SAND2008- 3346P

A Code Verification Checklist

P. Knupp and C. Ober

Software Engineering Seminar Series
May 13, 2008



ASME definition of Code Verification:

activities that “establish confidence, through the collection of evidence, that the mathematical
model and solution algorithms are working correctly.”

ASME Guide describe the kinds of activities one does to verify codes.
How does this document (and others like it) relate to Modeling & Simulation at SNL?

How do | incorporate this activity in relation to other project activities such as
--Development of new Capabilities,

--Software Quality,

--Calculation Verification,

--Validation,

--UQ, and
--Modeling & Simulation?

In particular, if | desire to do Code Verification within my Project, what should | actually do?

No consensus on these issues has been achieved at SNL.
We would not be surprised if the Checklist document generates a lot of discussion.

This is a preliminary attempt, based on many discussions with SNL developers & verification
experts. Can perhaps use this framework to develop an approach for your code.



A Context for Code Verification

I. Within Software

Software — Any software, software system, code, libraries, practices, development, testing, platforms

Software Quality

— Fitness for Use (Juran), Conformance to Requirements (Crosby), The result of managing
vulnerabilities to a targeted risk (Peercy) Product-focused.

Software Engineering

— The application of a systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software.

Software Verification

— Verifying that the software compiles on all targeted platforms, all components are properly
linked and interact correctly, speed & memory requirements are met, expected behavior
occurs, errors & exceptions are properly handled, gives stable results from one version to
the next, and lots of other stuff.

Numerical Algorithm Verification (NAV)

— Demonstrating that the relevant numerical algorithms within a code have been implemented in
agreement with their known mathematical properties such as order-of-accuracy, discrete
conservation, stability, and consistency. (part of Code Verification)



A Context for Code Verification

Il. Within Modeling & Simulation

Modeling & Simulation

— The use of software to simulate physical phenomena for exploration, design,
qualification, or certification.

Analysis
— Doing calculations with a code and analyzing the results to answer questions about a
physical system.
uaQ
— Quantification of the uncertainties in a calculation or set of calculations due to parameter
uncertainty, model uncertainty, discretization error, and other uncertainties.
Validation

— Demonstrating that the equations solved within a code are an adequate representation of
physical reality. Are we solving the right equations?



A Context for Code Verification
Il. Within Modeling & Simulation
Verification
— Are we solving the equations right?

Calculation (or Solution) Verification

— Determination of the discretization error and error bars in a particular
simulation intended to say something about an application. Exact solution
to equations is unknown. Tests the calculation, not the code. Sanity check.

Numerical Algorithm Adequacy (NAA)

— Determining that a numerical algorithm within a code meets the accuracy,
robustness, and speed requirements with respect to a specific application.
(the other part of Code Verification)

Examples of NAA. On the specific application:

- The residual of the discrete system of equations can be driven down to an acceptable level,

- A numerical solution is likely to be obtained, provided the input stays within some range,

- The observed order-of-accuracy is sufficient to permit reaching the asymptotic regime for the
anticipated practical mesh sizes,

- The numerical solution does not exhibit numerical artifacts that corrupt the results,

- The numerical algorithm adequately captures the important features of well-known
benchmark problems.




i M&S Software M & S _
Software (product-focused) The Intersection (application-focused)

Of Two Worlds

Software Quality

Software -
Verification Validation

Verification



Remarks on Code Verification

1. M & S software includes both PDE-codes and non-PDE codes.
2. Numerical algorithm verification (NAV) can find a host of coding mistakes and more.
- Acceptance Criteria based on observing known mathematical properties of algorithms.
- If properties are unknown, then one is doing NAA.
3. NAA is application-specific. Acceptance Criteria based on meeting the requirements of the application.

4. Algorithm verification (NAV) must precede numerical algorithm adequacy (NAA).

5. In V&V, the model is initially not adequate, so that some equations and models are preliminary.
The model matures during the course of a V&V exercise. Fidelity to physics.

6. In code verification, it is irrelevant if the model is preliminary or mature because it is only
concerned with correctness & adequacy, i.e., fidelity to algorithms & requirements.

7. Both preliminary and mature models must be verified
because code verification serves as the foundation for Calculation Verification, Validation, & UQ.

8. Order-Verification Tests: Comparing the numerical solution on a sequence of uniformly refined
meshes or time-steps to a known exact solution to establish an observed order-of-accuracy.

Now that you know what code verification is,
do you know what to do in order to verify the code in your SNL project?



Commercial Code Verification vs. Code Verification for M&S

|. Commercial codes with many potential users

- Code verification necessary for any “supported” code feature or capability
- Includes all valid combinations of FC’s

- A huge effort

lI. M & S codes sponsored by “Application” Teams

- Code verification necessary for any code feature or capability
that is relevant to the Application.

- Includes all combinations required by the Application (a lot fewer)
- The more customers you have, the more like a commercial code you become.
- Code Verification = Feature & Capability Verification? (Whatis a F/C, anyway?)

- Is everything else Software Verification?



_

k>

Features/
Capabilities

PDE terms

Conduction (diffusion term)
Capacitance (transient term)

Src (source term)

EncIRad

CM (chemistry source term)
Thermal Conductivity

k0 (constant conductivity)

k1 (tabular T-dependant)

k2 (user subroutine T-dependant, mostly)
k3 (defined variable)

k4 (anisotropic constant)

k5 (anisotropic tabular T-dependant)
Heat capacity

Cp0 (constant)

Cp1 (tabular T-dependant)

Cp2 (user subroutine T-dependent)
Cp3 (user variable)

Density

DO (constant)

D1 (tabular T-dependent)

D2 (user subroutine T-dependent)
D3 (user variable)

D4 (volume dependant)

Source terms

GO (constant)

G1t (tabular, time varing)

G1T (tabular, temp varing)

G2 (user subroutine, time or temp varing)
G3 (user variable)

X X X X w76_application1
X X X X w76_application2

> X

XXX XX XXX

Code F/C Coverage for VERTS

K. Dowding

Application

x

X X w76_application3,
X X w76_application4|
X X w803_application
> X w80_application
X X w87_application

x
X X w80_wif_h

x
x

X X
x X
X X X
X X X
X X X

x
x
b3
x

X X X

F_hydro

X X w76_wif_h

X X X

ydro

X X 1dnonlin_verif

x X

XX XX

x X

1 2 3 4.5 6

y1

shell_3d

X aniso_2d
shell_2d

X aniso_3d
X X X chem_MMSVerif

> cyl
X cyl
X X nonlin_C_fi

x
x
x

b
x
x

~
(o]

910 1

p

X X nonlin_C_tra

X X qconst_fi

X rec_2x1_ss_rev1_2d

X X simple_chem

X rec_2x1_ss_revil

X X qconst_trap
> rad_gap

x
x
x

XX XXX XX X

=
=
N
=
W
o
>
=
o1
=5

X source_parab

b
x

X source_parab_2d

_shell_axi

X sph

X spherical_shell

A

x

This F/C
|s used:by

. «that application,

X x11b11_nonlin
x x21y23223_1

x
b
b

OV Tests

VERTS

X x21y23223_10

x x21y23223_11

A5C

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

> X X x21y23223_12
X X X x21y23223_13

x x21y23223_15
X x21y23223_2
> X X x21y23223_3
X X X x21y23223_4
X X X x21y23223_5
X x21y23223_6
X x21y23z23_6b
X x21y23223_7
x x21y23223_7b
x x21y23223_8
> x21y23223_8b
X X X x21y23223_9
> X X x21y23z23_9b
X X x22b10TO0_nonlin_trap

X x21y23223_14
X X x22b10T0_nonlin_fi

x
x
b
x
b
b
x
x
x

Cp0 is touche
By Test 14

XX XXX XXX XXX XXXX




An Extended F/C Coverage Table

The Features & Capabilities in this Table are those needed in Application Y.

~
Passed Tests Only

@ T1 T2 T3 T4 T5 T6 Exhaustiveness Level>

Fot— X TTs—

FC2 X 4
_ 0 | [Fcs Q/;AP )
0 =
L3 | |Fca X 5 «
=2 ®
S & ||Fcs X X X 2
L © FC6 X 2

FC7 1

FC8 X 1

- F/C’s are derived from the application.
- A different Table may be created for each new application.
- Tests in the table only include PASSED tests (A/C met).

- The tests should include order-verification, but might include other kinds.

- Exhaustiveness is the bottom line.

This is the primary Evidence that needs to be supplied.

FC8is to
by Test 5

Tested by Test 6

uched

FC4 is Exhaustively




Exhaustiveness Levels

How exhaustive, in aggregate, are the passed tests that correspond to a particular F/C ?

Exhaustiveness measured in two dimensions:
- The appropriateness & rigor of the Acceptance Criteria (A/C),
- The degree to which the tests collectively cover the F/C the application requirements

Subjective, graded scale (perhaps Levels 0-3)

Example:
Level Description
0 No passed tests for this F/C; a gap exists
1 No gap. Weak A/Cs and poor coverage.
2. No gap. Good coverage, but weak A/C. (or Strong A/Cs, but poor coverage).
3. No gap. Strong A/Cs and good coverage.

Weak A/C vs. Strong
Weak — Judgment, eyeball norm, regression test with lost gold copy
Medium — Comparison to another numerical solution
Strong — Comparison to an exact solution, with mesh refinement

Poor Coverage vs. Good Coverage
Poor — F/C partially tested
Good — all aspects of the F/C are tested




Application

Coverage Table Flow-Chart

VERTS
Document

Table

Evidence

Test Results

Coverage

Create Test

Reference
Solution

End

Verification
Test

Document

Pass

Run

Test

Test Output
Processing

Capability

?
N
Theory
Fix Manual
Issue?
N
= Refergnce
Solution
Issue?
Source
Term
Capability N
Code
Fix Mistake
Issue?
N
e
Issue?

A

Evaluate

| Fail




Coverage Table Activities

?

Create Test N
Y Theory
[ )
Appiicaton | b

Issue?

The Application

Determine the application against which the code is to be verified.
If unknown, then verify the whole code.

An ‘application’ can correspond to a project,
a V&V exercise, or a set of customers.

Test Results
Document

Evaluate > Fail /

A

Pass




Application

Test Results

Coverage Table Activities

VERTS
Document

Document

?

Create Test

N

:&W Fix

Features & Capabilities

from the Application.

ail

Theory
Manual
Issue?

N
ce

Create a list of the code features & capabilities




Application

Coverage Table Activities

Evidence

Test Results

Document

Pass

VERTS
Document

Create Test

Create Preliminary Coverage Table

Use existing passed tests
(if in regression test-suite)

|dentify Gaps
Determine Exhaustiveness Levels

Add new PASSED tests

.

A

Evaluate ““‘_‘ij};;:/:;;77




Coverage Table Activities

Application

Coverage
Table

Evidence

Test Results

Document

Pass

Create

Create Verification Test Plan

Well-conceived, comprehensive Test-Suite
- Fills the Gaps.
- Achieves required Exhaustiveness Level




Coverage Table Activities

Create Test

-

Theory & Input Manual

f:

VERTS
Document

Application

Test Results
Document

"




Coverage Table Activities

VERTS Create Test
ApM \

Distributed Source Term Capability

Implement in the code for Manufactured Solutions

Interior equations &
Relevant boundary conditions.

Distributed initial condition capability.

Test Results
Document

Pass




Coverage Table Activities

A Create Test

- IS

Post-Processing Tools

Demonstrate that the tools needed for mesh
refinement studies work with your code.

(Encore, other)

Evidence

Test Results
Document

Pass




Coverage Table Activities

Create Test

Application

Test-Results Document

When a test is passed, the results of the
test should be documented.

Describes what is in the On-Demand Test-Suite

Describe how the A/C’s were met.

Pointers back to VERTS document.

Pass




Coverage Table Activities

N

Theory
Manual
Issue?

Application Operational On-Demand

Verification Test Suite

All Passed Verification Tests must
belong to this test suite.

Maintain so that it can be run with the latest
code version.

Regression mode.

Evidence Run Test

Issue?

Test Results
Document

A

Pass

Evaluate »| Fail /




The Code Verification Checklist

Part |

Ensure the code is “Test-able”

a. Document the mathematical model and solution algorithms.

b. Ensure the PDE code supports user-defined distributed source terms.
c. Document the F/C’s in the code in relation to the mathematical model.
d. Document the Input in relation to the F/C’s.

e. Ensure that compatible software tools that facilitate refinement studies exist and meet your
requirements.



The Code Verification Checklist

Part Il

Maintain Well-Conceived, Comprehensive, and Documented Test-Suites
1. Identify the specific application against which the code is to be verified.
2. Create and Maintain Coverage Tables for the Test Suite
3. Document Verification Test Plan
4. Newly-passed tests are
a. Scrupulously added to the on-demand test suite

b. Documented in terms of equations solved, acceptance criteria, and results.



Evidence Generated by the Coverage Table Activities

Primary:

1. The List of F/C’s relevant to the ldentified Application,
2. Code Verification Plan (VERTS) document,

3. The Test Results Document,

4. The Code Coverage Table (vs. time)

Secondary:

5. The On-Demand Verification Test Suite,

6. The theory manual (math & algorithms to F/C’s),
7. Input manual (Input to F/C’s),

8. Source term capability as found in Input manual,

Management & Customers should be asking for the evidence of code verification.



Maturity Model

Maturity Model helps one Bootstrap into Code Verification, and provides a means of assessment.

Measure maturity in terms of levels.

Coverage Table:

Each F/C in a coverage table has an Exhaustiveness Level (E_k, k=1... #F/Cs.)

Level Description
0 No passed tests for this F/C; a gap exists
1 No gap. Weak A/Cs and poor coverage.
2. No gap. Good coverage, but weak A/C. (or Strong A/Cs, but poor coverage).
3. No gap. Strong A/Cs and good coverage.

Combine the individual Exhaustiveness Levels for each FC into a single FC-level for multiple F/Cs.

FC-Level = Min_{k=1... #F/C} {E k)



Predictive Capability Maturity Model (PCMM)

Maturity Level O

Maturity Level 1

Maturity Level 2

Maturity Level 3

Low Consequence, Moderate High Consequence, High Consequence,
Minimal M&S Impact | Consequence, Some | High M&S Impact Decisions-making based on
M&S Impact M&S
(e.g. scoping (e.g., Qualification
studies) (e.g., design support) | Support) (Qualification or
Certification)
Code Verification + FC Level =0, FC Level =1, FC Level = 2, FC Level = 3,
M&S Software Little or no SQE Code managed by Some peer review Independent peer review
conducted conducted

Verification

SQE procedures




Comparison to Current Practice

What's the same?
- Application-driven,
- Regression test-suites,
- VERTS,
- Manuals
- Software Verification

What's different?
- Code coverage table,
- Levels of Exhaustiveness, Maturity Model,
- Specific Evidence of Code Verification,
- Code is testable,
- Emphasis on both NAA and NAV,
- Manuals provide seamless connections between input, F/C, algorithms, & math model



