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We use a hierarchical approach to simulation
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The relevant physical processes

occur on different time and Iength scales
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By concentrating on the physics of the evolving
network, we developed a useful constitutive model
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The constitutive model gave predictions in
uantitative agreement with experiment
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Reactive forcefields provide QM information

at MD speed
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Bonds and charges are calculated

Chemical Insight self-consistently at every step

ReaxFF: van Duin, Dasgupta, Lorant, Goddard J. Phys. Chem. A 105, 9396 (2001)
GRASP: A. P. Thompson, SNL




Isotactic polypropylene was chosen
as the test case
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The reactions were accelerated by

hxdroaen abstraction

Conventional pathway:
¢ slow initiation
¢ reactive tertiary carbon




ReaxFF shows the same products as NMR

peroxide alcohol

NMR results: Mowery et al. Macromolecules 38, 5035 (2005)



We can follow reaction pathways

H attaches to tertiary carbon,
C-C bond broken

0.9 ps

Peroxide attaches to
secondary carbon



Parallel replicas may help surmount the problem of

vastlx different diffusion and reaction time scales

Positions identical; velocities vary between replicas

time time

t=0 t, t,

Rare events increased using physically meaningful paths

Correlated reactions directly observed for determining pathways



We have made progress on simulating the aging of polymeric

systems
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Atomistic simulations using
ReaxFF give reasonable results

Future Work: accelerating rare events
in atomistic systems t=0 t, t,




