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The Sensor Placement Problem

Issue: Contamination released in a 

municipal water network

Goal: develop early warning system

– Protect human populations

– Limit network remediation 
costs

Place sensors on

– Utility-owned infrastructure

– Schools

– hospitals

• Sensors are expensive

– Cost of sensors

– Cost of installation
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Modeling Assumptions

• Sensors are perfect

• Sensors raise a general alarm

– Can model a response delay

• Fixed set of demand patterns for “typical” day

– Seasonal variations

– Special events

– Weekday/weekend
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Contaminant Transport Modeling

Water movement (direction, velocity in each pipe) determined by

• Demand (consumption)

• Pumps

• Gravity

• Valves

• Sources/tanks

Current (most trusted) simulator

• EPANET code computes hydraulic equations to determine flows

• Discrete-event simulation for contaminant movement
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Modeling Events

• Given: Set of events = (location, time) pairs

• Simulate the evolution of a contaminant plume

• For each event determine

– Where/when event can be observed

– Amount of damage prior to that observation

• Measures of damage/impact:

– Population exposed

– # deaths

– Volume of contaminant release

– Total pipe length contaminated

– Time to detection

– # failed detections
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Witnessing an Event 

Simulator gives ordered list of nodes where a sensor

could witness contamination

Witnesses:

This example has two (green) sensors.

Perfect sensor model: first sensor in list

detects the event.
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One Sensor Placement IP for Water Networks

Variables:

Extreme points will have integer values for xij if the yi are integral.

Each event has a dummy location to mark failure to detect

  
y i 

1            if we place a sensor at location i  L,

0           Otherwise                                          





x ij 
1            if location i raises the alarm during event j

0           Otherwise                                                                




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Objective function

Compromise across all “likely” event scenarios to minimize expected damage.

  wij  the total damage from event j if detected at location i  L j

minimize  jwij

iL


jA

 x ij

 j  the weight of event j   (i, t)

x ij 1 if location i raises alarm in event j, 0 otherwise.



Slide 9

Sensor Placement Mixed Integer Program

  

minimize  jwij x ijiL j


jA


s.t.

x ij 1
iL j

         j  A            (every event witnessed)

x ij  y i                j  A,i  L j   (need sensor to witness)

y iiL
  k                                 (sensor count limit)

y i  0,1 

0  x ij 1
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Sensor Placement = k-median

• Place k sensors (on network nodes).  Sensors = Facilities

• Events = Customers to be “served” (witnessed)

• “Distance” from an event j to a node i = impact if a sensor at node i

witnesses event j.
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Scalability Challenge

• Full-size problems have

– 10,000+ nodes

– 100’s of interesting times of day

– Multiple seasons

– Weekends/weekdays

– Special events

– Multiple contaminant types

• Lots of witness variables

– trivial upper bound: (# events) x (# nodes)

• Space can be an issue

– 64-bit workstations

• Linear programming relaxation can be difficult to solve
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Sensor Placement Heuristic Solvers

Grasp: Multistart local search

• Neighborhood swaps sensor location with

non-location 

• Can rapidly solve problems with 10,000’s

of junctions (SNL-3 in 154 seconds)
• Heuristic solutions are often optimal

• Uses sparse matrix representation, but

still requires superlinear space.
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Lagrangian Relaxation for p-Median Problems

•What is the biggest challenge in solving this formulation well?:

“Every event must be 
witnessed by a sensor.”

min c ij x ij

i, jA



s.t.   x ij

iL

 1,       j  A

x ij  y i                             i  V , j  A

y i  p
iL



y i  {0,1}                        i  V

x ij  0                             i  V , j  A

 jwij
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min c ij x ij

i, jA

 

s.t.

x ij  y i                             i  L, j  A

y i  p
iL



x ij  0                             i  L, j  A

y i  {0,1}                        i  V

•Solution strategy: lift those tough constraints out of the constraint 

matrix into the objective. (e.g., Avella, Sassano, Vasil’ev, 2003)

Lagrangian Relaxation for p-Median Problems

Good news: remaining 
problem easy to solve!

Bad news: some of the 
original constraints 
might not be satisfied.
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Lifting the Service Constraints

An example violated constraint (event j not fully witnessed):

For jth service constraint (violation), j is a Lagrange multiplier:

Multiplier j weights cost of violating jth service constraint:

New objective: 

x ij

iL

 1

 j xij

iL

   j

min ( c ij x ij )     
iL , jA

 ( j   j xij

iL


jA

 ) =

min cij   j xij   j

jA


iL, jA












 j   j x ij

iL





Slide 16

Solving the Relaxed Problem

New problem:

Set yi = 1 for the p locations with lowest values of (i).

Set xij = 1 if yi=1 and cij-j < 0, xij=0 otherwise.

•Gives valid lower bound on the best p-median cost

•Linear space, O(W + pn) time for n locations, W potential witnesses.

min c ij   j x ij

iL, jA










  j

jA



subject to :

x ij  y i   for i  L, j  A

0  x ij 1,   y  0,1 

For fixed  j , let  i  max 0,c ij   j 
jA


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Finding a Good Solution

• Vol algorithm (Barahuda, Anbil)

– Subgradient method

– Finds a feasible LP Solution

• Modified the Vol code for unconstrained facility location from COIN

– Use sparse data structures

– p-median instead of ufl
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Summary of Vol Algorithm

v j 1 x ij
iL

   (violation, subgradient)

 = +sv

x , y   is solution for 

step s  
U  L  

v
2

, decrease after nonimproving steps

 increases with improving step

…

x ,y   for 

x , y   for 

new x ,y  

  but only if improving







U :  upper bound on LP

L  :  lower bound for multipliers 
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Finding a feasible solution

• Vol provably converges to LP optimal

• Find a feasible solution by randomized rounding

– Have  

– Taking sensor i with probability yi, we expect p sensors

– But the actual probability of getting p sensors is small

– Use algorithm by Berry and Phillips to efficiently sample 
directly from the “lucky” distribution.

y i

iL

  p
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Simple computational example

• Network with about 3358 nodes, 1621 events, 5 sensors

• Memory: Lagrangian: 45028kb, Heuristic: 154424kb

• Memory increases rapidly, by 13,000 events, Heuristic ~1Gb

Objective Solver Gap Time

Pop. Exposed Lagrangian .008 84.3s

Pop. Exposed Heuristic 0 33.8

Extent Contam. Lagrangian 0 73.1s

Extent Contam. Heuristic 0 33.2

Mass Consumed Lagrangian .049 85.4s

Mass Consumed Heuristic 0 41.7

Vol. Consumed Lagrangian .641 104.7s

Vol. Consumed Heuristic 0 44
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 An example violated side constraint (dij  impacts too high) :

dij x ij

iL,jA

  B

Violation, weighted by new single Lagrange multiplier s :

s dij x ij  sB
iL, jA



New objective function:

c ij  dijs   j x ij   j  s

jA


iL , jA



Handling Side-Constrained p-Median Problems

•We can lift a side constraint too:
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Future Work

• Update the multipliers differently for service constraints vs side 

constraints

• Can the Lagrangian method take advantage of a “free” dummy 

sensor?

– Selecting p+1 not always correct

• Sensitive to scaling
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Simple Multiobjective Example

Solver EC Goal VC Goal MC EC VC

Optimal

individual

638,344.7 40,867 217,001

Lagrang. 45,000 250,000 678,175 49,016 256,615

Heuristic 50,000 670,399 49,827 326,943

Heuristic 250,000 640,791 66,728 243,605

• Lagrangian ~ 2min.  Heuristic ~3min



Slide 24

Still Lots of Work To Do

• Mc objective.  EC Goal = 45,000, VC Goal = 250,000

• With huge goal same answers as with no PE goal. Memory 114k

PE Goal MC

(648345)

VC

(217002)

EC

(40867)

PE

(2653)

time

10000000 678175.5 256615.3 49016.9 3093 147s

10000 678175.5 256615.3 49016.9 3093 151s

4000 714817 411050.5 47669.7 3158 150s

3100 720030.8 477922.6 73912.9 5403.3 88s

2700 715783.6 411934.9 46759 3047 182s


