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Wire Array Z-pinch on MAGPIE (~1MA)



Wire Array Z-pinch on Z



Modelling the Z-pinch

GORGON – 3D Resistive MHD

Fixed square grid finite volume hydrodynamics

Single fluid – separate electron and ion temperatures

Explicit electro-magnetic field solution (wave equation in vacuum / 
diffusion equation in plasma)

Thomas-Fermi Ionization 

Van Leer Advection

Constrained Transport for Magnetic Field Advection

Single group radiation diffusion (not used for these calculations) 



Simulation Setup

3D Full Circumference Calculation
•120 wires substituted for 300 in simulation

•Computational box   10 x 24 x 24 mm
•Cell resolution – 110 micron square cells

•2 – 4 day runtime on 16 nodes

Example density perturbation file

+/- 5 % mass perturbation used

Initial wires given a mass perturbation in the 
axial direction to mimic ablation structure

Numerical sensitivities exist, e.g. resolution / vacuum cut-off / artificial 
viscosity, but MHD model is now fixed – no parameters are changed or 

tweaked.  Only the initial array mass is varied in accordance with what was fired



The Z Generator

33m

Oil Water
Vacuum

Marx bank
11.4 MJ X-rays

>1.5 MJ
>250 TW
 η ~ 15% 
 (electrical to x-ray)



Hardware to include in the model

4 level MITL

Double post 
hole 

convolute

Feed to load

Wire Array Z-
pinch



Measurements to Use and Compare Against
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Electrode Configuration reduced to lumped 
element transmission line through EM simulation
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Example for stack A level

Repeated for all 4 levels



Voltage Source translated from stack 
measurements

Constant Impedance 
Water Transmission Line

VF
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Electron Flow in Transmission Lines
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Electron flow current lost through magnetic nulls

Current added 
through double post 

hole convolute

Magnetic insulation breaks down at 
magnetic nulls, so electron flow current is 

lost to the anode

Anode

Cathode

Cathode



Flow loss characterized by 4 loss resistances for 
the end of each line
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If all electron flow current 
lost then downstream 

current is just the 
cathode current and 
upstream is the total 

current

Simplified convolute model is fast to run with MHD



Simple circuit replaced by 4 line equivalent
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VA TL
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TL
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measurements – main unknown is the cathode plasma 

expansion velocity
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Mass scan assuming cathode plasma expansion 
rate of 7 cm / micro s

 Experiment    Simulation
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Good agreement but cathode plasma expansion velocity a bit 
high.  Should perhaps be nearer 2.5 – 3 cm / micro s



Electron flow insufficient to explain ZR shot 1787
(19.5mg single array)  ZR data M. Jones 
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Invoke resistive short closing at 20 cm / micro s to 
recover correct circuit behavior and x-ray pulse
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seminar
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Behavior of currents qualitatively the same for ZR 
and Z
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Re-tune ZR shorting model for Z

ZR

Expansion velocity 20cm/μs

Effective area 15cm2

Z

Expansion velocity 17cm/μs

Effective area 5cm2

Can put cathode 
plasma 

expansion 
velocity back to 

2.5 cm/μs



Retain good agreement for mass scan
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Can Compare to Convolute Voltage Measurement
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Reasonable agreement for Stygar current scan
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Simulated currents low for smaller AK gap of high 
L mass scan

v If we assume cathode plasma 
starts at 250 kV/cm and 
expands at 2.5cm/μs, then it is 
able to close 3mm AK gap 
before peak current for 2.5mg 
array implosion.
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Resistive short in the feed gap recovers correct 
circuit behavior
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At point where AK 
gap closes we put a 

resistive plasma 
short into the feed

Can imagine mechanisms to raise resistivity 
after the gap shorts

Current limited by ion acoustic turbulence ?

jxB self clears feed by accelerating plasma ?

With more considered approach to shorting 
mechanism can probably recover agreement 
with x-ray pulse

Z shot 1049 (2.5mg)



1.1 mg load is unaffected by the short in the feed
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Density distribution for 2.5mg array implosion. 
Code results
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Good match to radiography measurement

2518 ns

Simulation normalized to radiograph integrated mass of 1.4 mg

Simulation              Experiment



Not so good a match

2526 ns

Simulation              Experiment

Simulation normalized to radiograph integrated mass of 2.0 mg



Good match to radiography measurement

2531 ns

Simulation              Experiment

Simulation normalized to radiograph integrated mass of 2.1 mg



2.42 on 2.5 mg nested array
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Good match to radiography measurement

2533 ns
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Mass distribution not a function of 3D 
perturbations, but later time evolution is

2533 ns
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Good match to measure x-ray power with and 
without foam
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Foam acts to sharpen mass distribution.  Not 
modeling radiation may be a problem
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Narrower mass distribution results in sharper x-ray 
power rise and higher peak power

Comparison of simulated mass distribution with and 
without foam – mass profile steepens
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Lighter inner array creates narrower mass 
distribution at nested interaction point

Comparison of foam 
runs for different 
inner masses –

mass profile 
steepens at nested 

interaction point
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Better improvement can be obtained with lighter 
inner array mass (1.3 mg inner array)
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Narrower mass distribution results in higher peak 
power
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2.5mg
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Summary

• Using the same model we are able to consistently get good 
agreement between simulation and experiment for single arrays 
and nested arrays on Z

• Simulations starting to give good quantitative agreement.  We are 
able to reasonably and simultaneously match circuit behavior, x-
ray pulse and mass distributions.  With more benchmarking 
against ZR could be used as a useful design tool.

• More complete circuit model is now being used, but it contains 
free parameters that need to be better justified or calculated from 
first principles

• Possible gap closure issues for small AK gaps that need to be 
kept in mind, although more testing / data mining needed to be 
certain.


