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Gradient Algorithms
(Barth, T. AIAA 91-1548, Haselbacher, A. and Blazek, J. AIAA J. 2000, 

Schneider and Raw, Num. Heat Trans., 1987)

• Green-Gauss Integral (Barth & Jespersen)
- Exact gradients for linear functions on tets LP (trapezoid rule)
- Less accurate on hexahedral elements (midpoint rule)
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• Least-Squares (Barth, Haselbacher & Blazek)
- Exact derivatives for linear functions (LP)
- Store six weights at each node
- Requires no special treatment at boundaries
- Include virtual edges for non-simplex types
- Construct linear equation for each node:
- Inverse weighting:
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• CVFEM
- Exact derivatives for linear functions (LP)
- Element assembly
- Integrate exact dual mesh surface
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Reconstruction Techniques for Node 
Centered Discretizations

(Barth, T., AIAA 91-1548; Weatherill, N. et al. AIAA 93-0341; Lyra, P. et al., IJNMF, 1994)
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• Structured grid stencil for upwind schemes  
– (i-1,i,i+1,i+2)

– Local data support

• Gradient based extrapolation

– MUSCL

– Gradient limiters required for monotonicity

– Boundary gradients are error prone

• Collinear edge stencil (L,I,J,R)

– Implement almost any flux scheme

– Straightforward parallelization

– Assumes edge aligned flow direction

– In general, edges are neither co-aligned or the 
same length

• Element interpolation stencil (L’,I,J,R’)

– Edges co-aligned and equal length

– Any element type

– Can result in non-adjacent element stencil

– Difficult parallelization

• Modified element interpolation stencil

– (L’,I,J,R’)

– Edge must lie in adjacent element

– Compact stencil

– Straightforward parallelization
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Supersonic Inviscid Flow:  Blunt Wedge

Pressuremesh

Solver 

forcing

ILU(#)/

ILU(#)

k

inner its.

t Controller CPU 

(sec.)

CPU 

ratio
MFNK/ILU(0) .01 0 GTS 3,890 2.25

MFNK/ILU(0) .01 0 LTS 3,549 2.06

MFNK/ILU(0) .1 0 LTS 3,140 1.82

SI 5/.1 LTS 1,726 1.0

SI 10/.1 LTS 1,947 1.13

SI 10/.01 LTS 2,776 1.61

S1_2 .01 /0 10/.1 LTS ||R||/||R||0=10-2 660 0.38

S1_3 .01 /0 10/.1 LTS ||R||/||R||0=10-3 530 0.31

S1_4 .01 /0 10/.1 LTS ||R||/||R||0=10-4 545 0.32

Flow Conditions:
M=3.0
Mesh:
H-mesh 81x75x3

Solver settings:
CFL=1 - 105

MPF=1
fA=1.01
ILU(0)



Inviscid Supersonic Flow:  Blunt Wedge



Laminar Supersonic Flow:  Blunt Wedge

Solver 

forcing

ILU(#)/ILU(#) k   

inner its.

CPU (sec.) CPU ratio

MFNK .1 0 2,837 1.0

SI(10/.1) 10/.1 7,718 2.72

SI(10/.01) 10/.01 7,835 2.76

S1_2 (  )/.01 /0 10/.01 1,042 0.37

S1_3 (  )/.01 /0 10/.01 1,085 0.38

S1_4 (  )/.01 /0 10/.01 1,292 0.46

Flow Conditions:
M=3.0
Re=2.4E5
Mesh:
H-mesh 81x75x3
Solver settings:
CFL=1 - 105

LTS
MPF=1
fA=1.01
ILU(0)

Pressure 

mesh



Advanced Unstructured Grid Adaptivity

• R-Adaptivity:

– Move nodes to improve solution.

– Mesh adjusts to solution anisotropy.

• Elliptic/Hyperbolic PDE Approach:

– Take advantage of FEM machinery.

– Algorithms “target” element-quality.

– Research needed to more rationally couple 
physics to element-quality.

– Variational ALE (VALE/CF) approach is a 
good candidate. Minimizes a functional 
where solution variables include node 
position.

– Solver strategies needed for resulting 
highly non-linear systems.

Linear elasticity with 
(a) fixed mesh (b) VALE
(Mueller et al., 2002)



Advanced Unstructured Grid Adaptivity

• P-Adaptivity:

– Increase accuracy via increase in span of basis.

– Standard FEM approach requires specialized 
elements and careful treatment at transitions.

• Partition Of Unity (POU) Approach:

– Derived from standard (low-order) FEM-basis.

– “Enrichments” added in a consistent fashion -
retains (at least) convergence of FEM-basis.

– If enrichments are C0 (C1) then strong (weak) 
intra-element discontinuities may be captured.

– Traditionally used for solid-mechanics - recently 
applied to shocks (Chessa, 2006).

– We are interested in developing this technology 
for both material and shock discontinuities: solid-
mechanics and hydrodynamics. Current work on 
explicit methods but exploring explicit/implicit 
algorithms. Interested in LBB for mixed-forms. Expanding air “X-FEM” simulation

Mechanical loading of soft-hard 
matrix. Inclusions modeled via 
POU methods.

Bi-linear FEM basis modified 
with C0 enrichment.


