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§  Peridynamics	
  is	
  a	
  nonlocal	
  extension	
  of	
  conFnuum	
  mechanics	
  
§  Remains	
  valid	
  in	
  presence	
  of	
  disconFnuiFes,	
  including	
  cracks	
  
§  Balance	
  of	
  linear	
  momentum	
  is	
  based	
  on	
  an	
  integral	
  equa.on:	
  

Peridynamics	
  is	
  a	
  mathemaFcal	
  theory	
  that	
  unifies	
  the	
  mechanics	
  of	
  
conFnuous	
  media,	
  cracks,	
  and	
  discrete	
  parFcles	
  

The point X interacts 
directly with all points 

within its horizon 

WHAT IS PERIDYNAMICS? 

HOW DOES IT WORK? 

S.A.	
  Silling.	
  	
  ReformulaFon	
  of	
  elasFcity	
  theory	
  for	
  disconFnuiFes	
  and	
  long-­‐range	
  forces.	
  	
  Journal	
  of	
  the	
  Mechanics	
  and	
  Physics	
  
of	
  Solids,	
  48:175-­‐209,	
  2000.	
  

Silling,	
  S.A.	
  and	
  Lehoucq,	
  R.	
  B.	
  	
  Peridynamic	
  Theory	
  of	
  Solid	
  Mechanics.	
  	
  Advances	
  in	
  Applied	
  Mechanics	
  44:73-­‐168,	
  2010.	
  



Peridynamic	
  Theory	
  of	
  Solid	
  Mechanics	
  

3	
  

CONSTITUTIVE LAWS IN PERIDYNAMICS 

DISCRETIZATION OF A PERIDYNAMIC BODY 

1	
  S.A.	
  Silling	
  and	
  E.	
  Askari.	
  	
  A	
  meshfree	
  method	
  based	
  on	
  the	
  peridynamic	
  model	
  of	
  solid	
  mechanics.	
  	
  Computers	
  and	
  
Structures,	
  83:1526-­‐1535,	
  2005.	
  

§  Peridynamic	
  bonds	
  connect	
  any	
  two	
  material	
  points	
  that	
  interact	
  directly	
  
§  Peridynamic	
  forces	
  are	
  determined	
  by	
  force	
  states	
  acFng	
  on	
  bonds	
  

§  Force	
  states	
  are	
  determined	
  by	
  consFtuFve	
  laws	
  and	
  are	
  funcFons	
  of	
  the	
  
deformaFons	
  of	
  all	
  points	
  within	
  a	
  neighborhood	
  

§  Material	
  failure	
  is	
  modeled	
  through	
  the	
  breaking	
  of	
  peridynamic	
  bonds	
  
§  Example:	
  	
  criFcal	
  stretch	
  bond	
  breaking	
  law	
  

Direct	
  discreFzaFon	
  of	
  the	
  strong	
  form	
  of	
  the	
  balance	
  
of	
  linear	
  momentum	
  1	
  



Linear	
  Peridynamic	
  Solid	
  2	
  
§  State-­‐based	
  consFtuFve	
  model	
  

§  DeformaFon	
  decomposed	
  into	
  deviatoric	
  and	
  
dilataFonal	
  components	
  

§  Magnitude	
  of	
  pairwise	
  force	
  density	
  given	
  by	
  

MicroelasFc	
  Material	
  1	
  
§  Bond-­‐based	
  consFtuFve	
  model	
  

§  Pairwise	
  forces	
  are	
  a	
  funcFon	
  
of	
  bond	
  stretch	
  

§  Magnitude	
  of	
  pairwise	
  force	
  
density	
  given	
  by	
  

ConsFtuFve	
  Models	
  for	
  Peridynamics	
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1.  S.A.	
  Silling.	
  	
  ReformulaFon	
  of	
  elasFcity	
  theory	
  for	
  disconFnuiFes	
  and	
  long-­‐range	
  forces.	
  	
  Journal	
  of	
  the	
  Mechanics	
  and	
  Physics	
  of	
  Solids,	
  48:175-­‐209,	
  2000.	
  

2.  S.A.	
  Silling,	
  M.	
  Epton,	
  O.	
  Weckner,	
  J.	
  Xu,	
  and	
  E.	
  Askari,	
  Peridynamic	
  states	
  and	
  consFtuFve	
  modeling,	
  Journal	
  of	
  Elas.city,	
  88,	
  2007.	
  

§  Peridynamic	
  consFtuFve	
  laws	
  can	
  be	
  grouped	
  into	
  two	
  categories	
  
§  Bond-­‐based:	
  	
  bond	
  forces	
  depend	
  only	
  on	
  a	
  single	
  pair	
  of	
  material	
  points	
  
§  State-­‐based:	
  	
  bond	
  forces	
  depend	
  on	
  deformaFons	
  of	
  all	
  neighboring	
  material	
  points	
  

PERIDYNAMIC FORCE STATES MAP BONDS TO PAIRWISE FORCE DENSITIES 

DefiniFons	
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NON-ORDINARY STATE-BASED APPROACH 1 

1	
  S.	
  Silling,	
  M.	
  Epton,	
  O.	
  Weckner,	
  J.	
  Xu,	
  and	
  E.	
  Askari.	
  	
  Peridynamic	
  states	
  and	
  consFtuFve	
  modeling.	
  	
  Journal	
  of	
  ElasFcity,	
  
88:151-­‐184,	
  2007.	
  

1.  Compute	
  an	
  approximate	
  deformaFon	
  gradient	
  based	
  on	
  the	
  iniFal	
  and	
  current	
  
locaFons	
  of	
  material	
  points	
  in	
  nonlocal	
  neighborhood	
  

2.  KinemaFc	
  data	
  passed	
  to	
  classical	
  material	
  model	
  
3.  Classical	
  material	
  model	
  computes	
  stress	
  
4.  Stress	
  converted	
  to	
  pairwise	
  forces	
  

5.  Apply	
  stabilizaFon	
  term	
  to	
  suppress	
  low-­‐energy	
  modes	
  (opFonal)	
  

Approximate	
  DeformaFon	
  Gradient	
   Shape	
  Tensor	
  



Example:	
  	
  Modified	
  criFcal-­‐stretch	
  
law	
  for	
  polycrystalline	
  materials	
  2	
  

§  Modified	
  criFcal-­‐stretch	
  law	
  for	
  failure	
  
of	
  polycrystalline	
  material	
  

§  Bond	
  failure	
  law	
  favors	
  material	
  damage	
  
along	
  grain	
  boundaries	
  

§  Contact	
  algorithm	
  controls	
  material	
  
interacFons	
  aaer	
  bonds	
  are	
  broken	
  

Material	
  Failure	
  Is	
  Controlled	
  by	
  a	
  Bond-­‐Failure	
  Law	
  

§  A	
  bonds	
  fails	
  when	
  its	
  extension	
  exceeds	
  a	
  
criFcal	
  value	
  

§  Bond	
  failure	
  is	
  irreversible	
  

§  Damage	
  results	
  from	
  the	
  accumulaFon	
  of	
  
broken	
  bonds	
  

§  CriFcal	
  stretch	
  parameter	
  is	
  Fed	
  to	
  the	
  
energy	
  release	
  rate	
  (experimentally	
  
measureable)	
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THE CRITICAL-STRETCH MODEL IS THE SIMPLEST BOND-FAILURE LAW 1 

1.	
  	
  Silling,	
  S.A.	
  and	
  Askari,	
  E.	
  	
  A	
  meshfree	
  method	
  based	
  on	
  the	
  peridynamic	
  model	
  of	
  solid	
  mechanics.	
  	
  Computers	
  and	
  Structures	
  83:1526-­‐1535,	
  2005.	
  

2.	
  	
  D.	
  Li;lewood,	
  V.	
  Tikare,	
  and	
  J.	
  Bignell.	
  	
  Informing	
  Macroscale	
  ConsFtuFve	
  Laws	
  through	
  Modeling	
  of	
  Grain-­‐Scale	
  Mechanisms	
  in	
  Plutonium	
  Oxide.	
  	
  
Workshop	
  on	
  Nonlocal	
  Damage	
  and	
  Failure:	
  	
  Peridynamics	
  and	
  Other	
  Nonlocal	
  Models,	
  San	
  Antonio,	
  Texas,	
  March	
  11-­‐12	
  2013.	
  	
  



Contact	
  in	
  Peridynamic	
  SimulaFons	
  

§  A	
  short-­‐range	
  force	
  approach	
  has	
  been	
  used	
  in	
  the	
  majority	
  of	
  
peridynamic	
  simulaFons	
  to	
  date	
  1	
  

§  Spring-­‐like	
  repulsive	
  force	
  
§  AcFve	
  when	
  relaFve	
  distance,	
  r,	
  is	
  below	
  contact	
  radius,	
  rc	
  

§  Does	
  not	
  require	
  explicit	
  definiFon	
  of	
  contact	
  surfaces	
  
§  FricFon	
  may	
  be	
  incorporated	
  by	
  decomposing	
  relaFve	
  moFon	
  

into	
  normal	
  and	
  tangenFal	
  components	
  

§  More	
  sophisFcated	
  contact	
  models	
  are	
  possible	
  
§  Example:	
  	
  iteraFve	
  penalty	
  enforcement	
  to	
  drive	
  the	
  contact	
  gap	
  

to	
  zero	
  2	
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SimulaFon	
  of	
  bri;le	
  fracture	
  

1.  Silling,	
  S.A.	
  and	
  Askari,	
  E.	
  	
  A	
  meshfree	
  method	
  based	
  on	
  the	
  peridynamic	
  model	
  of	
  solid	
  mechanics.	
  	
  Computers	
  and	
  Structures	
  83:1526-­‐1535,	
  2005.	
  

2.  SIERRA	
  Solid	
  Mechanics	
  Team,	
  Sierra/SolidMechanics	
  4.22	
  user’s	
  guide,	
  SAND	
  Report	
  2011-­‐7597,	
  Sandia	
  NaFonal	
  Laboratories,	
  Albuquerque,	
  NM	
  and	
  
Livermore,	
  CA,	
  2011.	
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  between	
  Classical	
  and	
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  Theories	
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PERIDYNAMIC OPERATORS ARE ANALOGUES OF THE CLASSICAL THEORY 



Peridynamic	
  Codes	
  

§  CompuFng	
  Research	
  Center’s	
  open-­‐source	
  
computaFonal	
  peridynamics	
  code	
  

§  Built	
  on	
  Trilinos	
  soaware	
  toolset	
  

9	
  

PERIDIGM 

§  Engineering	
  mechanics	
  simulaFon	
  code	
  suite	
  
supporFng	
  the	
  naFon’s	
  nuclear	
  weapons	
  mission	
  as	
  
well	
  as	
  other	
  customers	
  

§  Advanced	
  SimulaFon	
  and	
  CompuFng	
  (ASC)	
  code	
  
	
  

SIERRA/SOLIDMECHANICS 

1.  Parks,	
  M.L.,	
  Li;lewood,	
  D.J.,	
  Mitchell,	
  J.A.,	
  and	
  Silling,	
  S.A.	
  Peridigm	
  users’	
  guide	
  v1.0.0.	
  Sandia	
  Report	
  SAND-­‐2012-­‐7800,	
  2012.	
  

2.  SIERRA	
  Solid	
  Mechanics	
  Team.	
  Sierra/SolidMechanics	
  4.32	
  user’s	
  guide,	
  2014.	
  

OTHERS 

§  EMU,	
  LAMMPS	
  
	
  



Examples	
  of	
  Simple	
  Test	
  Problems	
  
Uniaxial	
  and	
  hydrostaFc	
  compression	
  

•  Tests	
  constructed	
  such	
  that	
  peridynamics	
  and	
  classical	
  FEM	
  should	
  yield	
  same	
  result	
  
•  SimulaFon	
  results	
  verified	
  for	
  numerous	
  material	
  models	
  

Beam	
  bending	
  
•  Test	
  peridynamics	
  with	
  neo-­‐Hookean	
  material	
  model	
  against	
  classical	
  beam	
  bending	
  theory	
  
•  SimulaFon	
  gives	
  expected	
  bending	
  response	
  and	
  stress	
  distribuFon	
  

 Applied	
  
rotaFon	
  

Fixed	
  
support	
  

Increased	
  pure	
  bending	
  
eventually	
  produces	
  circle	
  

Linear	
  stress	
  distribuFon	
  
through	
  cross	
  secFon	
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Dogbone	
  Tensile	
  Test	
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CONSTITUTIVE MODEL CALIBRATINO AGAINST EXPERIMENTAL DATA 

§  Dogbone	
  specimen	
  
§  304L	
  stainless	
  steel	
  (very	
  ducFle)	
  
§  Quasi-­‐staFc	
  loading	
  condiFons	
  

§  Peridynamic	
  model	
  
§  Non-­‐ordinary	
  state-­‐based	
  peridynamic	
  
§  ElasFc-­‐plasFc	
  material	
  consFtuFve	
  model	
  

Young’s	
  Modulus	
   199.95e3	
  MPa	
  

Poisson’s	
  RaFo	
   0.285	
  

Yield	
  Stress	
   220.0	
  MPa	
  
Piecewise	
  linear	
  hardening	
  curve	
  



Necking	
  Experiment	
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  DIC	
  
image	
  [Boyce]	
  

Post-­‐test	
  
simulaFon	
  result	
  

§  Modified	
  dogbone	
  specimen	
  
§  304L	
  stainless	
  steel	
  (very	
  ducFle)	
  
§  Quasi-­‐staFc	
  loading	
  condiFons	
  

§  Peridynamic	
  model	
  
§  Non-­‐ordinary	
  state-­‐based	
  peridynamic	
  
§  ElasFc-­‐plasFc	
  material	
  consFtuFve	
  model	
  

[Boyce]	
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  Experiment	
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[Vogler	
  et.	
  al]	
  

Vogler,	
  T.J.,	
  Thornhill,	
  T.F.,	
  Reinhart,	
  W.D.,	
  Chhabidas,	
  L.C.,	
  Grady,	
  D.E.,	
  Wilson,	
  L.T.,	
  Hurricane,	
  O.A.,	
  and	
  Sunwoo,	
  A.	
  	
  FragmentaFon	
  of	
  
materials	
  in	
  expanding	
  tube	
  experiments.	
  	
  Interna.onal	
  Journal	
  of	
  Impact	
  Engineering,	
  29:735-­‐746,	
  2003.	
  

§  Experimental	
  setup:	
  
§  Tube	
  expansion	
  via	
  collision	
  of	
  Lexan	
  projecFle	
  

and	
  plug	
  within	
  AerMet	
  tube	
  
§  Accurate	
  recording	
  of	
  velocity	
  and	
  

displacement	
  on	
  tube	
  surface	
  

§  Modeling	
  approach:	
  
§  AerMet	
  tube	
  modeled	
  with	
  peridynamics,	
  

elasFc-­‐plasFc	
  material	
  model	
  with	
  linear	
  
hardening	
  

§  Lexan	
  plugs	
  modeled	
  with	
  tradiFonal	
  FEM,	
  
EOS-­‐enabled	
  Johnson-­‐Cook	
  material	
  model	
  



Expanding	
  Tube	
  Experiment	
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SimulaFon	
  at	
  15.4	
  microseconds	
  

SimulaFon	
  at	
  23.4	
  microseconds	
  

Experimental	
  image	
  at	
  15.4	
  
microseconds	
  [Vogler	
  et.	
  al]	
  

Experimental	
  image	
  at	
  23.4	
  
microseconds	
  [Vogler	
  et.	
  al]	
  



Predicted	
  Displacement	
  and	
  Velocity	
  on	
  Tube	
  Surface	
  

15	
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FragmentaFon	
  Pa;ern	
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SimulaFon	
  at	
  84.8	
  microseconds	
  

QUALITATIVE COMPARISON OF FRAGMENTATION RESULTS 

§  Vogler	
  et.	
  al	
  reported	
  significant	
  uncertainty	
  in	
  
results	
  at	
  late	
  Fme	
  

§  Approximately	
  half	
  the	
  tube	
  remained	
  intact	
  
§  Vogler	
  et.	
  al	
  recovered	
  14	
  fragments	
  with	
  

mass	
  greater	
  than	
  one	
  gram	
  



Ongoing	
  R&D	
  Efforts	
  in	
  Peridynamics	
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   Local-­‐nonlocal	
  coupling	
  for	
  integrated	
  fracture	
  modeling	
  
§  Peridynamic	
  parFal	
  stress	
  formulaFon	
  to	
  enable	
  a	
  variable	
  horizon	
  
§  Blending-­‐based	
  coupling	
  approaches	
  

§  PosiFon-­‐aware	
  consFtuFve	
  laws	
  
§  Address	
  behavior	
  of	
  a	
  class	
  of	
  peridynamic	
  consFtuFve	
  laws	
  at	
  free	
  surfaces	
  

§  Improvements	
  to	
  meshfree	
  discreFzaFon	
  
§  Coarse	
  graining	
  approaches	
  for	
  mulFscale	
  modeling	
  
§  MulF-­‐physics	
  models	
  

§  Mechanics,	
  thermal,	
  fluid	
  flow,	
  etc.	
  

§  ValidaFon	
  of	
  peridynamics	
  for	
  specific	
  Sandia	
  applicaFons	
  
§  Problems	
  of	
  direct	
  relevance	
  to	
  naFonal	
  security	
  
§  Comparison	
  against	
  experimental	
  data	
  



Local-­‐Nonlocal	
  Coupling	
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APPLICATION OF PERIDYNAMICS TO SANDIA MISSIONS REQUIRES 
INTEGRATION WITH CLASSICAL MODELS 

KEY CHALLENGES 

§  Standard	
  finite	
  element	
  codes	
  based	
  on	
  classical	
  conFnuum	
  mechanics	
  provide	
  a	
  
robust	
  and	
  mature	
  technology	
  for	
  a	
  broad	
  set	
  of	
  applicaFons	
  

§  Peridynamics	
  offers	
  a	
  framework	
  for	
  modeling	
  material	
  failure	
  
§  Goal:	
  	
  Unify	
  the	
  strengths	
  of	
  peridynamics	
  and	
  classical	
  conFnuum	
  mechanics	
  

§  The	
  nonlocal	
  governing	
  equaFons	
  of	
  peridynamics	
  differ	
  inherently	
  from	
  those	
  in	
  
the	
  classical	
  (local)	
  theory	
  

§  Coupling	
  strategies	
  must	
  avoid	
  nonphysical	
  arFfacts	
  at	
  the	
  interface	
  of	
  local	
  and	
  
nonlocal	
  models	
  

Vision 
Apply peridynamics only 
in regions susceptible to 

material failure 



New	
  Research	
  Focus:	
  	
  Variable	
  Nonlocal	
  Length	
  Scale	
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§  Current	
  peridynamic	
  consFtuFve	
  models	
  do	
  not	
  support	
  a	
  variable	
  horizon	
  
§  Goal:	
  	
  develop	
  an	
  alternaFve	
  formulaFon	
  that	
  miFgates	
  spurious	
  arFfacts	
  in	
  the	
  

presence	
  of	
  a	
  variable	
  nonlocal	
  length	
  scale	
  

§  Approach:	
  	
  target	
  one-­‐dimensional	
  patch	
  tests	
  (expose	
  spurious	
  arFfacts,	
  if	
  any)	
  
§  Linear	
  displacement	
  field	
  must	
  be	
  equilibrated	
  
§  QuadraFc	
  displacement	
  field	
  must	
  produce	
  constant	
  acceleraFon	
  

EXISTING FORMULATIONS MUST BE EXPANDED TO SUPPORT A VARIABLE HORIZON 

A	
  variable	
  nonlocal	
  length	
  scale	
  
facilitates	
  transiFons	
  between	
  
peridynamics	
  and	
  classical	
  
conFnuum	
  mechanics	
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  Silling,	
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2	
  Lehoucq,	
  R.B.,	
  and	
  Silling,	
  S.A.	
  	
  Force	
  flux	
  and	
  the	
  peridynamic	
  stress	
  tensor,	
  Journal	
  of	
  the	
  Mechanics	
  and	
  Physics	
  of	
  Solids,	
  
56:1566-­‐1577,	
  2008.	
  

Proposed	
  SoluFon	
  

§  Guaranteed	
  to	
  pass	
  the	
  linear	
  patch	
  test	
  (even	
  with	
  a	
  varying	
  horizon)	
  
§  ParFal	
  stress	
  and	
  full	
  peridynamic	
  stress2	
  	
  are	
  equal	
  if	
  the	
  force	
  state	
  T[x]	
  is	
  

independent	
  of	
  x	
  
§  Example:	
  	
  homogeneous	
  body	
  under	
  homogeneous	
  deformaFon	
  	
  
§  Result	
  suggests	
  that	
  parFal	
  stress	
  is	
  a	
  good	
  approximaFon	
  of	
  the	
  full	
  peridynamic	
  stress	
  

under	
  smooth	
  deformaFon	
  

§  ParFal	
  stress	
  formulaFon	
  is	
  not	
  a	
  good	
  candidate	
  for	
  modeling	
  material	
  failure	
  
§  Provides	
  a	
  natural	
  transiFon	
  between	
  the	
  full	
  peridynamic	
  formulaFon	
  and	
  a	
  classical	
  

stress-­‐strain	
  formulaFon	
  (hybrid	
  approach)	
  

PARTIAL STRESS FORMULATION FOR PERIDYNAMIC CONSTITUTIVE LAWS 1 
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ApplicaFon	
  of	
  ParFal	
  Stress	
  within	
  Peridynamics	
  Framework	
  

§  Internal	
  force	
  evaluated	
  as	
  divergence	
  of	
  parFal	
  stress	
  

§  The	
  parFal	
  stress	
  can	
  be	
  applied	
  within	
  the	
  meshless	
  approach	
  of	
  Silling	
  and	
  
Askari	
  1	
  

§  The	
  parFal	
  stress	
  can	
  also	
  be	
  applied	
  within	
  a	
  standard	
  finite-­‐element	
  scheme	
  

INTERNAL FORCE CALCULATION REQUIRES DIVERGENCE OPERATOR 

1	
  S.A.	
  Silling	
  and	
  E.	
  Askari.	
  	
  A	
  meshfree	
  method	
  based	
  on	
  the	
  peridynamic	
  model	
  of	
  solid	
  mechanics.	
  	
  Computers	
  and	
  
Structures,	
  83:1526-­‐1535,	
  2005.	
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ALTER THE PERIDYNAMIC HORIZON WITHIN A BODY TO APPLY NONLOCALITY 
ONLY WHERE NEEDED 

[Stewart Silling] 
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§  Examine	
  response	
  under	
  linear	
  and	
  quadraFc	
  
displacement	
  fields	
  

§  InvesFgate	
  standard	
  formulaFon	
  with	
  both	
  constant	
  and	
  
varying	
  peridynamic	
  horizon	
  

§  InvesFgate	
  parFal	
  stress	
  formulaFon	
  with	
  both	
  constant	
  
and	
  varying	
  peridynamic	
  horizon	
  

SUBJECT RECTANGULAR BAR TO PRESCRIBED DISPLACEMENT FIELDS 

Density 7.8 g/cm3 

Young’s Modulus 200.0 GPa 

Poisson’s Ratio 0.0 

Stability Coefficient 0.0 

ElasFc	
  Correspondence	
  
Material	
  Model	
  

Constant Horizon	
  

Horizon	
  Value	
  

Number	
  of	
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Can	
  the	
  standard	
  model	
  and	
  the	
  
parFal-­‐stress	
  model	
  recover	
  the	
  
expected	
  zero	
  acceleraFon?	
  

Note:	
  	
  nodes	
  near	
  
ends	
  of	
  bar	
  excluded	
  

from	
  plots	
  

Both	
  models	
  produce	
  the	
  
expected	
  result	
  when	
  the	
  

horizon	
  is	
  constant	
  Constant	
  horizon	
  
throughout	
  bar	
  

Prescribe	
  linear	
  
displacement	
  field	
  

Test	
  set-­‐up	
  

Test	
  Results:	
  	
  AcceleraFon	
  over	
  the	
  length	
  of	
  the	
  bar	
  
Standard	
  material	
  model	
   ParFal-­‐stress	
  formulaFon	
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Variable	
  horizon	
  

Prescribe	
  linear	
  
displacement	
  field	
  

Test	
  set-­‐up	
  

Test	
  Results:	
  	
  AcceleraFon	
  over	
  the	
  length	
  of	
  the	
  bar	
  
Standard	
  material	
  model	
   ParFal-­‐stress	
  formulaFon	
  

Can	
  the	
  standard	
  model	
  and	
  the	
  
parFal-­‐stress	
  model	
  recover	
  the	
  
expected	
  zero	
  acceleraFon?	
  

Only	
  the	
  par,al	
  stress	
  
formulaFon	
  produce	
  the	
  
expected	
  result	
  when	
  the	
  

horizon	
  is	
  varying	
  

Spurious	
  “ghost	
  forces”	
  
present	
  in	
  standard	
  

formulaFon	
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Can	
  the	
  standard	
  model	
  and	
  the	
  
parFal-­‐stress	
  model	
  recover	
  the	
  

expected	
  constant	
  acceleraFon	
  profile?	
  

Both	
  models	
  produce	
  the	
  
expected	
  result	
  when	
  the	
  

horizon	
  is	
  constant	
  Constant	
  horizon	
  
throughout	
  bar	
  

Prescribe	
  quadraFc	
  
displacement	
  field	
  

Test	
  set-­‐up	
  

Test	
  Results:	
  	
  AcceleraFon	
  over	
  the	
  length	
  of	
  the	
  bar	
  
Standard	
  material	
  model	
   ParFal-­‐stress	
  formulaFon	
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Variable	
  horizon	
  

Prescribe	
  quadraFc	
  
displacement	
  field	
  

Test	
  set-­‐up	
  

Test	
  Results:	
  	
  AcceleraFon	
  over	
  the	
  length	
  of	
  the	
  bar	
  
Standard	
  material	
  model	
   ParFal-­‐stress	
  formulaFon	
  

Can	
  the	
  standard	
  model	
  and	
  the	
  
parFal-­‐stress	
  model	
  recover	
  the	
  
expected	
  constant	
  acceleraFon?	
  

Only	
  the	
  par,al	
  stress	
  
formulaFon	
  produce	
  the	
  
expected	
  result	
  when	
  the	
  

horizon	
  is	
  varying	
  

Spurious	
  “ghost	
  forces”	
  
present	
  in	
  standard	
  

formulaFon	
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1	
  Silling,	
  S.,	
  and	
  Seleson,	
  P.,	
  Variable	
  Length	
  Scale	
  in	
  a	
  Peridynamic	
  Body,	
  SIAM	
  Conference	
  on	
  MathemaFcal	
  Aspects	
  of	
  Materials	
  
Science,	
  Philadelphia,	
  PA,	
  June	
  12,	
  2013.	
  

Standard	
  peridynamic	
  model	
  
Numerical	
  arFfacts	
  present	
  at	
  transiFon	
  from	
  

large	
  horizon	
  to	
  small	
  horizon	
  

ParFal-­‐stress	
  approach	
  
Greatly	
  reduces	
  arFfacts,	
  enables	
  smooth	
  
transiFon	
  between	
  large	
  and	
  small	
  horizons	
  

small 
horizon 

large 
horizon 

small 
horizon 

large 
horizon 
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USE OF A VARIABLE HORIZON IMPACTS PERFORMANCE IN SEVERAL WAYS 

§  Use	
  of	
  a	
  variable	
  horizon	
  can	
  reduce	
  neighborhood	
  size	
  
§  Less	
  computaFonal	
  cost	
  per	
  internal	
  force	
  evaluaFon	
  
§  Reduces	
  number	
  of	
  unknowns	
  in	
  sFffness	
  matrix	
  for	
  implicit	
  Fme	
  integraFon	
  

§  Use	
  of	
  a	
  variable	
  horizon	
  can	
  reduce	
  the	
  criFcal	
  Fme	
  step	
  
§  CriFcal	
  Fme	
  step	
  is	
  strongly	
  dependent	
  on	
  the	
  horizon	
  1,	
  2	
  
§  Smaller	
  Fme	
  step	
  results	
  in	
  more	
  total	
  steps	
  to	
  soluFon	
  for	
  explicit	
  transient	
  dynamic	
  simulaFons	
  
§  Important	
  note:	
  	
  the	
  criFcal	
  Fme	
  step	
  for	
  analyses	
  combining	
  peridynamics	
  and	
  classical	
  finite	
  

analysis	
  is	
  generally	
  determine	
  by	
  the	
  classical	
  finite	
  elements	
  	
  

Constant	
  Horizon	
   2.03e-­‐5	
  sec.	
  

Varying	
  Horizon	
   7.15e-­‐6	
  sec.	
  

Stable	
  Time	
  Step	
  1,	
  2	
  
(explicit	
  transient	
  dynamics)	
  

1	
  S.A.	
  Silling	
  and	
  E.	
  Askari.	
  	
  A	
  meshfree	
  method	
  based	
  on	
  the	
  peridynamic	
  model	
  of	
  solid	
  mechanics.	
  	
  Computers	
  and	
  
Structures,	
  83:1526-­‐1535,	
  2005.	
  
2	
  Li;lewood,	
  D.J,	
  Thomas,	
  J.D.,	
  and	
  Shelton,	
  T.R.	
  	
  EsFmaFon	
  of	
  the	
  CriFcal	
  Time	
  Step	
  for	
  Peridynamic	
  Models.	
  	
  SIAM	
  
Conference	
  on	
  the	
  MathemaFcal	
  Aspects	
  of	
  Material	
  Science,	
  Philadelphia,	
  Pennsylvania,	
  June	
  9-­‐12,	
  2013.	
  

Constant	
  Horizon	
   92.6	
  million	
  

Varying	
  Horizon	
   46.5	
  million	
  

Total	
  Number	
  of	
  Bonds	
  
(equal	
  to	
  number	
  of	
  nonzeros	
  in	
  sFffness	
  matrix)	
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QuesFons?	
  

David	
  Li;lewood	
  
djlittl@sandia.gov!

Sandia	
  NaFonal	
  Laboratories	
  
MulFscale	
  Science	
  (Org.	
  1444)	
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1	
  D.	
  Li;lewood,	
  K.	
  Mish,	
  and	
  K.	
  Pierson.	
  	
  Peridynamic	
  simulaFon	
  of	
  damage	
  evoluFon	
  for	
  structural	
  health	
  monitoring.	
  	
  Proceedings	
  
of	
  ASME	
  2012	
  InternaFonal	
  Mechanical	
  Engineering	
  Congress	
  and	
  ExposiFon	
  (IMECE2012),	
  Houston,	
  TX,	
  November	
  9-­‐15,	
  2012.	
  	
  

Predicted	
  locaFon	
  of	
  neighbor	
   Hourglass	
  vector	
  

Hourglass	
  vector	
  projected	
  onto	
  bond	
  

StabilizaFon	
  force	
  

Penalize	
  deformaFon	
  that	
  deviates	
  from	
  regularized	
  
deformaFon	
  gradient	
  1	
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Model	
  DiscreFzaFon	
  

Parameter	
   Value	
  

Density	
   7.87	
  g/cm3	
  

Young’s	
  Modulus	
   194.4	
  GPa	
  

Poisson’s	
  RaFo	
   0.3	
  

Yield	
  Stress	
   1.72	
  GPa	
  

Hardening	
  Modulus	
   1.94	
  GPa	
  

CriFcal	
  Stretch	
   0.02	
  

Parameter	
   Value	
  

Density	
   1.19	
  g/cm3	
  

Young’s	
  Modulus	
   2.54	
  GPa	
  

Poisson’s	
  RaFo	
   0.344	
  

Yield	
  Stress	
   75.8	
  MPa	
  

Hardening	
  Constant	
  B	
   68.9	
  MPa	
  

Rate	
  Constant	
  C	
   0.0	
  

Hardening	
  Exponent	
  N	
   1.0	
  

Thermal	
  Exponent	
  M	
   1.85	
  

Reference	
  Temperature	
   70.0	
  °F	
  

MelFng	
  Temperature	
   500.0	
  °F	
  

§  Lexan	
  projecFle	
  and	
  plug	
  
§  Modeled	
  with	
  classical	
  FEM	
  
§  Johnson-­‐Cook	
  consFtuFve	
  model	
  

§  AerMet	
  tube	
  
§  Modeled	
  with	
  peridynamics	
  
§  ElasFc-­‐plasFc	
  consFtuFve	
  model	
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§  Local	
  models	
  contain	
  no	
  length	
  scale	
  

§  Higher-­‐order	
  gradients	
  introduce	
  length	
  scale	
  in	
  a	
  weak	
  sense	
  

§  Peridynamics	
  is	
  a	
  (strongly)	
  nonlocal	
  model	
  

S.A.	
  Silling	
  and	
  R.B.	
  Lehoucq,	
  Convergence	
  of	
  peridynamics	
  to	
  classical	
  elasFcity	
  theory,	
  Journal	
  of	
  Elas.city,	
  93(1),	
  2008.	
  

Pablo	
  Seleson,	
  Michael	
  L.	
  Parks,	
  Max	
  Gunzburger,	
  and	
  Richard	
  B.	
  Lehoucq.	
  	
  Peridynamics	
  as	
  an	
  upscaling	
  of	
  molecular	
  dynamics.	
  	
  
Mul.scale	
  Modeling	
  and	
  Simula.on,	
  8(1),	
  2009.	
  

Dimensional	
  analysis	
  shows	
  that	
  sqrt(b/a)	
  has	
  units	
  of	
  length 

Peridynamic	
  model	
  (nonlocal)	
  

Higher-­‐order	
  gradient	
  model	
  (weakly	
  nonlocal)	
  

Local	
  model	
  


