

Unstructured Mesh CFD Research

Thomas M. Smith, Thomas E. Voth
and James H. Strickland
Exploratory Simulation Technologies
Sandia National Laboratories
Albuquerque, NM

Work funded by DoE ASC program

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000

Gradient Algorithms

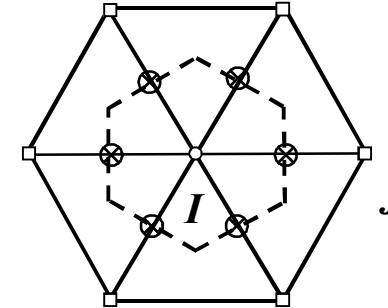
(Barth, T. AIAA 91-1548, Haselbacher, A. and Blazek, J. AIAA J. 2000,
Schneider and Raw, Num. Heat Trans., 1987)

• Green-Gauss Integral (Barth & Jespersen)

- Exact gradients for linear functions on tets LP (trapezoid rule)
- Less accurate on hexahedral elements (midpoint rule)

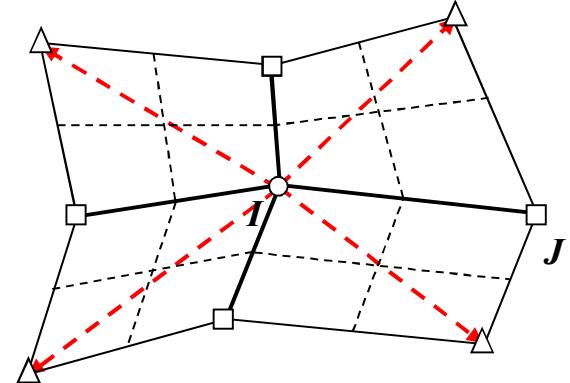
$$\nabla u_I = \frac{1}{\Delta V_I} \int_{S_I} \mathbf{u} \mathbf{n} dS \approx \frac{1}{\Delta V_I} \sum_{J \in NE(I)} \frac{1}{2} (u_I + u_J) \Delta S_{IJ}$$

$$\nabla u_I^b = \frac{1}{\Delta V_I} \int_{S_I} \mathbf{u} \mathbf{n} dS \approx \frac{1}{\Delta V_I} \sum_{J \in NE(I)} \frac{1}{2} (u_I + u_J) \mathbf{n}_I |\Delta S_{IJ}| + u_I^b \mathbf{n}_I^b |\Delta S_I^b|$$



• Least-Squares (Barth, Haselbacher & Blazek)

- Exact derivatives for linear functions (LP)
- Store six weights at each node
- Requires no special treatment at boundaries
- Include **virtual edges** for non-simplex types
- Construct linear equation for each node: $u_J = u_I + \xi_{IJ} \nabla u_I \mathbf{g} \Delta \mathbf{r}_{IJ}$
- Inverse weighting: $\xi_{IJ} = |\Delta \mathbf{r}_{IJ}|^{-p}$

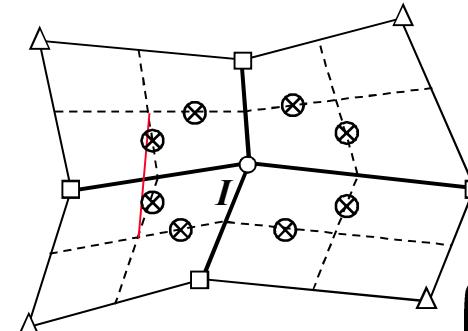


• CVFEM

- Exact derivatives for linear functions (LP)
- Element assembly
- Integrate exact dual mesh surface

$$\nabla u_I = \frac{1}{\Delta V_I} \int_{S_I} \mathbf{u} \mathbf{n} dS \approx \frac{1}{\Delta V_I} \sum_{elem(I)} \sum_{k \in edge(I)} \bar{u}_k \Delta S_k \quad \bar{u}(\mathbf{x}, t) = \sum_{i=1}^n u_i N_i$$

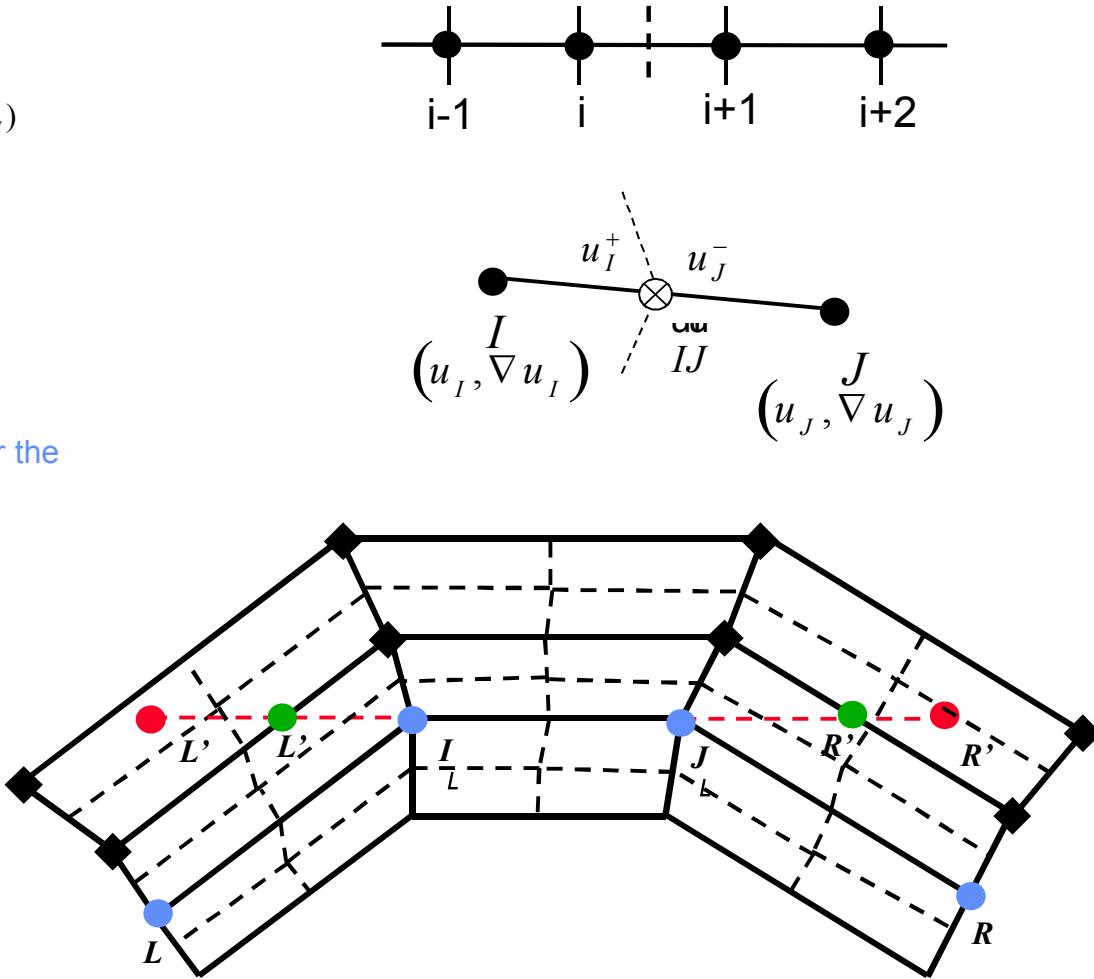
$$\nabla u_I^b = \frac{1}{\Delta V_I} \int_{S_I} \mathbf{u} \mathbf{n} dS \approx \frac{1}{\Delta V_I} \sum_{elem(I)} \sum_{k \in edge(I)} \bar{u}_k \Delta S_k + \sum_{faces(I)} \bar{u}_I^b \Delta S_I^b$$



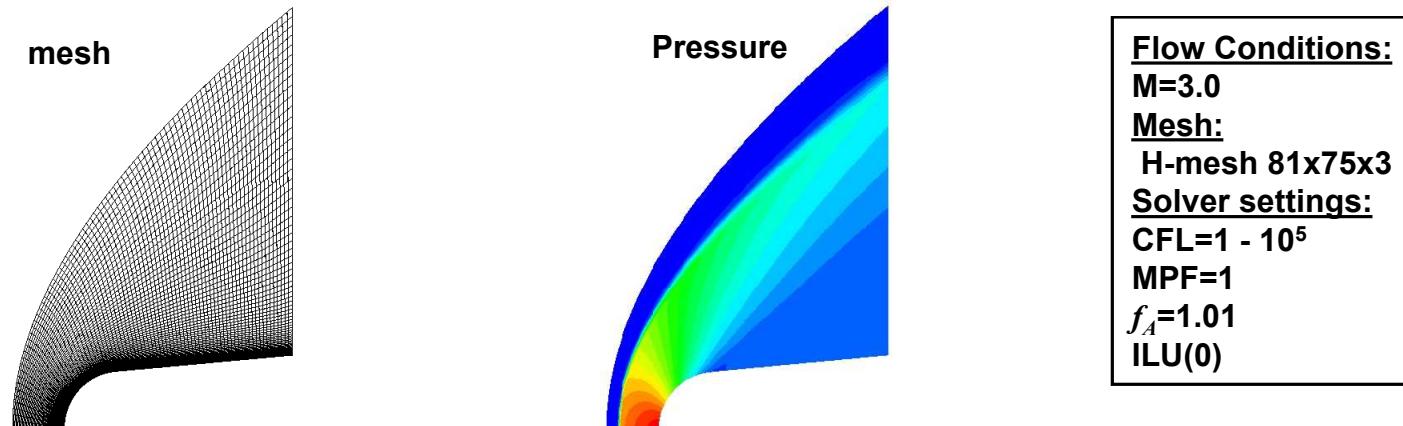
Reconstruction Techniques for Node Centered Discretizations

(Barth, T., AIAA 91-1548; Weatherill, N. et al. AIAA 93-0341; Lyra, P. et al., IJNMF, 1994)

- Structured grid stencil for upwind schemes
 - $(i-1, i, i+1, i+2)$
 - Local data support
- Gradient based extrapolation $(u_I, \nabla u_I, u_J, \nabla u_J)$
 - MUSCL
 - Gradient limiters required for monotonicity
 - Boundary gradients are error prone
- Collinear edge stencil (L, I, J, R)
 - Implement almost any flux scheme
 - Straightforward parallelization
 - Assumes edge aligned flow direction
 - In general, edges are neither co-aligned or the same length
- Element interpolation stencil (L', I, J, R')
 - Edges co-aligned and equal length
 - Any element type
 - Can result in non-adjacent element stencil
 - Difficult parallelization
- Modified element interpolation stencil
 - (L', I, J, R')
 - Edge must lie in adjacent element
 - Compact stencil
 - Straightforward parallelization

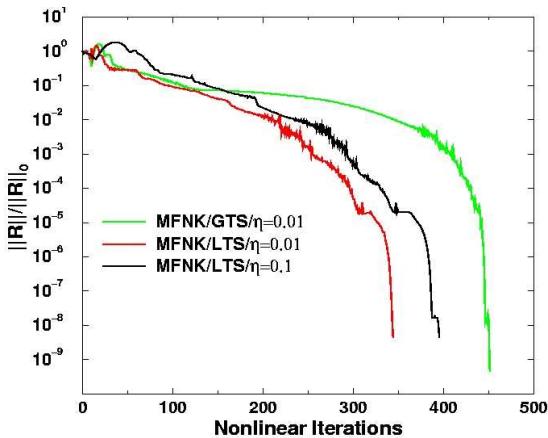
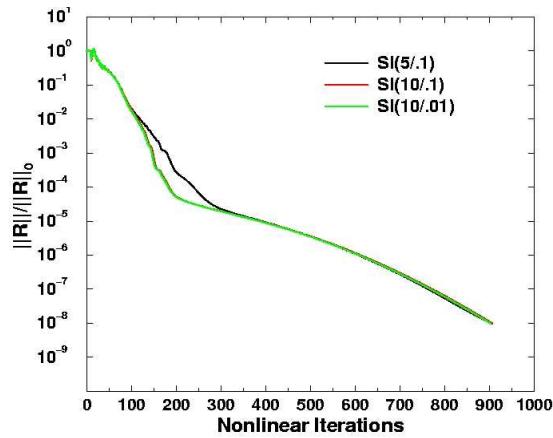
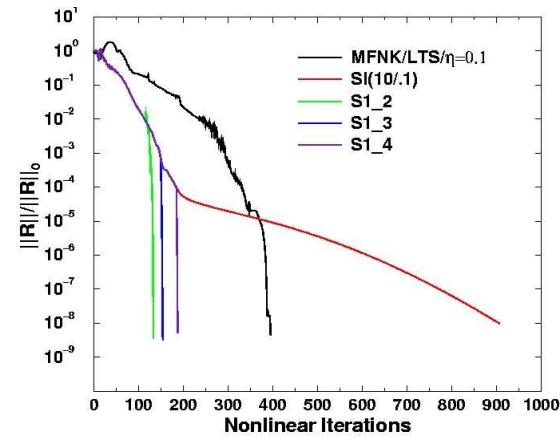
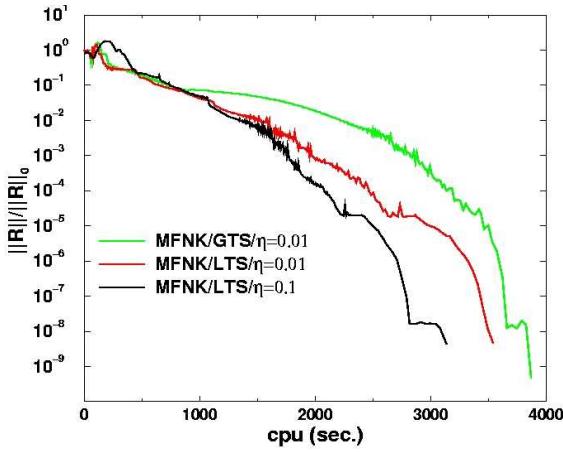
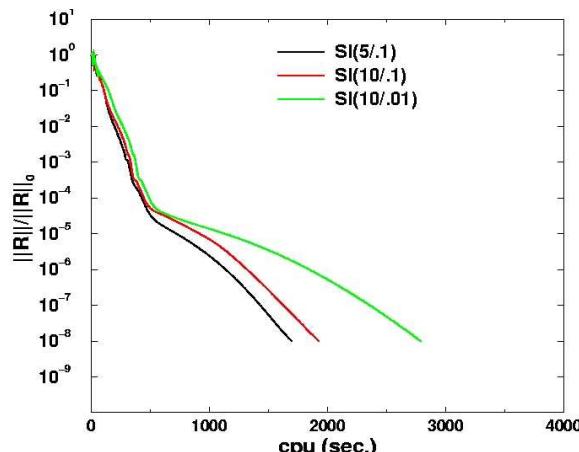
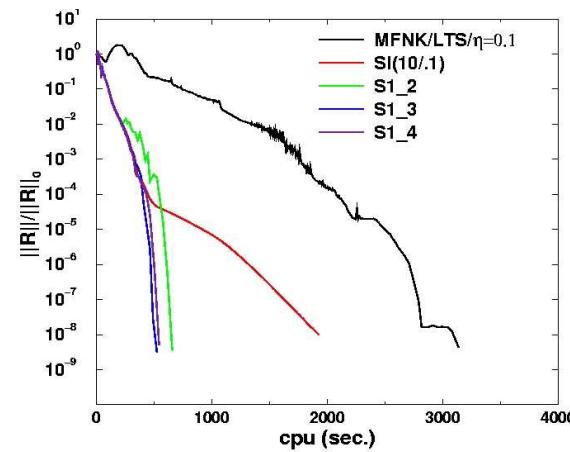


Supersonic Inviscid Flow: Blunt Wedge



Solver	η forcing	ILU(#)/ ILU(#)	k inner its.	Δt	Controller	CPU (sec.)	CPU ratio
MFNK/ILU(0)	.01	0		GTS		3,890	2.25
MFNK/ILU(0)	.01	0		LTS		3,549	2.06
MFNK/ILU(0)	.1	0		LTS		3,140	1.82
SI			5/.1	LTS		1,726	1.0
SI			10/.1	LTS		1,947	1.13
SI			10/.01	LTS		2,776	1.61
S1_2	.01	/0	10/.1	LTS	$\ R\ /\ R\ _0=10^{-2}$	660	0.38
S1_3	.01	/0	10/.1	LTS	$\ R\ /\ R\ _0=10^{-3}$	530	0.31
S1_4	.01	/0	10/.1	LTS	$\ R\ /\ R\ _0=10^{-4}$	545	0.32

Inviscid Supersonic Flow: Blunt Wedge



Laminar Supersonic Flow: Blunt Wedge

Flow Conditions:

M=3.0

Re=2.4E5

Mesh:

H-mesh 81x75x3

Solver settings:

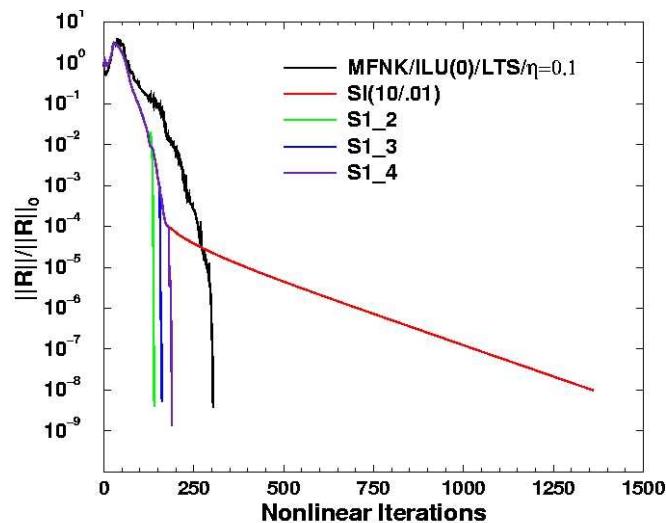
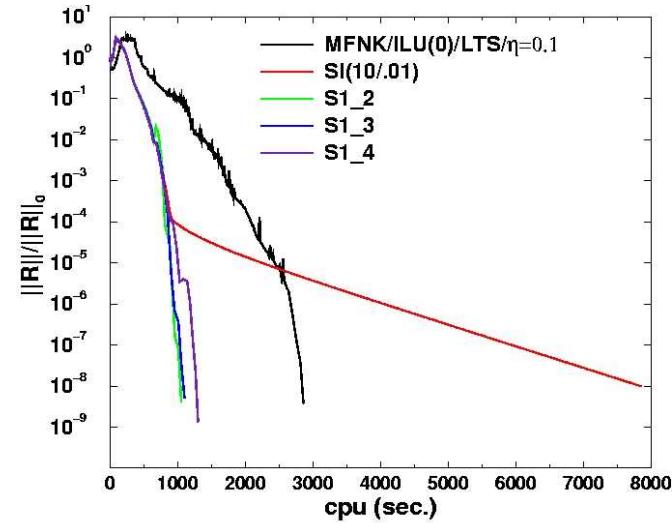
CFL=1 - 10^5

LTS

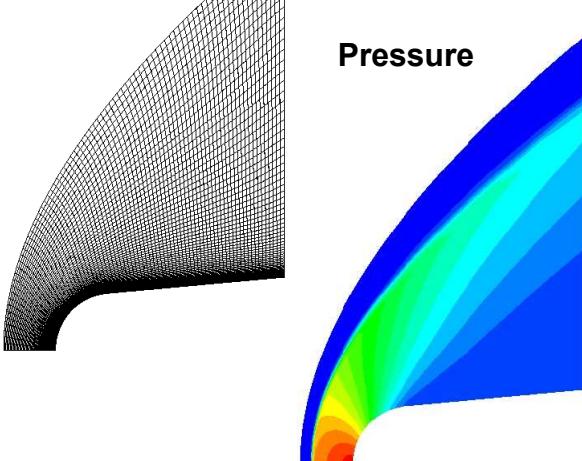
MPF=1

$f_A=1.01$

ILU(0)



mesh



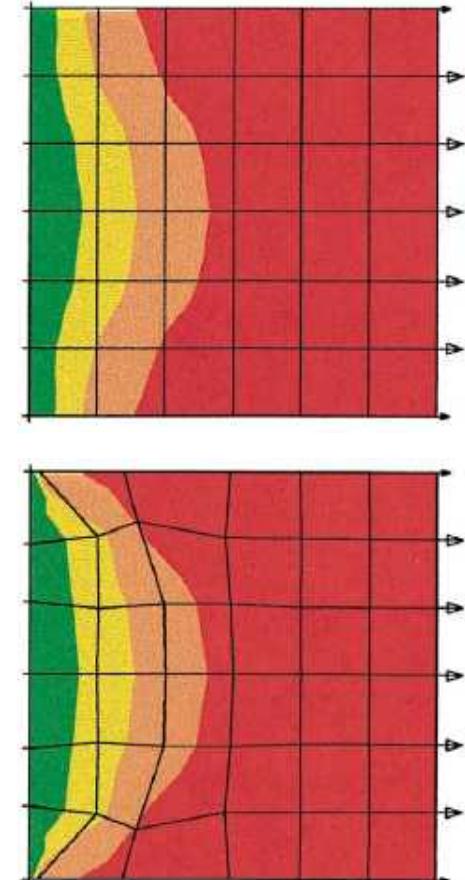
Pressure

Solver	η forcing	ILU(#)/ILU(#)	k inner its.	CPU (sec.)	CPU ratio
MFNK	.1	0		2,837	1.0
SI(10/.1)			10/.1	7,718	2.72
SI(10/.01)			10/.01	7,835	2.76
S1_2	()/.01	/0	10/.01	1,042	0.37
S1_3	()/.01	/0	10/.01	1,085	0.38
S1_4	()/.01	/0	10/.01	1,292	0.46

National
Laboratories

Advanced Unstructured Grid Adaptivity

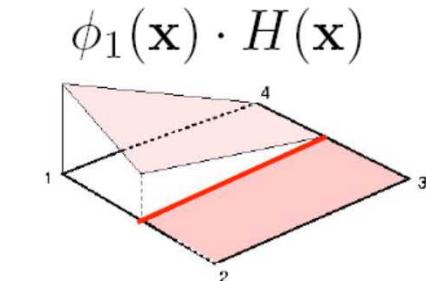
- R-Adaptivity:
 - Move nodes to improve solution.
 - Mesh adjusts to solution anisotropy.
- Elliptic/Hyperbolic PDE Approach:
 - Take advantage of FEM machinery.
 - Algorithms “target” element-quality.
 - Research needed to more rationally couple physics to element-quality.
 - Variational ALE (VALE/CF) approach is a good candidate. Minimizes a functional where solution variables include node position.
 - Solver strategies needed for resulting highly non-linear systems.



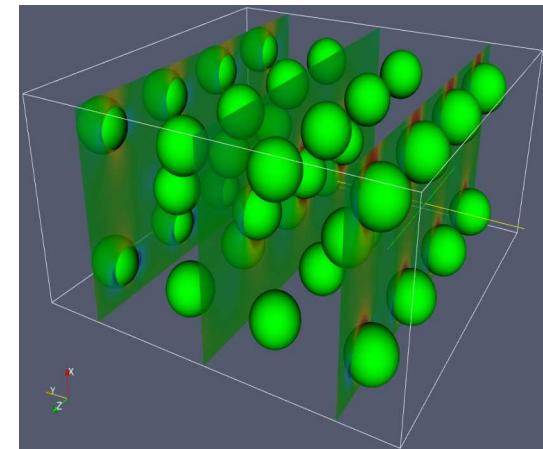
Linear elasticity with
(a) fixed mesh (b) VALE
(Mueller et al., 2002)

Advanced Unstructured Grid Adaptivity

- P-Adaptivity:
 - Increase accuracy via increase in span of basis.
 - Standard FEM approach requires specialized elements and careful treatment at transitions.
- Partition Of Unity (POU) Approach:
 - Derived from standard (low-order) FEM-basis.
 - “Enrichments” added in a consistent fashion - retains (at least) convergence of FEM-basis.
 - If enrichments are C0 (C1) then strong (weak) intra-element discontinuities may be captured.
 - Traditionally used for solid-mechanics - recently applied to shocks (Chessa, 2006).
 - We are interested in developing this technology for both material and shock discontinuities: solid-mechanics and hydrodynamics. Current work on explicit methods but exploring explicit/implicit algorithms. Interested in LBB for mixed-forms.



Bi-linear FEM basis modified with C0 enrichment.



Mechanical loading of soft-hard matrix. Inclusions modeled via POU methods.