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Next generation platforms will have significant 
increases in concurrency
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System Parameter 2011 2018 Factor Change

System Peak 2 Pf/s 1 Ef/s 500

Power 6 MW ≤20 MW 3

System Memory 0.3 PB 32-64 PB 100-200

Total Concurrency 225K 1 BX10 1B X100 40000-400000

Node Performance 125 GF 1 TF 10 TF 8-80

Node Concurrency 12 1000 10000 83-830

Network Bandwidth 1.5 GB/s 100 GB/s 1000 GB/s 66-660

System Size (nodes) 18700 1000000 100000 50-500

I/O Capacity 15 PB 30-100 PB 20-67

I/O Bandwidth 0.2 TB/s 20-60 TB/s 10-30



The increase in concurrency is driving us to 
change how we think about programming

 MPI + X hybrid models

 Focus on extracting on-node parallelism

 Cuda, OpenCL, Cilk+, OpenMP, Kokkos, …

 Asynchronous many-task programming models

 Over-decompose problem 

 Overlap of communication and computation

 Charm++, Uintah, Legion, Scioto, Dague, Intel CnC, Tasks & 
Chunks, …

 Others: Chapel, Fortress, X10, ParalleX/HPX, UPC, …
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Next generation platforms will experience 
errors/faults much more frequently

 Significant increase in number
of components

 Insufficient improvements in
mean time between failures
(MTBF) for each component

 Majority of failures: single node

 Today’s rate: ~2-10 a day

 2020: every 30-60 minutes?
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(Courtesy of John Daly)

Traditional checkpoint/restart timings are projected to exceed mean time to error



Future programming models need to support 
fault-tolerance and recovery

 Asynchronous many-task 
programming models
+ Show promise at sustaining performance

+ Work stealing enables load balancing

+ Failed tasks can be re-executed

 Recovery (beyond checkpoint/restart) 
is challenging
- Enormous distributed coherency problem

- Care is required to identify lost tasks due 
to work-stealing and asynchrony
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Task Graph

Nodes are tasks
Edges are data



We are developing a holistic fault-tolerant AMT 
programming model solution 

 Task collections provide a mechanism to support a deferred 
consistency model
 Comprise independent tasks distributed across nodes

 A single collective (global transaction) identifies failures and creates 
globally consistent view of work queue

 Recent work in this area:
Dinan, J., A. Singri, et al. (2010). Selective Recovery from Failures in a Task Parallel Programming Model. 10th 
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid): 709-714. 

Ma, W. and S. Krishnamoorthy (2012). Data-Driven Fault Tolerance for Work Stealing Computations. 26th 
ACM international conference on Supercomputing. San Servolo Island, Venice, Italy, ACM: 79-90. 
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• Tasks are independent and distributed across nodes
• A global address space is assumed

Work 
queue 

Work 
queue

Work 
queue

Tr
an

sp
o

rt
 L

ay
er



Node 1Node 1

Node 2Node 2

Node 0Node 0

4 5 6 7

A simple single task collection example

8

0 1 2 3

8 9 10 11

• Within a collection nodes execute tasks asynchronously

Work 
queue 

Work 
queue

Work 
queue

Tr
an

sp
o

rt
 L

ay
er



Node 1Node 1

Node 2Node 2

Node 0Node 0

4 5 6 7

A simple single task collection example

9

00 1 2 3

8 9 10 11

• Within a collection nodes execute tasks asynchronously

Work 
queue 

Work 
queue

Work 
queue

Tr
an

sp
o

rt
 L

ay
er



Node 1Node 1

Node 2Node 2

Node 0Node 0

4 5 6 7

A simple single task collection example

10

00 11 2 3

88 9 10 11

• Within a collection nodes execute tasks asynchronously

Work 
queue 

Work 
queue

Work 
queue

Tr
an

sp
o

rt
 L

ay
er



Node 1Node 1

Node 2Node 2

Node 0Node 0

44 5 6 7

A simple single task collection example

11

00 11 22 3

88 99 10 11

• Within a collection nodes execute tasks asynchronously

Work 
queue 

Work 
queue

Work 
queue

Tr
an

sp
o

rt
 L

ay
er



Node 1Node 1

Node 2Node 2

Node 0Node 0

44 5 6

A simple single task collection example

12

00 11 22 33

88 99 10 11

• Work stealing enables tolerance to variations in the 
execution environment
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• Recovery is possible when a node goes down
• A simple lazy scheme ignores faults until task collection 

has terminated
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A simple single task collection example
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• A single collective identifies failures and creates globally 
consistent view of work queue

• Highlighted tasks are incomplete 
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• The incomplete tasks are re-distributed to active nodes
• Execution continues until all tasks have finished
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• The incomplete tasks are re-distributed to active nodes
• Execution continues until all tasks have finished
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• A global reduction indicates that all tasks have 
completed



Fault-tolerant task collections at scale requires us 
to address fundamental research challenges

 Redundancy required for data and Global Address Server

 Transport Layer 

 Resilient agreement algorithm: Identification of failed processes

 Resilient collective communication: Need to terminate in spite of failed processes

 Virtualized collectives: Allow for workers to take on failed rank’s work

 Support for overlapping task collections
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Runtime components must be made fault-tolerant!
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We are in the process of addressing each of these 
challenges using discrete event simulation

 Skeletonized mini-apps of explicit and implicit solver

 Runtime system in SST-Macro

 Demonstration of full-scale implementation of run-time and 
associated mini-apps on capability-class system next year
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Runtime studies Algorithmic studies

Scalability with no faults 
(strong and weak)

Task-granularity and decomposition

Performance in the 
presence of faults

Classification of performance according 
to compute/communication ratios

Node degradation tests Algorithmic tradeoffs

Comparison against 
baseline MPI skeleton

Matrix assembly variants made 
possible by shift to many-task model


