5.9 MeV,   

FWHM = 3.8 MeV*
• LSQ fit fBMJ with pb=11.3mc,   

Te=0.03 MeV
• fBMJ with pb=10mc Te=0.07MeV*
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Comparison of different RE f(E) forms

Either Maxwellian*, Gaussian* or boosted Maxwell-Jüttner* seem to 
perform comparably describing presence of RE tail

~6 MeV

nD=1.25x1019 m-3 nAr=2.5x1019 m-3 nRE to produce 180 kA RE current
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Effects of CSD smearing clear
Te=2 eV

Thermal

BMJ RE
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What does a higher ne and broader set of ion 
stages mean for runaway electron modeling?

• Translates to different collisional drag/slowing down and pitch-
angle scattering/deflection frequencies on RHS of kinetic equation

• Consider the formulation of Hesslow et al. PRL 118 25 (2017) 
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Drag and deflection collision frequencies for RE 
modeling

• Boosted MJ scenario compared to thermal
• Note: comparing scaled ν to make for clearer comparison

Te=2 eV Te=5 eV Te=20 eV

ν converges at 
higher Te

ne,CSD driven ν
deviation at lower Te



35

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

A shameless plug before I finish

PoP letter 
earlier this 

year –
analysis with 
Gaussian RE 

tail

Upcoming 
more detailed 
paper being 
prepared for 
2020 DPP 

Special 
Collection

+
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The takeaway
• Formation of relativistic RE tail is a well known problem for 

disruptions on ITER
• Atomic physics tells us corrections are needed to normal 

scattering data and thus CR models used to describe our 
discharges.

• With minority RE densities driving post-disruption current, 
influences due to this RE driven physics emerge

• Seems to corroborate apparent observations of low charge states 
of impurity ions during RE plateau

• Moving forward: How can this modeling help guide diagnosing 
and understanding post-disruption discharges with RE present?
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Other avenues in this project
• Improving atomic physics: charge exchange, bencharking ICS
• Time-dependent thermal plasma Te cooling dynamics

• Highlighting the importance of excited states and applicability of 
coronal-like assumptions

• Implementing in-situ for dynamic EEDF in kinetic codes
• Neural network surrogates for rapid evaluation to couple with 

plasma transport codes (Paper accepted for Machine Learning and the Physical 
Sciences Workshop at the 34th NeurIPS Conference.)
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Thanks for your attention
We gratefully acknowledge the support of the:
• DoE through OFES and the Tokamak Disruption Studies SciDAC
• LDRD program of LANL under project 20200356ER

Questions?


