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Goal of this talk

 Motivate a need to look closer at how to model
RE and impurity interaction

* Qutline some of the atomic physics that we need
to take into account

« Some examples of how improved atomic physics
data impacts disruption relevant discharges with
minority RE




Motivation
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Motivation: Impurities are vital for intended ITER operation

Ne or Ar gas/pellet

» Neon/argon for disruption mitigation
» Nitrogen for steady-state operation

« Be/W sputtering is inevitable

* Whatever the future of ITER brings...

v

N for mantle to O

promote detachment

When these impurities are
present we want to know:
Charge state population, n

Zeff
Radiative power loss, RPL(n)
(As much as we can...)

AAAAAAAAAAAAAAAAAA
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How to model these quantities?

Charge state population, n

7. ﬂ[ Collisional-Radiative
’ modelin
Radiative power loss, RPL(n) s Inie
— =R(n)n
dt

Assumptions:

Optically thin (tokamak, generally assumed low enough n,)

Through this talk we focus on steady-state (LHS=0) — reasonable for RE plateau
Two atomic species defined by ny and np densities

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA



CR modeling e .

e
« State vector, n, of excited states ofeach = Continuum_| _ ‘
ossible ion charge state - - :
P g Nz 1
Nnzo :
R(n)n =0 n= Nz s n=4 -
Nz 4 n=3

» Transitions between states populate rate
matrix elements, R;;.s, describing excitation
and ionization collisions, radiative decays,

, autoionization & Ground state of

oo ion of charge X
R; i1 = ne/ vf(E)0;i+1dE
AE

4_—_—_
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CR models in the fusion community

« US groups have long used KPRAD to couple with plasma

codes and probe experiments on DIlI-D, C-MOD [whyte et al.

Proceedings of the 24th European Conference on Controlled Fusion and Plasma
Physics 21A:1137 (1997)]

« EU groups have used ADAS at a mature level [summers et al. AIP
Conference Proceedings 901, no. 1 (2007)]

« HEDP often uses FLYCHK [Chung et al. HEDP 1 3 (2005)]

General idea of this work:
Do we need to do anything different from standard modeling to
describe impact of runaways, and does it make a difference?
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Relativistic electron
impact scattering
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Interaction of EEDF with inelastic cross-sections

A A

f(E) o(E)
Typical inelastic ICS

Typical thermal
EEDF

~10'-10° eV E
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Interaction of EEDF with inelastic cross-sections

A A

f(E) o(E)
Typical inelastic ICS

Typical thermal
EEDF

>

~10'-10° eV ~MeV E

Addition of runaway tail
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Relativistic inelastic scattering

* Non-relativistic e~ - e~ scattering well served by Coulomb interaction

* Near light speed, e- experience additional sizeable interactions
Breit intleraction

| 1
e - e interaction = Coulomb interaction + magnetic correction + retarded correction
Repulsive electric L B Finite c, delayed signal

potential O(V 1v 2 /C"2) of electric force

Mgaller interaction

« QED formulations of generalized Breit or Mgaller interaction [Fontes et
al. PRA 47 2 (1993)]

» Historically employed for binding energy calculations and collisions under
'thermal' plasma conditions but not for collisions in ultra-relativistic limit
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Interaction of EEDF with inelastic cross-sections

A A

f(E) o(E)
Typical inelastic ICS

Typical thermal
EEDF

Relativistic rise via
QED corrections

>

~10'-10° eV ~MeV E

Addition of runaway tail
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Sidebar: Even higher Z targets

* For higher Z targets, the relativistic enhancement can be the
dominant part of inelastic scattering

« Example: K shell Gold Z=79 [wang et al. J. Phys. B 51 145201 (2018)]

0.04
79A11 K » &
0.03 .- Gold Zz=74 is
o7 close to
o e T Tungsten
=, 0.02 Ll 9
) S e

Z=74...
0.01

0.00 b
10° 106

107 108 10°
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Our CR approach

« Developing fork of superconfiguration (n only) FLYCHK CR,
flychklite, to allow relativistic corrections, scaled near-neutral cross
sections, arbitrary EEDF. Retain excited states.

« Modify base excitation and ionization ICS in FLYCHK to transition to
a relativistic ICS, also use BEB scaling* for NR cross sections of
neutral and singly-ionized targets

o 9T = (1 - S(E))ay_% + S(E)azR_,j

« Simulate relativistic effect via Mgller-Bethe-like analytic relativistic-

rise B2 0.5mec?
rel e Q2 —
or -~ (log(l _ /32 AI@Z ) 6 ) /B U/C

*YKK scaling - Yong-Ki Kim PRA 64 032713 (2001), PRA 65 022705 (2002)

AAAAAAAAAAAAAAAAAA
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Modeling relativistic effect via Moller-Bethe-like
analytic form

Magaller-Bethe-like form not a new thing

Back to stopping power work of 1930s
* Moller Annalen der Physik 406 5 (1932)
« Bethe Z. Physik 76 5 (1932)
* Recently Hollmann et al. Nucl. Fusion 59 106014 (2019)

Provides a general prescription we can apply to any inelastic collision
« But we try to benchmark and tune general formulas against QM
calculations that are available

17
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Example cross section benchmarking

10-16 (a) Neon n=2 — n=3 excitation

S 10-17
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(b) Neon n=2 — n=4 excitation
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Electron impact energy [eV]

FLYCHK
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= Present ==== ==z=z  BSR

BSR — B-Spline R matrix calculations of Zatsarinny & Bartschat available online at www.Ixcat.net
Reike — Reike & Prepejchal PRA 6 4 (1972)
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http://www.lxcat.net/

Example cross section benchmarking

10-17 | ___Ar* EII comparison

10718}
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(o]
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Cross section [cm
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Electron Energy [eV]
=== Present M shell === Present L shell == Present K shell
mss FLYCHK M shell === FLYCHK Lshell === FLYCHK K shell
viiin GIPPER M shell 11111 GIPPER Lshell  si111 GIPPER K shell
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How does this
relativistic correction
change things?

20
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A simple comparison

» Lets compare effect of RE tail plus relativistic ICS
« Vary bulk thermal T,
« Simplest f(E) assumption — Maxwellian or Bi-Maxwellian
* Twi=10 MeV — gives RE tail peak at approx. 5 MeV
« Fixed ion densities: np=n4, or np=npe = 1x1020 m-3
* Fixed ngs = 5x107 m-3 - roughly a 5MA ITER-like RE current

» Let’'s compare for neon and argon with varying f(E) and cross sections:
» base thermal case
« with RE tail but NR cross sections
« with RE tail and relativistic corrections

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA



<Z> for this comparison

Np=Nye =1x1020 M3 | ng, = 5x1016 m3 np=n,, =1x1020 m-3, np, = 5x1016 m-3
104
fB+GNR 17.51 fB+O'NR
== fp+[fra+ONR === fp+fra+ONR
8§ == Jfstfrma+tor 301 = = fy+fra+or
(0] Q
g 2125
o Ne needs %
g higher T, for
= e <=10.0
2 equiv. Ar <Z> ° C'Osstzg esshe”
© . . o)
= - higher ion =175
1 stage &
4 thresholds 2 5.0
< <
DS EEEEE e 2‘57,/
v/ D+ 0‘079 ......... D+
10° 10! 10? 10° 10° 10! 107 10° 10*
Bulk plasma temperature [eV] Bulk plasma temperature [eV]
Neon Argon
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RPL for this comparison — line emission

Np=np, =1x1020 M3, ng, = 5x1016 m-3 Np=ny,, =1x102° M3, ng, = 5x101® m-3
104,
103,
I Ty

_ _ 103
£ £

B 10" 1 B 102,

= == Converge to thermal curve at =

2 higher T, — due to closed shell 2 10!,

S107! Ne higher threshold energies 3 -

= =

o 9] 100,

: 7 2

~ £

gl g0

E S JB+ONR E 107 JB+ONR

107 == fp+fra+onr N JB+fra+ 0N
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10° 10! 10 103 10° 10! 10 103 104
Bulk plasma temperature [eV] Bulk plasma temperature [eV]
Neon Argon
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CSD with reducing T,

0 7, =1000.0eV 0 T, =10000.0eV
10 . 10 ]
@ fB+GNR sasfen fB+GNR
B fp+fra + ONR ol fp4fpa +ONR
ok fabfra+oR ke fy+frator
-1 -1
10 n 10 l
) )
; ?
-3 : -3
10775 3 i 6 § 10 10775 5 10 15
ITon charged state Ion charged state
Argon
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CSD with reducing T,

100 T, =1000.0eV 10 T, =10000.0eV
" ] y
@ fy+ONR JB+onNR
W fp+fra+ONR Jo+fra+ Ong
ok fptfratoR . fB+fra +0OR
) Not just a change
10 in <Z>
: A broader range of
102 « lon stages present
.-' ?
1073 5 1 ; ) 5 10 5
ITon charged state Ion charged state
Argon

Neon
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Clear spectral differences &

T.=2eV

04 Thermal Clear quah’tative
£03 difference —
202 smeared lines |
3, High E/small A Ne-

| like line...

090 T — 102 Exp. diagnostic

. ‘ONs?

0.4 With RE options:
€0.3
%0.2
= |solated 4.1485 - 4.8737 nm of
=0 2522p53d/2522p%3s — 2522p6

09g0 0 eray (1 transition of Ne-like Ar (Ar+8)
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So we have a model — what about a more
realistic scenario?

Experimental point of . Experiment 0 Model
reference from DIII-D o | H75768) 3

measurements in 23 oversiatonany = P fime, |
Lvovskiy et al. NF 60 = . (‘:,) HXR spectrum 2 ‘*MW
056008 (2020) I P N e =L o
Presents a nice 74 :\ump Ne | .
reconstructed f(E) from S 5ol \
HXR spectra 5 REéspeclt'(r)um s 2 o(d) R.E, Speﬁga 15 20
Peak around 5-6 MeV, " MoVl (FMeV]

roll off to approx. 20 MeV gggrsotsc(i)t;ge(g(;;%r)n page 4 of Lvovskiy et al. NF

27
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1 - . 1l#i7s7e8 sections 384
Dlll-D-inspired example z,; "~ 7| \

O=t-—x-—"—=—="- i S [N | W

6 | ©O\RE_

« Experimental point of reference = 3 L{\* (b) Uy, Plateay]

[Lvovskiy et al. NF 60 056008 T - D“"'"“h,

(2020)] E 5l eliet|\ | putt 1

» Reconstructed f(E) from HXR e o—/""J - vm(d)
spectra 61 ECET., [KbV] /\-\

« Simulate conditions prior to D,

puff — this window of time | [ l T
¢ np=1.25x10"" m-3 | | .

)

* n,=2.5x1019 m3 2 ts1/ ’
 ngeto produce 180 kA RE
CRIF:renf abprox. 1016 m-3 Reproduced from page 3 of Lvovskiy et al. NF
u , APProx. 60 056008 (2020)
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Analytic trial functions for DIll-D-inspired f(E)

2VE

- Experimental point of reference FulE) = Jergs @B/

ELvovskiy et al. NF 60 056008

2020)] 23
«  Fit f(E) from reconstructed data i) = gryzey PO 0= Te/mee?
 Normalize and align to measured

peak 1 (E - pp)®
«  fywith T,=10 MeV* fo(B) = o exp(———503=) | |op = Zogi
« LSQ fit fg with ug = 5.9 MeV, ;

FWHM = 3.8 MeV* fBm(pp)) = mEXP(—(vm(p) —pop))/0)

Integrate over pitch
1 ’ .

+ fauy With p,=10mc T,=0.07MeV* o) = k(i) P )0 b0
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Analytic trial functions for DIll-D-inspired f(E)

Experimental point of reference ol
Lvovskiy et al. NF 60 056008
2020)] o
« Fit f(E) from reconstructed data .
« Normalize and align to measured 02 ¢
peak g :
 fi, with T,=10 MeV* o
. LSAQ it fs with gz = 5.9 MeV. i
FWHM = 3.8 MeV* 0 ik
® Exp ;
_ 1075 5 10 5 20
¢ fauy With p,=10mc T,=0.07MeV* Blecron enrzy MV
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10°

Comparison of different RE f(E) forms

np=1.25x10"° m=3n,,=2.5x10"® m3 nge to produce 180 kA RE current

h.
—f;@
- Th. o {RE
. - - A ) — M‘+M
- A )
, S
Th. o {RE
\ v tlems
|
| }
| ]
| ~6 MeV
n
| |
.
| ] ’.‘.
' " . \
!

75
150l 1 S HAT e
AT/;h, +ng 7
125 i+ 158 /
’
10.0 4
2 4

Zegy =

> zZ;
ZV, n; Z./

100 10! 10° 10°
Bulk plasma temperature [eV]

Radiative Power Loss [MW/m?]

— T

M
—

Th. RE
saan fM +fG

Th. | RE
I My

10! 107 10° 10*
Bulk plasma temperature [eV]

Either Maxwellian*, Gaussian® or boosted Maxwell-Juttner* seem to

perform comparably describing presence of RE tail
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Effects of CSD smearing clear

7, =10000.0eV

Te=2 eV

10° =
@ Th.
M 0.0100 Th |
M “£0.0075
_ Th. o (RE <
10~ Y + 0 Ry
M B &0.0025
\_S 0-000950 107 102
<
1072 Z0010 BMJ RE
2
0 =
& 0.005
X
3 0-00950 10! 10?
10 0 5 1'0 1'5 Photon energy [eV]
Ion charged state 2
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What does a higher n_, and broader set of ion
stages mean for runaway electron modeling?

« Translates to different collisional drag/slowing down and pitch-
angle scattering/deflection frequencies on RHS of kinetic equation

) L, Ofq
C = vy’ L(fa) +—75- [1)3 (v_s”f +3UP 01))}

« Consider the formulation of Hesslow et al. PRL 118 25 (2017)

. . 1 n;qg:(p) n:N. . /1
pei — pei | -+ E AL ce _ ee |1 4 L8 [ Zn (1 + Kk = B2
D D.cs( Z ot - n, In A Vs DS.CS[ * Z n,In A \ k n (14 Ij> /

i
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Drag and deflection collision frequencies for RE
modeling N

2
« Boosted MJ scenario compared to thermal J
. H . i . p
* Note: comparing scaled v to make for clearer comparison oy = uf;;
T,=2 eV T.=5 eV T.,=20 eV
10° - 10° ——
”’—’ 103 "’—
A ”’ QA Y ”’
> - > > -
% //’ % 5 /’
& /7 =k =) == t
10 ’ 2 & - v converges a
SR =107 E higher T,
3 3 3
G : = 102
3 ne,CSD driven v 3 310
10! deviation at lower T,
102 10~ 10° 10! 102 102 10~ 10° 10! 102 10~ 107! 10° 10! 107
plmc plmce plmc
= pgRel. ===+ RPugRel vp Rel. m— ygRel. ===: RPuysRel vp Rel. == ygRel. === RPugRel vp Rel.
= 15 Th. RPuysTh. == up Th. = g Th. RPysTh. === up Th. = vs Th. RPygTh. === up Th.
+ RP 129 Rel. ee ~ ee l
RP v Th. VsRP™ Vs cs 1+ 2 Zjane.j/ne] 34
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A shameless plug before | finish

PoP letter
earlier this
year —
analysis with
Gaussian RE
tail

Physics of Plasmas LETTER scitation.org/journalphp

Impact of a minority relativistic electron tail
interacting with a thermal plasma containing
high-atomic-number impurities

Cite as: Phys. Plasmas 27, 040702 (2020); doi: 10.1063/5.0003638
Submitted: 4 February 2020 - Accepted: 7 April 2020 - 5
Published Online: 24 April 2020 - Corrected: 28 April 2020 ot -

Nathan A. Gavrland,I ) () Hyun-Kyung Chung,” Christopher J. Fontes,' () Mark C. Zammit,' () James Colgan,’
Todd Elder,'” Christopher J. McDevitt,“ Timothy M. Wildey,” and Xian-Zhu Tang'

AFFILIATIONS

'Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

?National Fusion Research Institute (NFRI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, South Korea
*Columbia University, New York, New York 10027, USA

“Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, USA
Sandia National Laboratories, Albuquerque, New Mexico 87185, USA

#Author to whom correspondence should be addressed: ngarland@lanl.gov

ABSTRACT

A minority relativistic electron component can arise in both laboratory and naturally occurring plasmas. In the presence of high-atomic-
number ion species, the ion charge state distribution at a low bulk electron temperature can be dominated by relativistic electrons, even
though their density is orders of magnitude lower. This is due to the relativistic enhancement of the collisional excitation and ionization
cross sections. The resulting charge state effect can dramatically impact the radiative power loss rate and the related Bethe stopping power of
relativistic electrons in a dilute plasma.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0003638
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The takeaway

« Formation of relativistic RE tail is a well known problem for
disruptions on ITER

« Atomic physics tells us corrections are needed to normal
scattering data and thus CR models used to describe our
discharges.

« With minority RE densities driving post-disruption current,
influences due to this RE driven physics emerge

« Seems to corroborate apparent observations of low charge states
of impurity ions during RE plateau

« Moving forward: How can this modeling help guide diagnosing
and understanding post-disruption discharges with RE present?

36
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Other avenues in this project

« Improving atomic physics: charge exchange, bencharking ICS

« Time-dependent thermal plasma T, cooling dynamics

 Highlighting the importance of excited states and applicability of
coronal-like assumptions

* Implementing in-situ for dynamic EEDF in kinetic codes

« Neural network surrogates for rapid evaluation to couple with

plasma transport codes (Paper accepted for Machine Learning and the Physical
Sciences Workshop at the 34th NeurlPS Conference.)
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Thanks for your attention

We gratefully acknowledge the support of the:
« DoE through OFES and the Tokamak Disruption Studies SciDAC
« LDRD program of LANL under project 20200356ER

Questions?
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