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Literature Review for Online Event Detection from Water Quality Time Series
Sean A. McKenna, Sandia National Laboratories, June 2008

This document provides background information on event detection from water quality 
time series data.  This literature review is divided into two sections: General Approaches 
and Water Quality Event Detection.  The General Approaches section is a literature 
review of techniques developed in the fields of statistics, signal processing, data mining 
and others that form the fundamental basis of various water quality event detection 
systems.  The focus of this section is on various approaches to state estimation and 
residual classification.  The Water Quality Event Detection section summarizes a number 
of relatively recent publications in the areas of online detection of water quality events.  

Additionally, there is a glossary at the end of this document that provides concise 
definitions to some of the terms used in this report.  The definitions are given with some 
context to the meaning of these terms in water quality event detection.
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General Approaches
The general problem of detecting anomalous behavior in time series data is a subject of
research in a number of disparate fields including data mining, network intrusion 
detection, tsunami detection, traffic accidents analysis, mechanical component failure and 
system fault detection among others.  This work can be broken into two distinct 
approaches that we term here as “online” and “off-line”.  The online approaches receive 
data in discrete time steps ranging from milliseconds to minutes and provide a 
determination of the presence or absence of an anomalous reading immediately after the 
receipt of each new data point.  These approaches are the focus of this work and are 
considered in greater detail below.  

Offline Change Point Detection

In contrast to the on-line approaches, a number of off-line or “after the fact” approaches 
to processing of time series data have also been developed.  These approaches comprise a 
significant amount of literature in the area of data mining of time series and are reviewed 
here only briefly.  The majority of the offline approaches to identifying anomalous 
behavior are based on the detection of change points.  Change points are defined as 
abrupt changes in the nature of a signal as generally defined by statistical measures of 
that signal.  As an example, the time at which there is a change in the source of water 
supplying a monitoring location can be a change point for the water quality at that 
location.

There are a number of approaches to the change-point detection problem, but the 
essential elements are that there is at least one point in time where the properties of the 
process that created the observed data change.  This change point is generally determined 
by fitting a statistical model to the data and identifying the location in time where 
parameterization of that model changes significantly.  These approaches are typically 
done in an offline manner as part of a data mining approach and can often be classified as
“retrospective segmentation” approaches (Adams and MacKay, 2007) where the change 
points define the ends of the various segments (e.g., Tsihrintzis, and Nikias, 1995) of the
signal behavior.  Additionally, two separate models can be used to fit the data before and 
after the change point.  Application of regression models to continuous data and Poisson 
models to discrete count data are common (See Raftery, 1994 for a review).  Another 
natural approach to change point detection is conceptualization of the process generating 
the signal as a Markov process.  For these cases, Markov models where change points 
denote the switch between model states can be applied (e.g., Ge and Smyth, 2000a). 
Some approaches require that the number of change points in the time series is known, or 
defined by the user, prior to the analysis while others techniques are less restrictive and 
will determine the necessary number of change points to fit the data to some specified 
tolerance.

In particular, identifying the point in time at which a change in the count or the 
continuous data occurs has been an active area of research with motivating applications 
covering a diverse set of problems from the annual rate of coal mining accidents (e.g., 
West and Ogden, 1997) to highway traffic patterns (Ihler et al., 2006) to semi-conductor 
manufacturing process control (Ge and Smyth, 2000b) to cite a few examples.  Some 
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recent work has been done in the area of merging change-point detection approaches with 
those of on-line event detection (e.g., Takeuchi and Yamanishi, 2006).  

The general approach to offline change-point detection is to examine data from opposite 
sides of a proposed change point to determine if those two data sets are significantly 
different from each other.  If they are, the point that separates the two data sets is a 
change point.  For off line analyses, the full data set has already been recorded and is 
available for analysis.  In the online world, only the data recorded up to the present time 
are available and the goal is to identify the change point as close to the time at which it 
occurs as possible.  This constraint of making a determination as near to real time as 
possible, limits the available number of measurements that occur after the change point to 
as small of a number as possible.  The goal of an efficient water quality event detection 
system (EDS) is to develop an online approach to water quality event detection that can 
warn analysts and system operators in real-time of unexpected water quality conditions.  
To meet this goal, the offline approaches discussed above are not viable.  

A number of online, or real-time, approaches to identifying anomalous observations in 
time series data have been developed for use in a large number of different fields.  Some 
of the fundamental tools and the basic approaches to online event detection are covered 
below this section with example citations provided.  The literature covering online event 
detection is vast and this review only covers a fraction of the techniques that have been 
published with a focus on covering the fundamental techniques that have been 
incorporated into water quality EDS tools

Control Charts

Perhaps the oldest approaches to online event detection are the Shewhart Charts and 
Cumulative Sum (CUSUM) charts developed in 1920’s.  These approaches were 
originally developed for quality control in manufacturing and industrial processes and are 
now used in a number of other applications as well.

The CUSUM chart shows the cumulative sum of differences between the measured 
values and the average value.  These differences are calculated by subtracting the average 
from each value.  Increases in the cumulative sum value indicate a time of values that are 
continuously above the average.  The resulting CUSUM chart will have an upward slope 
during such a period of relatively high values.  The opposite results hold for periods of 
relatively lower values. 

Shewhart charts calculate a chosen statistic of the observed data (e.g., mean) using a 
moving window through time.  Control limits are calculated for the value of the statistic 
and any values of the statistic that deviate beyond the confidence bounds are identified as 
outliers.  The control limits may be calculated using the expected variation in the range of 
data values or using more common statistical tools based on an assumption of Gaussian 
variation in the calculated statistic.  

The choice between applying a CUSUM vs. a Shewhart chart depends on the nature of 
the process being monitored.  In general, CUSUM charts are felt to be better at detecting 
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small, yet sustained, changes in the mean value of a process (NIST, 2008), while 
Shewhart charts are often better suited to incorporating knowledge of the operating 
conditions held by the analyst.  

Applications of both CUSUM and Shewhart charts typically employ standard statistical 
approaches to determine the range of control or the confidence limits for the process.  A 
limitation of these tools it that they generally rely on assumptions of stationary 
independent and identically distributed (i.i.d.) variables and typically invoke the Gaussian 
distribution to define these variables.  Adaptations to these charts have been made to 
accommodate time series data with autocorrelation, non-Gaussian distributions, non-
stationarity in the data and various ways of calculating the control limits (see Lai, 1995; 
Zhang, 1997)

Water quality time series are inherently non-stationary.  Both daily (diurnal) cycles and 
seasonal patterns are the cause of these non-stationarities.  Additionally, short term (daily 
to weekly) and longer term (multiple week) trends in water quality data are caused by 
varying levels of control of water treatment and hydraulic operations within the utility 
along with drift in the water quality sensors.  It may be possible to employ techniques 
that have been developed for stationary time series, such as Shewhart and CUSUM 
charts, but first it would be necessary to remove, or “detrend” the non-stationary aspects 
of the observed data.  Therefore, a robust means of modeling the background variation in 
water quality is a necessary step in being able to separate that background from the water 
quality events.  This modeling of the background variation is generally referred to as 
“state estimation” and is the first step in modeling of non-stationary time series.

A common model for the on-line detection of changes in time series data incorporates 
two components that work in concert: 1) a state estimation model and 2) a residual 
classification algorithm.  The state estimation model uses previous observations of one or 
more time series measurements to estimate future values of the process.  These estimates 
could also be made by a physical process model (e.g., chemical reactions and solute 
transport within the pipe network).  The residual classification algorithm then uses the 
differences between the predicted state and the observed state to determine whether or 
not the observed state represents an anomalous condition.  This basic approach has been 
employed for detection of anomalous conditions in time series data in various fields 
including tsunami detection (Gower and Gonzalez, 2006), component degradation in 
nuclear power plants (Yuan, et al., 2005) and “aging” in computer software 
(Vaidyanathan and Gross, 2003).  

State Estimation

Modeling of background water quality falls into the general time series modeling 
category of state estimation.  There is an underlying state of the water quality that is only 
sensed through noisy and sometimes incomplete data from water quality sensors.  The 
goal is to provide an accurate estimate of the unknown state and do this iteratively so that 
the state estimate is updated at every time step.  The state estimate is most often 
quantified by parameter estimates in a statistical model of the time series.  For each 
parameter in the model of the state, the best estimate of that parameter is provided and, 
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depending on the complexity of the state estimation approach, a measure of uncertainty 
about the estimated parameter may also be determined.  

There are a number of modern statistical and mathematical advances that facilitate time 
series forecasting and have been applied to state estimation including neural networks
(e.g., Boznar et al., 1993; Lu et al., 2002), support vector machines (e.g., Muller et al., 
1999), and wavelets (e.g., Lueck, et al., 2000).  However, in this literature review on 
traditional techniques derived in the fields of signal processing and time series analysis.  
These approaches have proven useful in the development and application of water quality 
event detection tools.  

Traditional approaches to time-series analysis provide “data driven” models based on the 
theory of time-series analysis as defined by Box and Jenkins (1976).  These approaches 
include the popular autoregressive (AR) and moving average (MA) models as well as the 
various hybrids of these approaches (ARMA) and autoregressive integrated moving 
average (ARIMA).  These models use observed data to estimate the parameters of the 
models and then use these estimated parameters to predict the expected data values at 
future observation times.  These models are designed to provide a measure of uncertainty 
on the resulting predicted value of the time series.  In essence, the time series models can 
be thought of as a filtering process where the noise in the underlying physical processes 
and in the measurements is filtered out to leave the best estimate of the water quality.  
Linear filters as used in signal processing can be built from AR and MA models.  A 
thorough treatment of these approaches is given in Bras and Rodriguez-Iturbe (1993).  
These models are used heavily in signal processing, surface water hydrology, and 
econometrics applications and have also been adapted to estimate spatially correlated 
properties in 2 and 3 dimensions (see Goovaerts, 1997; Journel and Huijbregts, 1979).  
Traditional application of these models considers the estimated parameters as point 
estimates with no uncertainty, although Bayesian approaches to time series modeling can 
incorporate parameter uncertainty into these models.  

The many variations of Kalman filters represent the next level of complexity in state 
estimation.  Kalman filters are currently popular for data assimilation where observed 
data can be used to iteratively update parameters of physical process models as well as 
estimate future observations of the process.  Kalman filters incorporate both uncertainty 
in the underlying model and/or its parameters along with uncertainty in the observed data 
in predictions of future values of the time series.  Original development of the Kalman 
filter (Kalman, 1960) was focused on state estimation for linear systems with assumed 
Gaussian errors, model and observation, and covariance structures.  The extended and 
ensemble Kalman Filters (EKF and EnKF, respectively) were motivated by both the need 
to solve more highly non-linear problems and the inadequacy of the KF for solving these 
problems (Evensen, 1993; Evensen, 1994).  In particular, the EnKF replaces the 
analytical calculation of covariances for both the model error and observational error and 
the assumptions necessary for those calculations with a numerical approximation where 
the covariance terms are calculated across a stochastic ensemble of model states and 
resulting model predictions (see Evensen, 2003; Moradkhani et al., 2005a). 
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A known disadvantage of the EnKF approach is that it has been developed for models 
with non-linear relationships between inputs and outputs, but it relies on a linear updating 
process and the probabilistic approach to uncertainty estimation, for all variants of the 
Kalman Filter is only valid up to second order (i.e., the output of any KF is a mean 
estimate and a variance defining uncertainty about that estimate, but no shape to the 
uncertainty distribution is provided).  The second-order basis of the uncertainty 
estimation for the predictions essentially limits the validity of the KF approach to 
distributions that are at least symmetric, if not moderately Gaussian.  For state estimation 
problems where uncertainty estimates that take into account higher-order moments of the 
predictive distribution are needed, particle filtering techniques (see Arulampalam et al., 
2002; Gordon et al., 1993; Moradkhani et al., 2005b) provide the next level of uncertainty 
quantification along with additional complexity in applications.  

The time series models and the Kalman filter approaches to state estimation employ some 
optimal weighting of previous measurements to predict the future state of the water 
quality.  Another decidedly simpler approach to state estimation is to use just a single 
previous water quality measurement as the state estimate.  Two approaches to using a 
single previous measurement as the state estimate known as time series increments and 
multivariate nearest neighbor are discussed further below.  The time series increments 
approach uses the single most recent observation as the state estimate.  This approach is 
equivalent the Markov model, often referred to as the Thomas-Fiering model in surface 
water hydrology where it has been applied to modeling stream flows (Bras and 
Rodriguez-Iturbe, 1993).  The multivariate nearest neighbor approach (Klise and 
McKenna, 2006) uses the measurement within a window of recent measurements that is 
closest to the current observation as measured within the multivariate space defined by 
the observed water quality signals.  

The field of signal processing provides another means of state estimation that uses cross-
correlations between different signals as well as the autocorrelations within each signal to 
estimate the future water quality values.  For example, the best estimate of the next pH 
value might be a weighted combination of the 10 previous pH values, the Cl value from 
24 hours ago and the temperature value from 12 hours ago.  This approach to state 
estimation is a common tools in the signal processing field and has been incorporated into 
event detection schemes (e.g., Zavaljevskl and Gross, 2000).  

State estimation approaches that exploit cross-correlations between signals are well-
suited to situations where sensor and data transmission reliability are not an issue (e.g., 
engine monitoring), but when a sensor fails, the entire state estimation model fails.  In 
environmental monitoring situations, sensor and/or data transmission failure can be 
common and these cross-correlation based approaches may not be best suited to these 
situations.

Residual Classification

Residual classification is the process of classifying each deviation between the observed 
and predicted water quality values (state) as still being part of the background or being a 
significant deviations from the background.  Small residuals, or deviations, can be 
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considered as arising from incomplete parameterization of the state estimation model and 
measurement error.  Large deviations are deemed to be significant departures from the 
expected background water quality and therefore are indicative of a critical change in the 
system (an outlier).  The simplest approach to residual classification is to apply a single 
threshold value to the residuals and those that exceed the threshold are considered 
outliers.  Two issues complicate this simple approach: 1) A single constant threshold 
value may not apply equally well to all times in the data set, so an adaptive thresholding 
approach may make more sense; and 2) The thresholding approach needs to take into 
account the fact that state estimation and residual calculation may be done separately for 
each water quality signal and therefore a multivariate approach to residual classification 
is necessary.  

The threshold used in residual classification can often be made more efficient by adapting 
the size of the threshold to the size, or variability, of the residuals.  One approach, is to 
make the threshold a multiplier of the standard deviation of the signal such that the 
threshold adapts to the variability of the signal.  Normalization of the signal values to a 
fixed variance within a moving window allows for a threshold that is a constant 
multiplier of the variance, but scales relative to the un-normalized signal variance.  This 
approach is used in the CANARY software (see McKenna et al, 2007; Hart et al., 2007).  
Breitgand et al., (2005) demonstrate a logistic regression based algorithm for setting 
adaptive thresholds in the context of computer performance monitoring.  

State estimation techniques that use cross-correlations between signals generally result in 
a single estimate of the state that is integrated over all input signals.  For these 
approaches a single residual is calculated at each time step.  Independent state estimation 
for each signal results in a residual for each signal and these must be combined, or 
“fused” in some way to identify an outlier at that time step.  A simple approach is to 
make a single classification for each time step using some combination of the residual 
values from all sensors operating at that time step.  Equivalent results are obtained by 
using the average or the sum of the residuals.  Classification using the maximum residual 
across all sensors also makes it easy to store the sensor that is responsible for the outlier 
at each time step. More complicated approaches to decision fusion are examined by 
Dasarathy (1991).  

Independent state estimation followed by residual fusion allows for the number of sensors 
providing information at each time step to change over time.  The structure of the event 
detection approach does not have to change to accommodate the loss or addition of 
sensors.  This flexibility is in contrast to state estimation tools that employ cross-
correlation between signals where a change in the number of sensors requires 
reconstruction of the model.  

Takeuchi and Yamanishi (2006) integrate their deviation scores (essentially residuals) 
over time by calculating a moving average value.  A threshold is then applied to the 
moving average value to detect outliers and change points.  The sensitivity of this 
algorithm to short-lived events is controlled by the length of the moving average applied 
to the residuals.  The Multivariate State Estimation Technique (MSET) uses a sequential 
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probability ratio test to examine how well the distribution of residuals fits a predefined 
Gaussian distribution (Zavaljevskl and Gross, 2000).  Several different hypothesis tests 
are examined in the MSET approach to look for mean residuals that are above or below 
the expected value (mean = zero) as well as variances that deviate from the expected 
variance value.  Applications of the MSET approach to problems of computer reliability 
have shown it to be especially adept at detecting early stages of component degradation 
(Vaidyanathan and Gross, 2003).  McKenna et al., (2007) demonstrated the binomial 
event discriminator for mapping outliers to events in a water quality event detection 
application and this approach is discussed further below.

Water Quality Event Detection
Continuous, reliable delivery of safe drinking water to customers is an essential 
component of the viability of large metropolitan areas.  The distribution networks used to 
deliver water represent a critical component of municipal infrastructure systems.  The 
areal extent of these distribution systems and their overall design to improve customer 
service and firefighting make these networks susceptible to accidental or intentional 
contamination events (see discussion by Kroll and King , 2006 for a description of 
credible contamination threats to distribution networks).  Such events that could degrade 
water quality within water distribution systems have focused recent discussion on various 
means of hardening both the physical and cyber components of these systems against 
contamination events.  The concept of a contaminant warning system (CWS) has been 
proposed as an integrated tool that employs in-situ sensors, supervisory control and data 
acquisition (SCADA) systems, and water quality event detection systems (EDS) to 
continuously monitor network conditions and warn operations personnel of any potential 
contamination events (see Hasan, et al., 2004; Grayman, et al., 2001; Roberson and 
Morley, 2005).  The focus of this work is on the EDS component of the CWS concept.  

Other key technical elements of the CWS are the type and characteristics of the actual 
sensors, the data transmission and storage performance of the SCADA system that 
connects the sensors and the location of the sensors within the network.  This latter 
element has been the subject of considerable recent research (e.g., Berry et al., 2005; 
Grayman et al., 2006).  However, many of these studies have considered the event 
detection portion of the CWS to be comprised of “perfect” sensors and/or event detection 
software and only a few papers (e.g., Berry et al., 2006; McKenna et al., 2006) have 
examined the relationship between sensor performance, sensor placement within the 
network and the overall performance of the CWS.  

Online Water Quality Event Detection

Development of online event detection tools for water quality data has been an area of 
recent interest.  A number of published approaches to this problem are reviewed below.  
These papers demonstrate the response of surrogate parameters to various contaminants 
and the approaches developed to detect events.  The majority of these approaches work 
with sensor data from a single monitoring location; however, several of them have been 
designed to integrate sensor information from more than one location.
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Byer and Carlson (2005) examined the response of surrogate monitors to the introduction 
of various contaminants in both laboratory beakers and in bench scale tests using water 
from a local utility.  Their results clearly indicate the response of several surrogate 
parameters to the introductions of a range of contaminants at various concentrations.  
These results are also used by Cook et al (2005) in testing an event detection system.  
More recently, Hall et al (2007) tested the response of a number of commercially 
available water quality sensors in the presence of nine different contaminants introduced 
to a pipe test loop at different concentrations and found that at least one of the surrogate 
parameters responded to the presence of every contaminant.  

Byer and Carlson (2005) conducted event detection through a relatively simple approach 
of comparing the measurement at any time to a predefined mean baseline level and 
defining anomalous values as those that exceed +/- 3 standard deviations from the mean 
of the baseline values.  The baseline values were considered to be stationary and 
calculated by either using all of the available data, approximately 16,000 observations, or 
using the 100 observations immediately prior to arrival of the contaminant at the sensor.

Cook et al (2006) outline the development of a case-based reasoning system (CBRS) for 
the identification of multivariate data patterns that represent acceptable changes in water 
quality.  The CBRS acts as a classifier to identify the current state of the system and 
patterns that cannot be classified into existing groups are considered outliers.  The work 
by Cook et al (2006) highlights the need for accurate and reliable sensing of the water 
quality data; sophisticated software cannot make up for low quality input data.  

Jarrett et al (2006) focused their analysis of water quality data on the control exerted by 
the time of day and the day of the week on the expected water quality value.  In the 
systems they examined, operation of the distribution network was responsible for a 
significant portion of the water quality variation, and those operations followed a 
reasonably predictable behavior.  However, the temporal patterns controlling the water 
quality tended to change over time and therefore it was difficult to accurately predict 
water quality based solely on the time of day.  Jarrett et al. (2006) proposed that a control 
chart approach applied to the first differences (increments) of the water quality data may 
prove useful in event detection if the center line and widths of the control region were 
both allowed to vary temporally (a non-stationary control chart approach).  

Kroll and King (2006) provide a rough outline of a proprietary EDS that includes both a 
baseline (state) estimation component and a multivariate classification component.  The 
classification step uses the deviations in the measured signals from the baseline along 
with a library of previously recorded deviations to classify the cause of the event as being 
either a particular contaminant or a change in water quality caused by a change in 
operations at the utility.  Patterns that do not match any of the library patterns are 
declared “unknown” and can be added to the library by the operator.  The ability of the 
algorithm to “learn” through time is used to lower the number of false positives upon 
deployment.  
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Klise and McKenna (2006a) examined the utility of multivariate classification schemes 
for event detection.  The state estimation approach in this work was to define every time 
step of the baseline water quality as belonging to one of a finite number of clusters within 
the multivariate space defined by the vector of surrogate parameter measurements, or by 
a lower dimensional representation of that space as defined by principal components.  
Results showed that increasing the number of clusters that define the baseline to the point 
where every recent time step was considered to be a separate cluster improved results 
over smaller numbers of clusters.  The result of this work was the development of the 
multivariate nearest neighbor (MV-NN) algorithm in which the distance from any new 
measured water quality vector to the nearest previously measured vector in the 
multidimensional space is recorded.  If that distance exceeds a specified threshold, the 
new data point is considered to be an outlier.  Klise and McKenna (2006b) further tested 
the MV-NN algorithm using event data from the US EPA Test and Evaluation Facility 
(Hall et al., 2007) that were superimposed on water quality data collected at a US utility 
and found that event detection results with MV-NN are sensitive to the contaminant type 
and the background water quality variability at each monitoring location.

McKenna et al (2006b) compared three approaches to state estimation for each water 
quality time series: time series increments (the previous measured value is the predictor 
of the next value), linear filters and the MV-NN approach.  For the increment and linear 
filter approaches, the residuals between the predicted and measured water quality values 
were fused across all water quality signals and this final fused residual was compared to a 
threshold to define whether or not it was an event.  The multivariate distances in the MV-
NN algorithm were compared directly to the same threshold as they already represent a 
measure of prediction accuracy that takes into account all water quality signals.  Testing 
was completed on simulated time series and actual measured water quality time series 
data.  Simulated events were added to all data sets.  Results showed that the MV-NN 
algorithm was best able to predict the water quality background in all cases, but that the 
ability to predict the background did not necessarily translate into the best detection 
capabilities as measured by the false positive and false negative rates.  

Prior work in event detection algorithms by Klise and McKenna (2006a,b) and McKenna 
et al. (2006b) had evaluated every time step against a threshold.  Those time steps with 
residuals from the baseline that exceeded the threshold were classified as events (a single 
outlier equals an event).  This approach led to a large number of false positives as water 
quality within utility systems can be quite noisy and additional noise is added to the water 
quality data as it is transmitted through the SCADA system.  McKenna et al (2007) 
introduced the binomial event discriminator (BED) as a means of aggregating results over 
multiple time steps to determine whether or not an event was occurring.  Each individual 
time step is now considered to be part of the background or an outlier and the number of 
outliers (failures) within a given number of time steps (trials) as inputs to the binomial 
distribution defines the probability that a water quality event is occurring.  Addition of 
the BED to the water quality prediction algorithms allowed for order of magnitude 
reductions in false alarms for the data sets tested.  
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The papers discussed above rely on various statistical models to estimate the state by 
tracking the baseline water quality conditions such that a comparison between the 
expected baseline value and the observed values can be made.  Another approach to 
determination of the baseline conditions would be to employ a model that directly 
simulates all water quality parameter values through the physical and chemical processes 
occurring in the distribution network between the treatment plant and the monitoring 
station and is continuously updated in real time (Shang et al., 2008).  

Monitoring at Multiple Locations

The work presented here is focused on analysis of data from each monitoring station 
independently.  However, several publications have shown additional benefit that can be 
gained from combining water quality data from more than one location.  O’Halloran et al. 
(2006) developed a water parcel tracking approach that matched the “fingerprint” of 
water quality recorded at two different locations along the same flowpath in the network.  
They were able to use this automated technique to determine the transit time of the water 
between the two monitoring locations, although an assumption of steady flow was 
required.  Yang et al. (2007) defined a technique for improving event detection and 
reducing false positives by combining water quality monitoring data from two monitoring 
stations along the same pipe.  Data from two stations in series allows for transport 
modeling applied to the water quality between the two stations where data from the first 
station essentially provides the initial conditions for the transport solution.  This transport 
modeling provides improved state estimation at the downstream monitoring station.  A 
more general approach to integrate data from two or more monitoring stations that may 
not be in direct hydraulic connection has recently been tested (Koch and McKenna, 2008)
with promising results.  

Evaluating Algorithms

An issue of considerable importance in water quality monitoring is the appropriate 
evaluation of an event detection algorithm.  As a rule, utilities do an extremely good job 
of supplying high quality water to their customers without fail, and water quality events, 
even those due to routine causes such as main breaks, faults in a primary treatment 
system or failures of a chlorine booster station are rare.  Documented accounts of 
malevolent contamination of a utility are even rarer and this routine delivery of high 
quality water makes it nearly impossible to completely test event detection systems in 
real-world situations.  Testing of EDS with experimental data obtained in laboratory 
settings (e.g., Byer and Carlson, 2005; Kroll and King, 2006) or in specially designed 
pipe loops (e.g., Hall et al., 2007; Yang et al., 2007) provides direct measurement of 
sensor responses to controlled contamination events, but typically the variation in 
background water quality for these tests is considerably less than that experienced within 
operating distribution networks.  Therefore, the most direct means of evaluating event 
detection systems is to simulate the response of water quality monitoring sensors to the 
introduction.  Simulation based evaluation of EDS tools has been done by a number of 
authors using varying levels of sophistication in the contaminant simulation approach 
(e.g., McKenna et al. 2006; McKenna et al., 2008; Uber et al., 2007; Shang et al., 2008; 
Umberg et al., 2008; Allgeier et al., 2008)
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Reports of early work in event detection from water quality data focused on the number 
of known events that were detected.  However, as pointed out by Rizak and Hrudey 
(2006) when monitoring for events that are expected to occur with an very low 
probability, dealing with false positive events will consume the largest amount of the 
monitoring organization’s resources.  McKenna et al (2008) employed the receiver 
operating characteristic (ROC) curve approach from the signal processing and medical 
diagnostics fields to apply to evaluation of water quality event detection systems.  ROC 
curves demonstrate the tradeoff between the rate of false events and the probability of 
detection true events on a single graph.  Typical ROC curve shapes quantify the increase 
in false positive events as the sensitivity of the algorithm is increased to improve the 
probability of detecting true events. 
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Glossary

Baseline Change
A baseline change is a significant change in a statistical parameter, generally the mean, of 
the observed data.  The point at which a baseline change occurs is a change point.  The 
change in behavior of the observed signal from one side of the change point to the other 
is referred to as the baseline change.  Baseline changes are common in some water 
distribution systems due to changes in mixing of source waters within the network at 
different time of the day.

Change Point
Change points are defined as the point in time or location where an abrupt change in 
behavior or mode of operation is observed.  Change points are generally identified by 
comparing data collected on both sides of the proposed change point.  If that comparison 
shows the data on either side of the proposed change point to be significantly different, 
then that proposed change point is confirmed as a change point.  Change points are most 
accurately identified using offline techniques to data analysis where adequate amounts of 
data have already been collected on both sides of any proposed change point.  

Contaminant Warning System (CWS)
The CWS is comprised of all the hardware and software components that are necessary to 
monitoring the water distribution system for contamination events.  These components 
include the sensors, the SCADA system to collect and transmit the data from the sensors 
to a central location, the database to hold sensor information and the event detection 
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system (EDS) that processes the data to provide some indication of the occurrence of an 
event.  

Event
An activity or behavior that is unusual relative to normal modes of operation.  Abnormal 
activity or operation relative to the background or ambient modes of operation.  An event 
is a sustained period of such abnormal activity that is of a longer duration than an outlier, 
but of shorter duration than a baseline change.

Event Detection System (EDS)
The software system that contains the data handling, algorithms, and input/output 
functions necessary to identify events from water quality time series.  Typically, the 
inputs to an EDS are the water quality data streams from the sensors as stored in a 
SCADA database.  The output of an EDS is an indication of the state of the water quality.  
This indication can be a binary signal such as “alarm/no-alarm” or it can be a continuous 
indication of the water quality state such as the probability of an event occurring at every 
time step.  The EDS itself is a component of the more comprehensive Contaminant 
Warning System (CWS).

Outlier
An outlier is defined here to be a single time step with behavior that is considered 
anomalous relative to the background or expected behavior for that time step.  A large 
enough number of outliers within a prescribed time interval may constitute an event.  

Residual
The difference between the predicted and observed water quality values at a single time 
step


