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This work uses molecular dynamics simulations to
shock a PETN crystal
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F — [11a@ The basics of molecular dynamics

The chemistry of PETN

Comparison of two shock
velocities



Molecular dynamics simulations investigate the
dynamic properties of atomic systems
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At each time step,

equations of motions are integrated using the atomic information



Reactive forcefields provide QM information

at MD speed
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Pentaerythritol tetranitrate (PETN) is a common explosive
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PETN doesn’t burn readily and has been found to be less

shock sensitive than many common explosives.



We simulate piston velocities of 3 km/s and 4 km/s,

attempting to bracket the shock to detonation transition



Temperature dramatically increases as the shock
front moves through the sample
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The stronger shock leads to
an accelerating shock velocity
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Dramatically increased thermochemical response
seen for a stronger shock
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Pressure is significantly higher for
the stronger shock
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density (g/cc)

Peak density is higher and sharper for
stronger shock
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The stronger shock has the primary products
quickly react to become secondary products
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Secondary products form more quickly
under stronger shock
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Summary of Strong Shock Results

accelerating shock velocity  density peak behind shock front
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high initial temperature rise hastens
chemical reactions
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