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Gradient Algorithms

(Barth, T. AIAA 91-1548, Haselbacher, A. and Blazek, J. AIAA J. 2000,
Schneider and Raw, Num. Heat Trans., 1987)

* Green-Gauss Integral (Barth & Jespersen)
- Exact gradients for linear functions on tets LP (trapezoid rule)
- Less accurate on hexahedral elements (midpoint rule)
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* Least-Squares (Barth, Haselbacher & Blazek)
- Exact derivatives for linear functions (LP)
- Store six weights at each node
- Requires no special treatment at boundaries
- Include virtual edges for non-simplex types
- Construct linear equation for each node: u, =u, +&, Vu g\r,
- Inverse weighting: £, = ‘Arj"”

« CVFEM

- Exact derivatives for linear functions (LP)
- Element assembly
- Integrate exact dual mesh surface
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nstruction Techniques for Node
Centered Discretizations

(Barth, T., AIAA 91-1548; Weatherill, N. et al. AIAA 93-0341; Lyra, P. et al., IINMF, 1994)

Structured grid stencil for upwind schemes :
- (i-1,i,i+1,i+2) 1
— Local data support + % 1 + +
Gradient based extrapolation (u,,Vu,,u,,Vu,) i-1 i i+1 i+2
- MUSCL
— Gradient limiters required for monotonicity N
— Boundary gradients are error prone u}L -
Collinear edge stencil (L,l,J,R) .\@J\.
— Implement almost any flux scheme i 7
— Straightforward parallelization u,, VvV u, ) S4J

— Assumes edge aligned flow direction

— In general, edges are neither co-aligned or the
same length

Element interpolation stencil (L’,1,J,R’)
— Edges co-aligned and equal length I

— Any element type L7 ,'_ ______

— Can result in non-adjacent element stencil 4 Pid o _‘l_ o

— Difficult parallelization _ x: 5 I P
Modified element interpolation stencil /,i, L7 I ,'

- (L',ILJ,R) e x’ ,’__L___:____

— Edge must lie in adjacent element //’ ,//

— Compact stencil s /X

— Straightforward parallelization /,’
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Blunt Wedge

Inviscid Flow:
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iscid Supersonic Flow: Blunt Wedge
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Blunt Wedge

Flow:
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« R-Adaptivity:
— Move nodes to improve solution.
— Mesh adjusts to solution anisotropy.
» Elliptic/Hyperbolic PDE Approach:
— Take advantage of FEM machinery.
— Algorithms “target” element-quality.

— Research needed to more rationally couple
physics to element-quality.

— Variational ALE (VALE/CF) approach is a
good candidate. Minimizes a functional
where solution variables include node
position.

— Solver strategies needed for resulting
highly non-linear systems.

Liear elasticity with
(a) fixed mesh (b) VALE

(Mueller et al., 2002 _
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\

vanced Unstructured Grid Adaptivity

» P-Adaptivity:
— Increase accuracy via increase in span of basis.

— Standard FEM approach requires specialized 1
elements and careful treatment at transitions.

» Partition Of Unity (POU) Approach: Bi-linear EEM basis modified
— Derived from standard (low-order) FEM-basis. with CO enrichment.

— “Enrichments” added in a consistent fashion -
retains (at least) convergence of FEM-basis.

— If enrichments are CO (C1) then strong (weak)
intra-element discontinuities may be captured.

— Traditionally used for solid-mechanics - recently
applied to shocks (Chessa, 2006).

— We are interested in developing this technology
for both material and shock discontinuities: solid-
mechanics and hydrodynamics. Current work on
explicit methods but exploring explicit/implicit Mechanical loading of soft-hard
algorithms. Interested in LBB for mixed-forms. ~ Matrix. Inclusions modeled via

POU methods.
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