

Exceptional service in the national interest

ESP700 Pre-Lecture 3: Crash Course on Probability & Decision Theory, and Dakota

Org 1544: V&V/UQ and Credibility Processes

Sandia National Laboratories

3 April, 2014

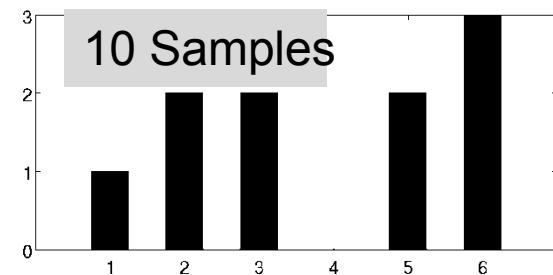
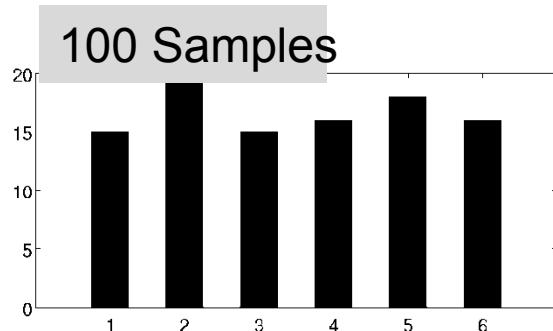
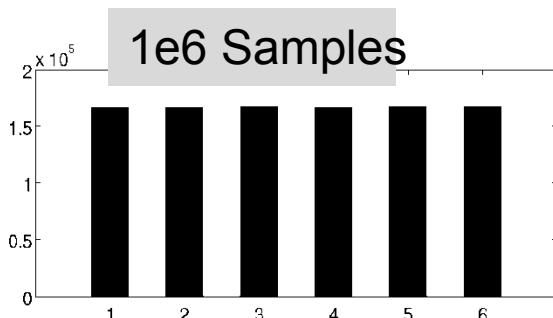
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXX

- Statistics = analysis of past events
 - **Observe** outcomes of events
 - **Build** & test statistical model **to explain outcomes**
- Probability = prediction of future events
 - **Assume** probability model
 - Often based on a statistical model
 - **Predict** outcomes **to make decisions**

Statistics question: Is the Die fair?

- Observe data, find correlations
→ Hypothesize causation
- Statistics issues:
 - Inputs & Responses/ QoI:
 - Shooter, face number before throw
 - Number of tumbles, face after throw
 - Quantity & Quality of data
- Not a focus of this course

Histograms show frequencies of each outcome for the *response/QoI*: face number for a fair die

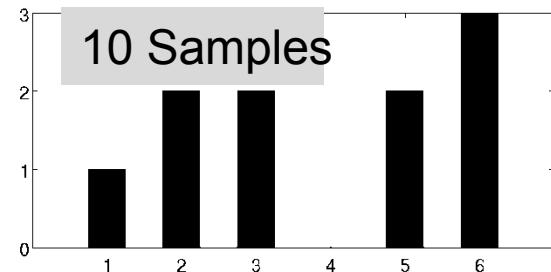


Probability Question: What is the next roll?

- Cannot be answered deterministically
- Identify **ALL possible outcomes** for the QoI
- Assume a model:
 - Probability of occurrence of each outcome
- Defines a **probability distribution**
- Use model to make predictions and decisions

Known unknowns, unknown unknowns?

- 10 rolls of a die
 - What is the statistical model?

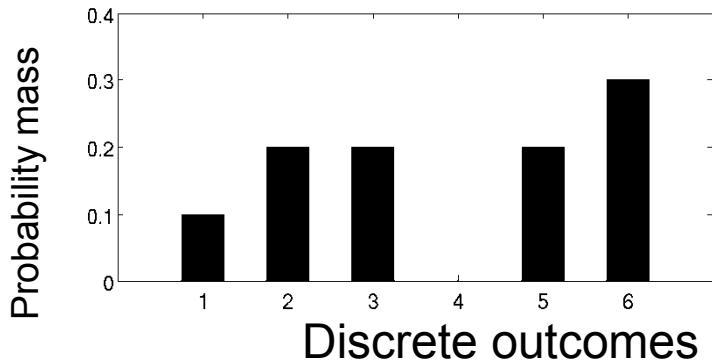
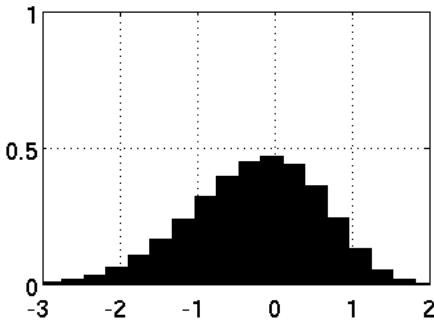


- Probability: what is the probability model?
$$P(\text{face} = 4) = 0?$$
- Inherent weakness of models
 - They include only what you put in
 - “Garbage in, garbage out”
 - “Models are wrong, some are useful”

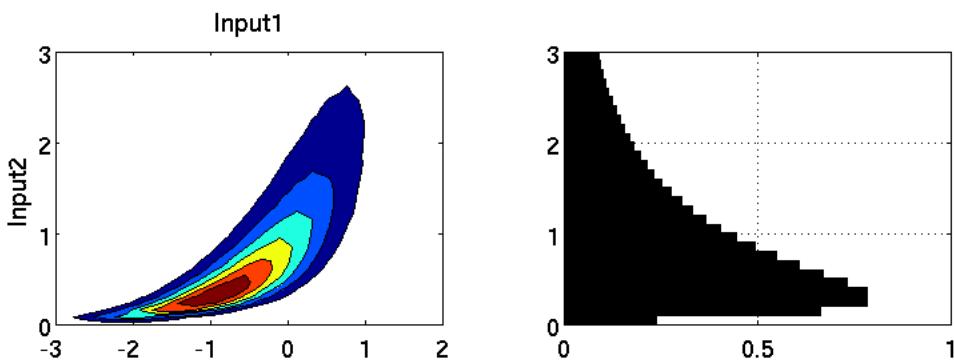
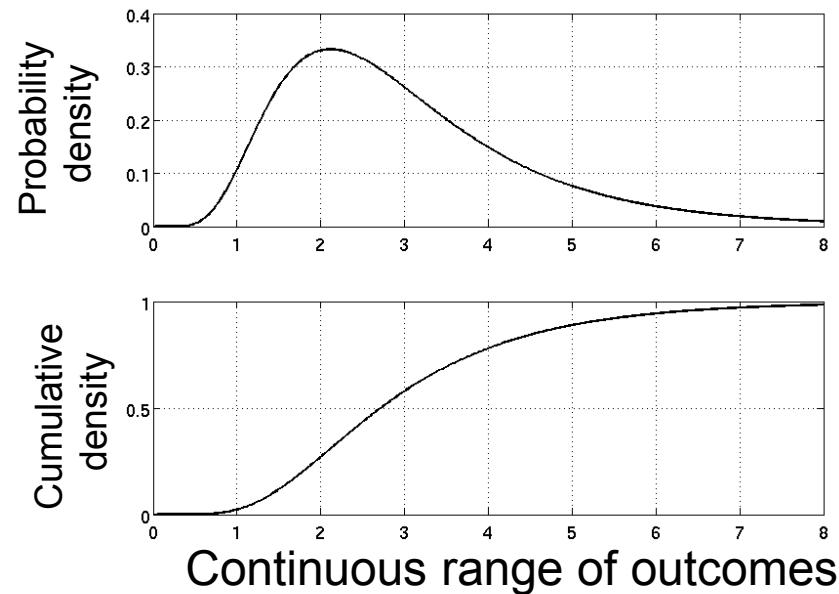
A bit of jargon

- (Real valued) Random Variable
 - A function that associates *outcomes* with *probabilities* of their occurrence
- Discrete:
 - Coin flip – *outcome* is heads, $P(\text{heads}) = 1/2$
- Continuous:
 - Failure – *outcome* is that material will fail if subjected to impact at 1km/s, prob = $1/2$
- Random variable \longleftrightarrow probability distribution

Probability distributions



2+ dimensions
project to 1D and 2D
→ See 2D correlation



Ways to summarize a distribution:
Mean, mode, median,
standard deviation, etc.

Commonly used terms

- Statistics: based on data – N datapoints

- Sample Mean $\bar{x} = \frac{1}{N} \sum_{i=1}^N x_i$ Estimates from data can have error
- Sample Variance $s_x^2 = \frac{1}{N-1} \sum_{i=1}^N (x_i - \bar{x})^2$ Cannot calculate variance from 1 datapoint
- Variance of the mean $\text{var}(\bar{x}) = \frac{s_x^2}{N}$

- Correlation More samples → better estimates

- Two random variables are correlated if the outcome of one changes the probabilities of the second
- Example: Number of gate guards & Wait times at gate

Uncertainty, Probability, Decisions

- What is uncertainty? Lack of information
 - Dice example
- Mathematically describe the amount of available info
- Probability distributions are ONE way to model information and uncertainty
 - It's JUST A MODEL
- Decision theory: formal way to choose actions when the outcomes are uncertain, using probability theory

Decision Theory

Decision = select a action

Enumerate actions

1. Actions have costs

Estimate costs & benefits

2. Actions impact the possible outcomes

Use Models

3. Outcomes have benefits

4. Value = benefit – cost

Possibility that value < desired
→ risk

Pick the action to maximize the predicted value,
based on which outcomes you expect to happen

Engineering question:
Can you make money from this?

- How would you find out?
- Do these theories actually help?
 - Design of Experiments
 - Statistics
 - Probability
 - Sensitivity analysis
 - Uncertainty quantification
 - Decision theory

Die Game

- Pay \$, guess the face number & win!
- Have Sandia's \$\$\$\$ to spend
- Based on available knowledge:
 - Should you play?
 - Which number to pick?
 - How much to bet?
- What is the expected value? Risk?

Layers of Decisions

- Gather more info to improve the decision?
 - **This is ALSO a decision problem**
- Examples:
 - Consider additional actions
 - Characterize the die (**improve models**)
 - Understand the payout (**understand models**)
 - See if model predictions match gameplay (**validate**)
- Is the added benefit worth the additional cost??

**If you don't know how the top decision is made,
you will not make the best sub-decisions**

Questions?

- **Probability Theory** – Introduction to Probability (Bertsekas)
- **Decision Theory** – Making Hard Decisions (Robert T. Clemen)

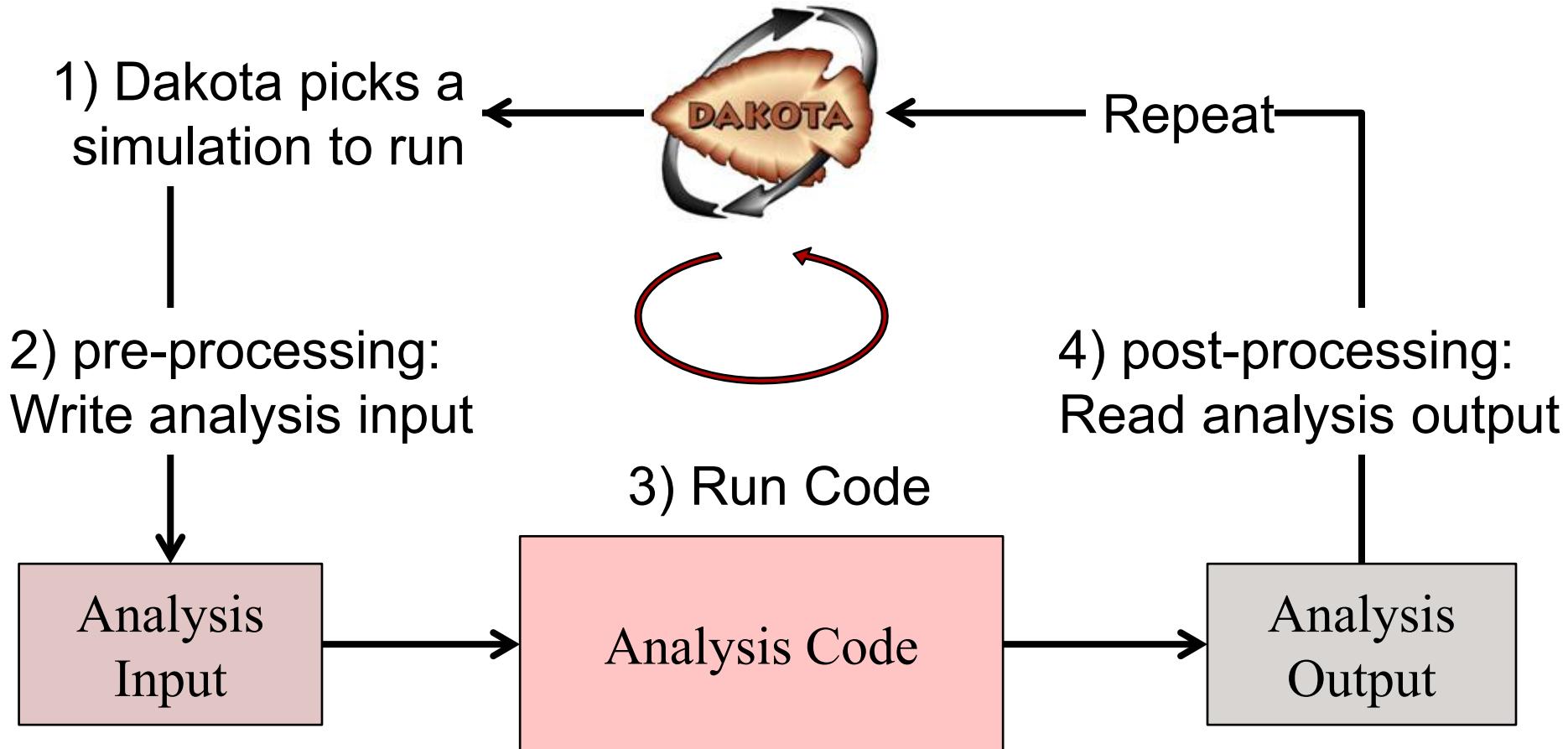
What is Dakota?

- **Automation** of model runs
 - Make it cheap to run simulations
(user time, not CPU hrs)

+

- **Methods**
 - Make the runs more useful
 - Uncertainty Quantification, Surrogate Models, Optimization, Design of Experiments, Parameter Study, Sensitivity Analysis

How does it work?



**Look familiar? Many analysts do this manually.
Many similar codes exist.**

Comparisons

Manual

- Repetitive process
 - Costs add up
- Can make mistakes, lose track of data, simulations, etc.
- No scripts

Automation

- Requires scripting
 - Larger up-front cost
 - Minimal additional cost
- Fewer errors
- Gain access to powerful methods

HOW LONG CAN YOU WORK ON MAKING A ROUTINE TASK MORE
EFFICIENT BEFORE YOU'RE SPENDING MORE TIME THAN YOU SAVE?
(ACROSS FIVE YEARS)

		HOW OFTEN YOU DO THE TASK					
		50/DAY	5/DAY	DAILY	WEEKLY	MONTHLY	YEARLY
HOW MUCH TIME YOU SHAVE OFF	1 SECOND	1 DAY	2 HOURS	30 MINUTES	4 MINUTES	1 MINUTE	5 SECONDS
	5 SECONDS	5 DAYS	12 HOURS	2 HOURS	21 MINUTES	5 MINUTES	25 SECONDS
	30 SECONDS	4 WEEKS	3 DAYS	12 HOURS	2 HOURS	30 MINUTES	2 MINUTES
	1 MINUTE	8 WEEKS	6 DAYS	1 DAY	4 HOURS	1 HOUR	5 MINUTES
	5 MINUTES	9 MONTHS	4 WEEKS	6 DAYS	21 HOURS	5 HOURS	25 MINUTES
	30 MINUTES		6 MONTHS	5 WEEKS	5 DAYS	1 DAY	2 HOURS
	1 HOUR		10 MONTHS	2 MONTHS	10 DAYS	2 DAYS	5 HOURS
	6 HOURS				2 MONTHS	2 WEEKS	1 DAY
	1 DAY					8 WEEKS	5 DAYS

Good news – Dakota team can help

Tools in ESP700

- See Dakota in action
 - Demonstrate capabilities/ methods
 - Simple workflow
- Learn about available resources
- What you won't see
 - Dakota tutorial
 - Scripting details
 - Complicated data analysis
- Today's examples also use Matlab
- Similar tools:
 - JMP
 - Minitab
 - R
 - Octave
 - Excel
 - Etc...

Questions?

- Dakota resources:
 - dakota.sandia.gov
 - Dakota Product Manager for 1500: Ken Hu
 - Dakota support: Adam Stephens

Exceptional service in the national interest

ESP700 Lecture 3: Methods and Tools for Sensitivity Analysis

Org 1544: V&V/UQ and Credibility Processes

Sandia National Laboratories

3 April, 2014

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXX

Questions to ask about the model:

What parts do we need to understand?

- Sensitivity analysis: which inputs affect the response?

How well do we know the response value?

- UQ: how do uncertainties in inputs affect the response?

Do we know enough? ARE the models useful?

- V&V → how accurate / wrong is the response?

What are the costs and benefits? VALUE?

Outline

- A day in the life of a 1544 analyst
- Examples
- Sensitivity analysis
- Uncertainty quantification
- Surrogate models
- Advanced methods

Basic methods,
demonstrations,
interpretation,
value proposition

Lecture 3 Goals

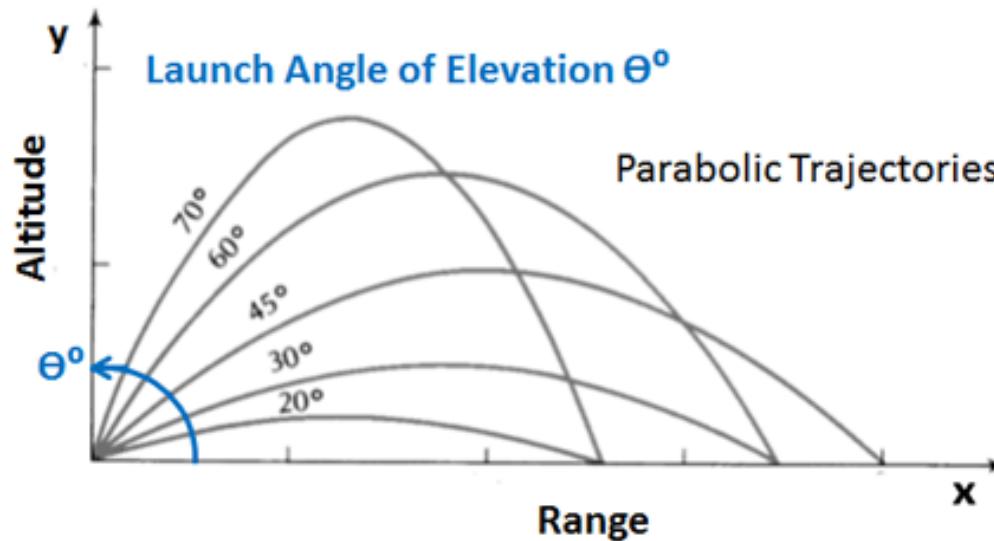
- Introduce topics at a high level
- Describe the basic methods
- Promote Dakota usage
- Demonstrate methods and tools
 - Simple example – compute ballistic trajectory
 - Case study – 3 leg structural dynamics problem
- **Leave with a basic knowledge of methods, tools, context – there is much more**

What does 1544 do?

- Project work
 - Supporting other analysts (1500 and others)
 - Sensitivity analysis, UQ, V&V, optimization
 - Tailoring methods for each project
 - Interpreting results
- Methods research & development
- Creating resources/ tools
 - Enable other analysts to do what we do

Example: Ballistic Trajectory

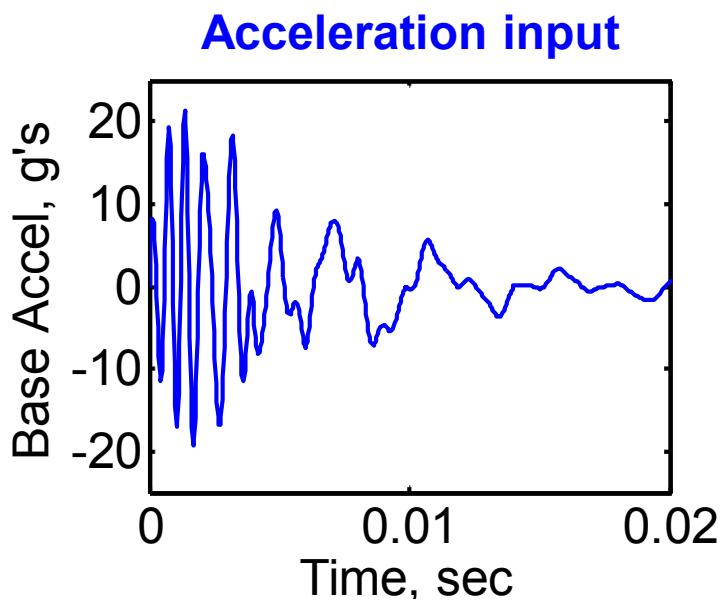
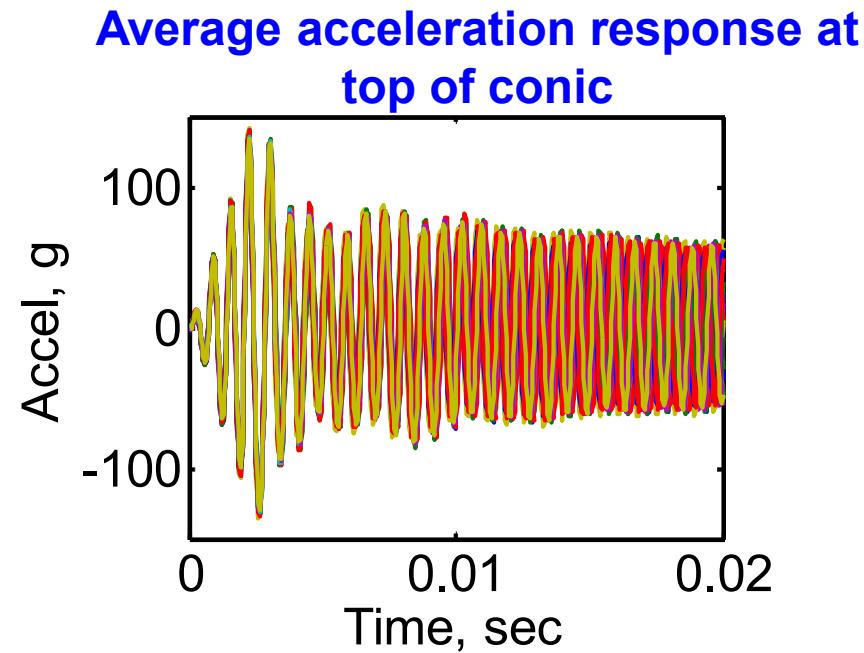
Range R vs Launch Angle Θ for a Given Initial Velocity V_0



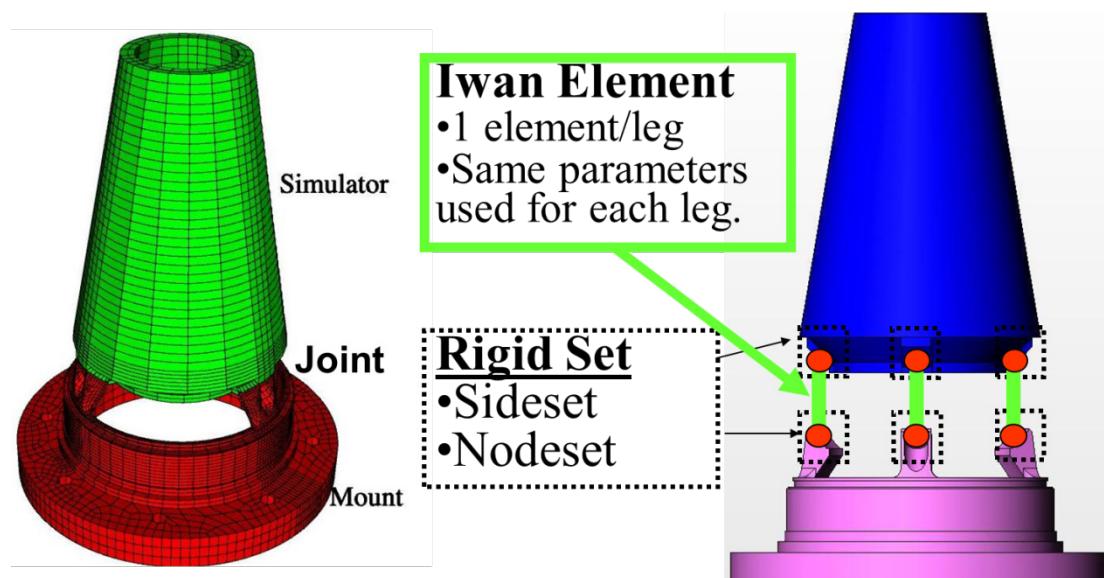
- Inputs
 - Angle, θ
 - Initial Velocity, V_0
 - Gravity
- Quantities of Interest
 - Max Height, H
 - Range, R

Case Study: 3leg model

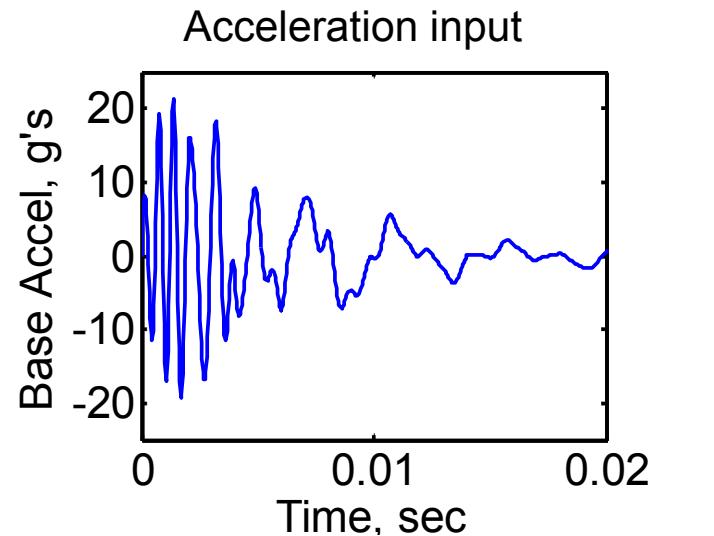
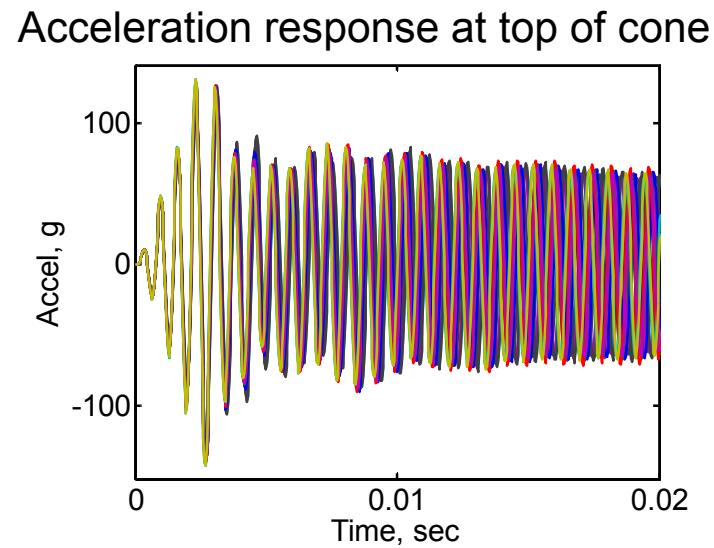
- Hardware consists of 3 top conic sections and 3 bottom sections
- 9 total combinations of top/bottoms



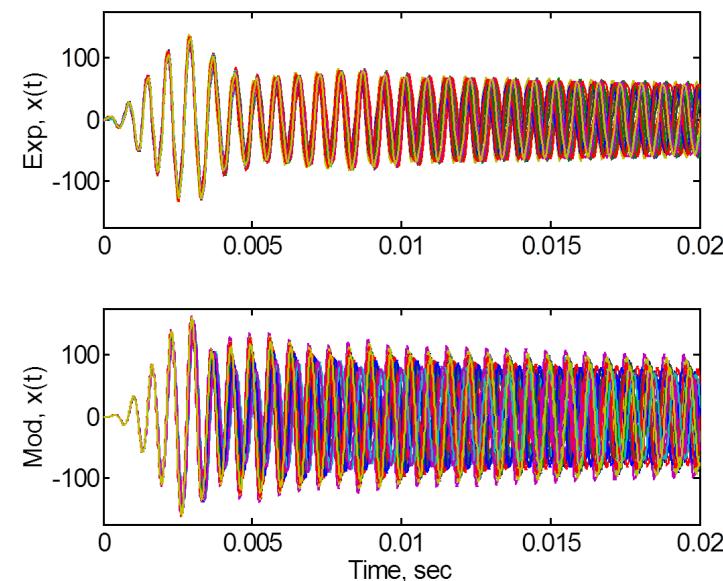
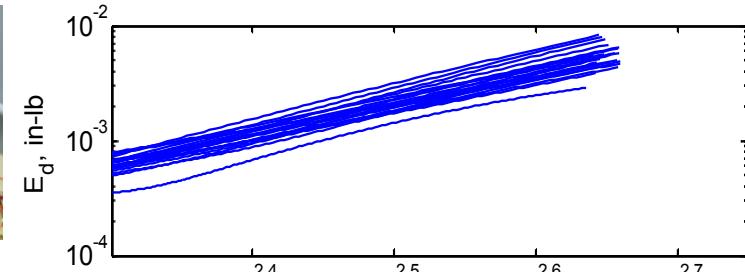
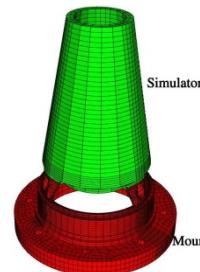
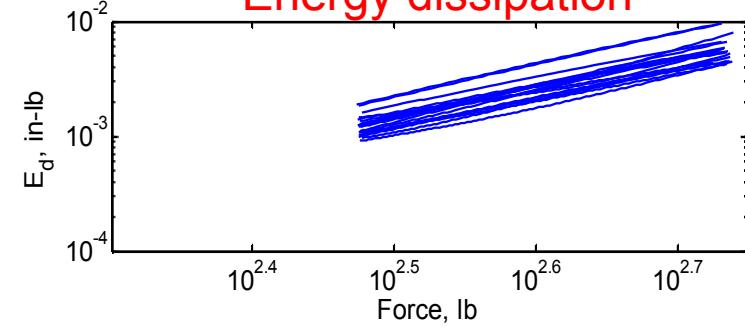
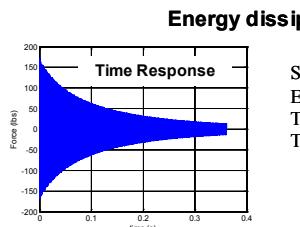
Case Study: 3leg model



- 3D finite element model representing 3 leg hardware was created
- Bolted joints (J) are modeled using an Iwan element
- Non linear transient analysis was performed using Sierra-SD (structural dynamics)



Quantities of interest

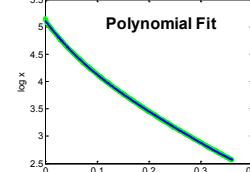
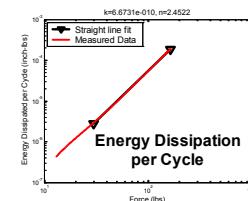


Simple free decay: $x(t) = e^{-\zeta\omega_n t} \cos(\omega_n t)$

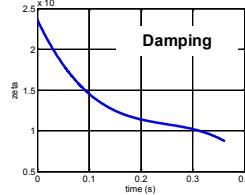
Envelope of the peaks: $x(t) = e^{-\zeta\omega_n t}$

Take the logarithm: $\log(x) = -\zeta\omega_n t$

Take the derivative: $\frac{d(\log(x))}{dt} = -\zeta\omega_n$



$$E_d = c \frac{\xi F^2}{m^2 f_n^2}$$



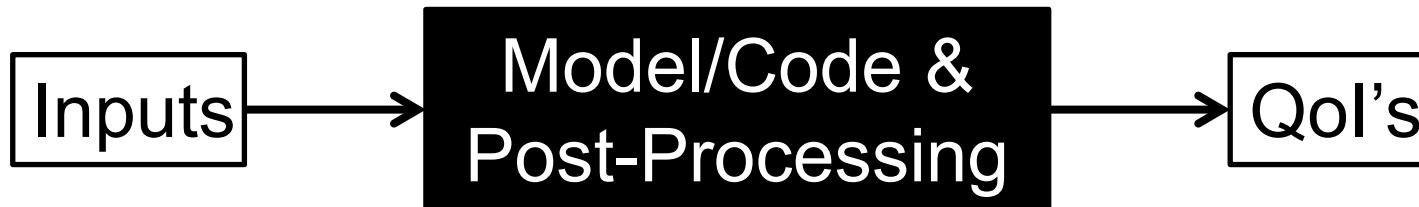
Slope
Peak Force
Max Acceleration

3leg Simulations

- Sierra SD, a.k.a Salinas
- Ran on CEE platforms, 8cores, ~20 min
- Salinas results file
- Dakota “drives” the simulations
- Automation
 - Bash scripting, Linux utilities
 - Matlab post-processing

Abstract View of Simulation

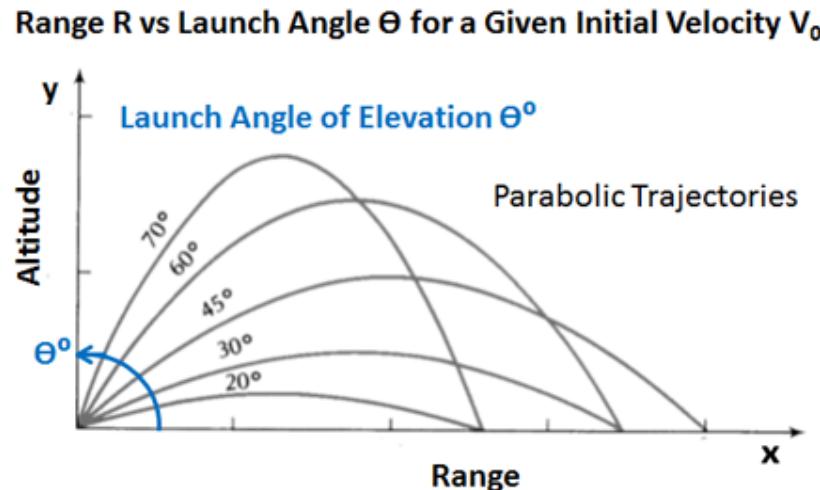
- Think of models / code as a black box
 - Inputs go in, QoI's come out



- Input = ANYTHING that changes the QoI's
 - Model parameter, code setting (solvers, tolerances)
 - Boundary conditions, external forcing, etc.
 - mesh, geometry
 - model form a.k.a model structure
 - Computational hardware

- How do changes to inputs affect the response?
 - How “sensitive” is the response to each input?
 - Direction and magnitude
- Typically focus on model parameters
OR other inputs
 - **Today – focus on quantitative inputs (parameters)**
 - Lecture 2: verification – Sensitivity analysis and uncertainty quantification for meshes/ codes

Example 1: Ballistic Trajectory



- Qualitative Sensitivity, a.k.a. “Expert Opinion”
 - $V_0 \uparrow$ → Height \uparrow & Range \uparrow
 - Gravity \uparrow → Height \downarrow & Range \downarrow
 - $\theta \uparrow$ → Height \uparrow & Range ??
 - $V_0 \uparrow, \theta \downarrow$ → Height ?? & Range ??

Is this enough information?

Why Do Sensitivity Analysis?

- Identify trends in responses – exploration
 - Bonus information: smoothness, robustness
- Provide a focus for future work
 - Model development
 - New experiments
 - Characterization of input uncertainty & UQ

Goal: spend resources to understand the **significant inputs** for the **important responses**

Summary

1. Vary the inputs
 2. Run the model
 3. See if QoI's change, compute metrics
-
- More samples → more information
 - Methods – efficiently compute metrics
 - Efficiently gather information

Basic Quantitative Sensitivity Analysis

- Local sensitivity:
 - Metric: Partial derivative
 - Method: Finite differences
- Must pick nominal point and step sizes
- Example: Ballistic Trajectory
 - Nominal $\theta = 45^\circ, V_0 = 10 \text{ m/s}, g = 10 \text{ m/s}^2$
 - Step size = +10%
 - Results:

$$\text{Range} \quad \left. \frac{\partial R}{\partial \theta}, \frac{\partial R}{\partial V_0}, \frac{\partial R}{\partial g} \right|_{nom} = [-0.00 \ 0.21 \ -0.09]$$

$$\text{Height} \quad \left. \frac{\partial H}{\partial \theta}, \frac{\partial H}{\partial V_0}, \frac{\partial H}{\partial g} \right|_{nom} = [0.04 \ 0.21 \ -0.09]$$

Lessons

- Sensitivities: $V_0 > g > \theta$
 - On Earth: how much does gravity vary?
 - **Most sensitive \neq most significant**
 - Must consider the possible range of values
- Compare sensitivity of height and range
 - Depends on the QoI
- Repeat at: $\theta = 1^\circ, V_0 = 10 \text{ m/s}, g = 10 \text{ m/s}^2$
 - Sensitivities: $\theta > V_0 > g$
 - Nominal value matters

Cheap – bare minimum of model evaluations

Limited – Estimate of main effects, no interactions

Case Study: 3leg

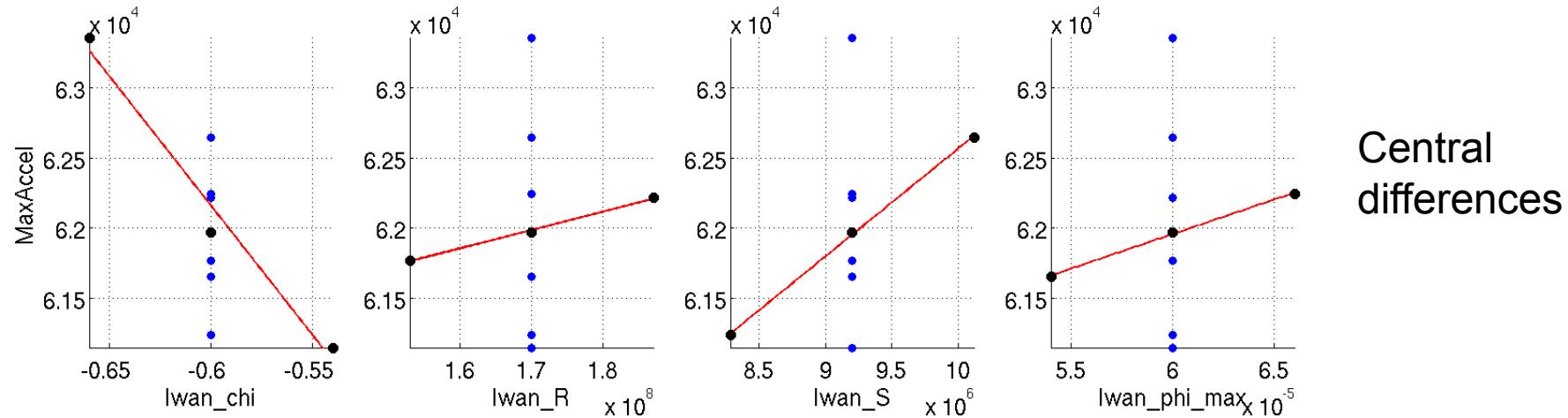
- Local sensitivity
 - Pick nominal values for 4 Iwan parameters
 - Pick range & step size = 10%
 - QoI's are most sensitive to Phi_{max}
- Absolute change in response over whole range
 - chi and S are most significant

Forward differences :	'chi'	'R'	'S'	'phi_max'
MaxAccelSensitivity	-2e-2	2e-10	1e-8	8e2
MaxAccelDiffOverRange	1400	250	680	280

'chi' >> 'S' >> 'phi_max' \approx 'R'

“Projection” Plots

- 5D space – 4 parameters, 1 response
- Project onto 2D – collapse 4 parameters into 1D



- Visualize change over ranges (2x step size)
- Absolute changes of QoI are an indicator of significance
- Limited # of runs → receive minimal information

Basic Method 2 – Sampling “LHS”

1. Define ranges for each input
2. Sample uniformly within the ranges for all inputs
3. Run model
4. Analysis: plotting + correlation coefficients

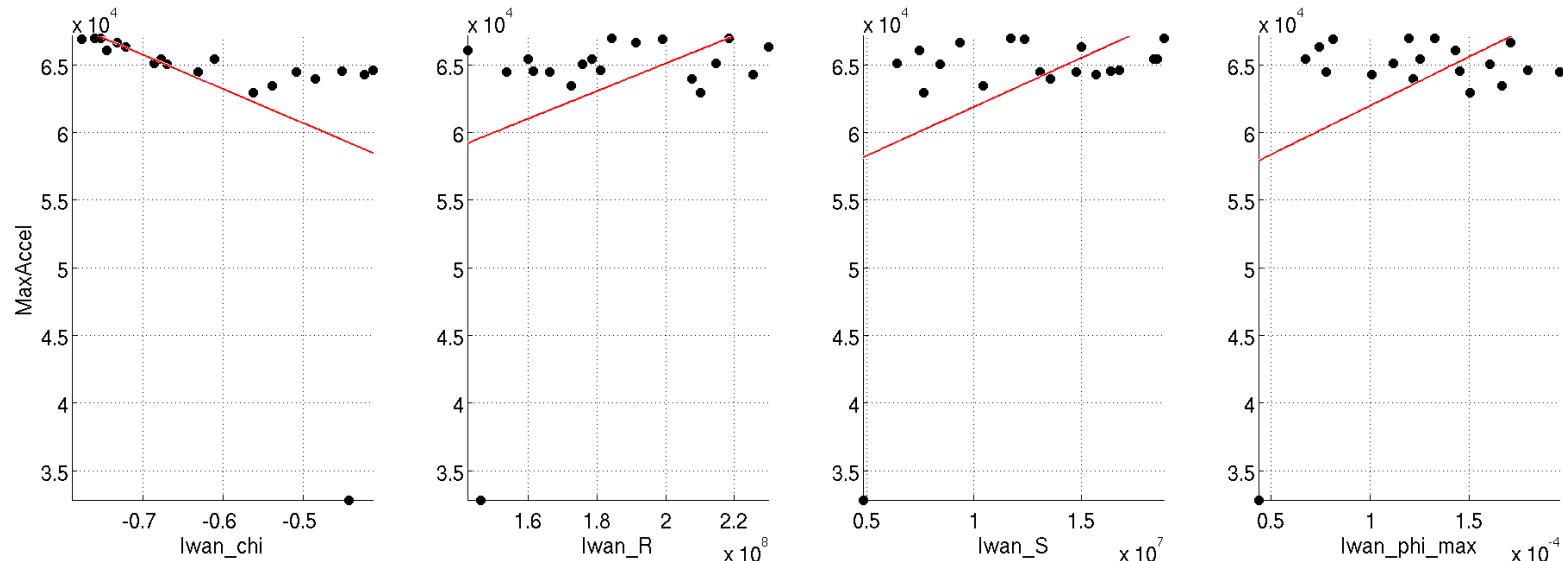
Matlab demo – Latin Hypercube Sampling

- **Concept** – local sensitivity at many nominal values
 - Average the sensitivities “globally” over parameter space
 - Need a lot of samples

No connotations of probability

Qualitative LHS Analysis

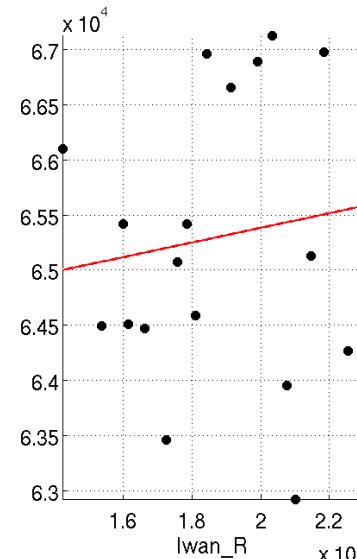
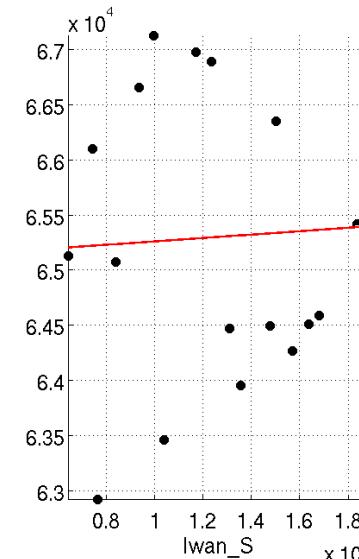
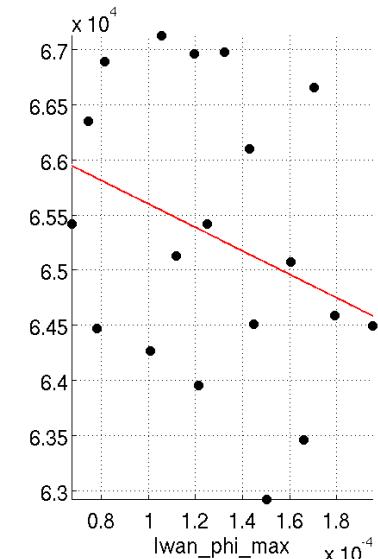
- Projection, scatterplot see nonlinear trends
- Compare vertical spread vs. trendline
 - Qualitative indicator of significance



Local Sensitivity Result:
'chi' >> 'S' >> 'R' > 'phi_max'

Qualitative LHS Analysis

- Identify outliers w/ major effect on quantitative indicators
- Investigate discrepancy between visualizations and quantitative results



Local Sensitivity Result:
'chi' >> 'S' >> 'R' > 'phi_max'

Quantitative LHS Analysis

Simple Correlation Matrix

	MaxAccel
chi	-0.43
R	0.25
S	0.52
phi_max	0.45

Partial Correlation Matrix

	MaxAccel	slope
chi	-0.56	0.46
R	0.18	0.34
S	0.64	0.25
phi_max	0.57	-0.21

- Correlation Coefficients
- Regression slope \propto simple correlation
- Linear assumptions!
- Compare simple vs. partial
 - Difference indicates significance of interactions between inputs

Show Dakota Output –

most data analysis software will compute these also

Quantitative LHS Analysis

- Simple correlation:
measures the strength and direction of a linear relationship between variables
- Partial correlation:
like simple correlation but adjusts for the effects of the other variables
- Rank correlations:
simple and partial correlations performed on “rank” of data

Correlation coefficients have range [-1 , 1]

0, no relationship

1, strong positive relationship

-1, strong negative relationship

List Sensitivity Methods

- Expert Opinion
 - Local methods
 - **Finite differences**
 - Design of Computer Experiments
 - Global methods
 - Morris one at a time
 - Sampling
 - Monte Carlo, Quasi-Monte Carlo
 - **Latin Hypercube Sampling (LHS)**
- Partial derivatives
ANOVA
- Correlation coefficients
Variance Based Decomposition
Sobol indices

Costs & benefits: you get what you pay for

- For N parameters
- Local sensitivities
 - Finite differences: $N+1$, $2N+1$ model runs
 - Local estimates, no interactions
- Design of Computer Experiments
 - Full Factorial: 3^N (grows FAST) Curse of Dimensionality
 - Other special designs → reduced cost, need to think
 - Use ANOVA – get “main effects” a.k.a sensitivity in each dimension, plus sensitivities for 2D interactions

What about sampling

Local Sensitivities

- Known cost
- Very easy to implement
- Limited information
 - Local analysis

Sampling

- Scales better with dimensions, $N > 4$
- Global, nonlinear effects
- **Benefit is hard to predict**

Warnings on Sampling

- Quality of statistics
 - Known convergence of statistics
 - Absolute accuracy of statistics is NOT KNOWN a priori
- **Do not know whether the qualitative or quantitative results will help to downselect parameters**

Some Guidance

- Which method?
 - Trade off simplicity and cost vs. amount of information
 - How much info do you need for sensitivity analysis?
 - **Why choose just one?**
 - Start w/ cheap local sensitivity method, add LHS
- How many LHS samples?
 - **Rule of thumb:** $10^*N \rightarrow$ get trends, mean, variance
- **Use incremental studies – $N, 2N, 4N, 8N, 16N \dots$**
 - Can predict computational cost
 - When benefit stops increasing, stop analysis

3leg Sampling

- Ran 10, 20, 40 LHS samples
- See if metrics change

Simple Correlation Matrix MaxAccel				Partial Correlation Matrix MaxAccel			
# samples	10	20	40	# samples	10	20	40
chi	-0.33	-0.43	-0.46	chi	-0.68	-0.56	-0.59
R	-0.14	0.25	0.17	R	-0.59	0.18	0.15
S	0.62	0.52	0.49	S	0.78	0.64	0.61
phi_max	0.39	0.45	0.39	phi_max	0.62	0.57	0.52

- Outlier has BIG effect w/ only 10 samples
- Check against local sensitivity result
- Check assumptions: are parameter ranges sensible?

Sensitivity Analysis Conclusion

- How many samples are needed to assess significance?
- **Recall goal: learn model, prioritize future analysis**
- Risks – will this impact the project, decision?
 - Miss significant parameters
 - Run future analysis on the wrong parameters
 - Future analyses is too expensive
- But remember...
 - This is exploratory work
 - Don't spend too much time/effort

Time Permitting

- Sensitivity Analysis workflow
 - Automation of Salinas runs
 - Post-processing in Matlab
 - Dakota study
- Advanced Methods
 - Morris one at a time
 - Variance based decomposition w/ Sobol indices

Questions?

- "Sensitivity Analysis in Practice A Guide to Assessing Scientific Models" by Saltelli, A. and Tarantola, Stefano and Campolongo, Francesca and Ratto, Marco. John Wiley & Sons, Chichester. 2004.

Exceptional service in the national interest

ESP700 Lecture 3: Methods and Tools for Uncertainty Quantification

Org 1544: V&V/UQ and Credibility Processes

Sandia National Laboratories

3 April, 2014

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Questions to ask about the model:

What parts do we need to understand?

- Sensitivity analysis: which inputs affect the response?

How well do we know the response value?

- UQ: how do uncertainties in inputs affect the response?

Do we know enough? ARE the models useful?

- V&V → how accurate / wrong is the response?

What are the costs and benefits? VALUE?

Uncertainty Quantification

- What is uncertainty? Lack of information
 - Uncertainty quantification = information quantification
 - Have a model, know the significant inputs, etc...
 - How much information do you have about QoI's?
 - What are the significant sources of uncertainty?
1. Characterize the uncertainty in significant inputs
 2. Propagate
 3. Interpret

Characterization of Uncertainty

- Sources of Uncertainty
 - Model parameter, code setting (solvers), mesh, geometry, model form a.k.a model structure Focus on parameters
- Types of uncertainty
 - Epistemic and Aleatoric Very confusing!
We'll return to this later
 - Provide more insight into the information we have
- Quantitative methods
 - parameters require mathematical description

Mathematical Description of Uncertainty

- None – deterministic

Increasing cost, complexity,
information content

- Intervals

Lower Bound |-----| Upper bound

- Probability distributions

- Discrete – probability mass function (pmf)
- Continuous – probability density function (pdf)

- Uncertainty context

Higher mass/density → value is more probable

- Fuzzy Probability, P-boxes, Evidence Theory

Sweet spot...
(opinion)

Bounds, pdf's... Where do these come from???

- Experimental Data

- Expert Opinion/ Assumptions

- Theory/ Models

Statistics: Construct
models from data and
assumptions

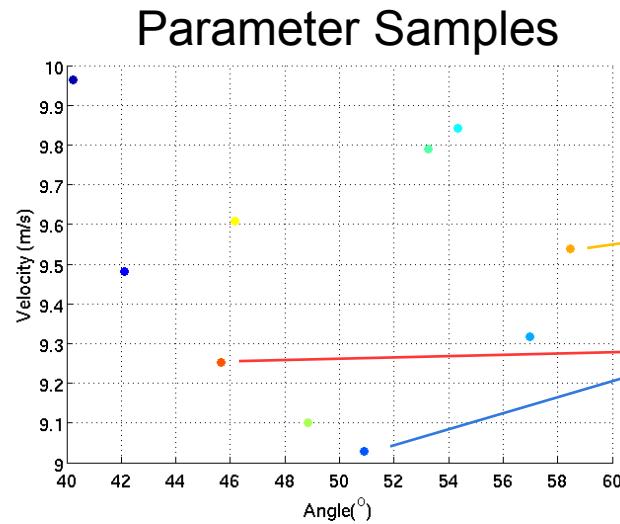
Propagation of Uncertainty

- Sampling methods – Latin Hypercube Sampling (LHS)
 - Exact same as for sensitivity analysis
 - Difference – uncertainty context
 - Based on characterization of parameter uncertainty
- MOST other methods can be formulated as
 - Construct a surrogate model
 - Sample the surrogate model
 - Discussed in Advanced topics

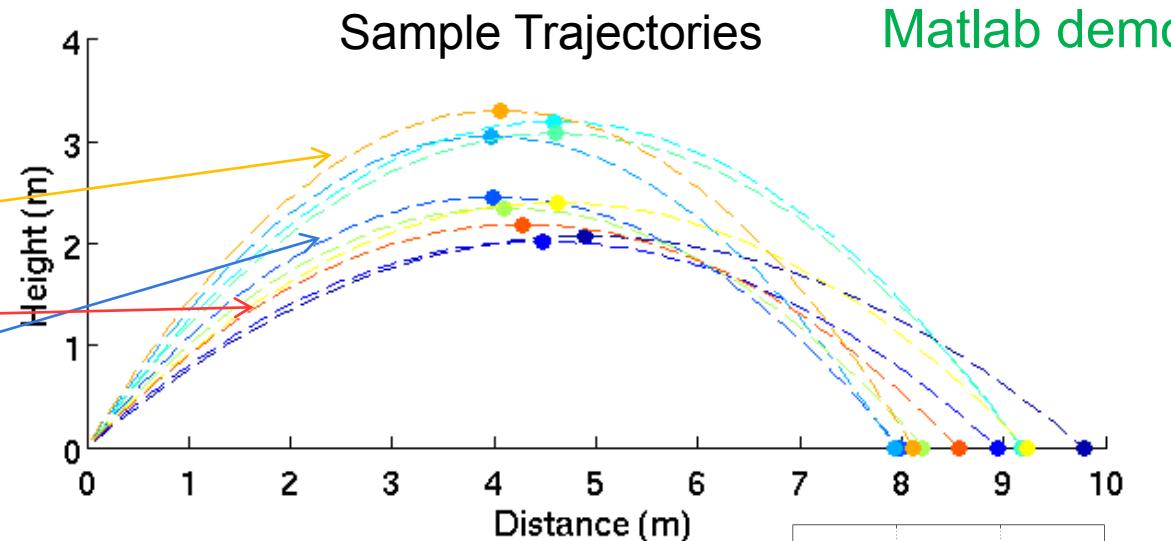
Example: Ballistic Trajectory

- If we assume θ, V_0 are uncertain \rightarrow pdf's
- Then what do we know about QoI: Range?

SA \rightarrow neglect gravity

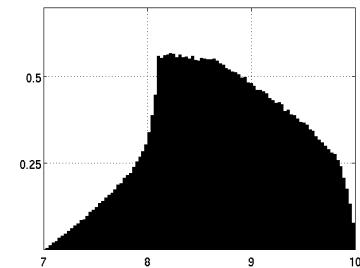


Uniform
parameter pdf's



Matlab demo

UQ result: Normalized histogram of predicted QoI:Range based on (a LOT of) parameter sampling



Non-uniform QoI pdf!

Types of Uncertainty – Definitions

- Epistemic (Reducible uncertainty)
 - Lack of knowledge about the appropriate value to use
 - Reduced through increased understanding or more data.
- Aleatoric (Irreducible uncertainty)
 - Cannot be reduced by further data
 - Variability (due to part-to-part, test-to-test variation, etc.)

Most parameters in engineering models have both aleatoric / epistemic components of uncertainty

Importance

- Epistemic vs. aleatoric distinction is subtle
- **What is the model attempting to predict?**
 - Ex: modeling a validation experiment
 1. Response of a specific unit to a specific event?
 2. Possible responses from a population of units, and population of events *consistent* with a scenario?
- **What do we expect to match?**
 - Only aleatoric uncertainties should match

Ballistic Trajectory Example

- Angle is determined by launcher and base
 - Launch tube creates shot-to-shot variability
 - Base is not always on level ground
- What is aleatoric vs. epistemic?
- What are we attempting to predict?

Matlab demo

To estimate **WHERE** the shot will hit, we don't need to decompose into aleatoric and epistemic nature of uncertainty.

The distinction provides additional insight into the *quality* of the predictions → this is important for decisions

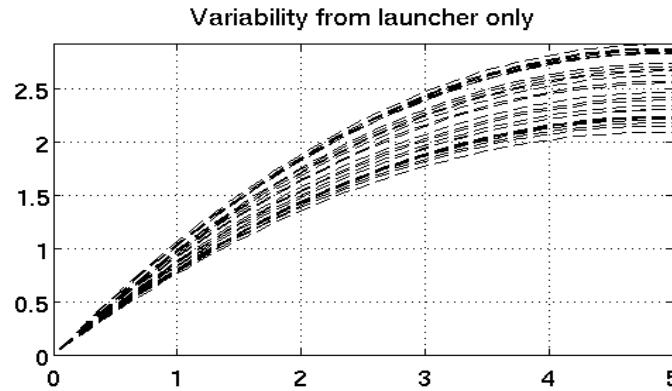
Example: Ballistic Trajectory

Base is fixed but unmeasured, velocity is known

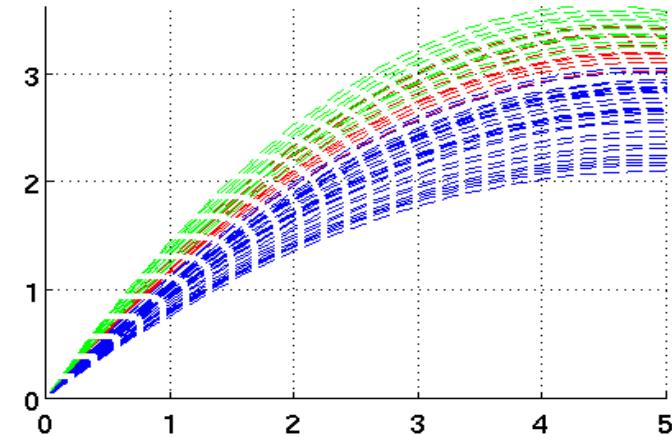
Scenarios:

1. Predict range for next shot
2. Predict ranges for next dozen shots
3. Observe shots, validate model – **Is our understanding of physics & uncertainty consistent w/ observed data?**

Q: What is aleatoric vs. epistemic? Is the separation useful? How to use this information?



Variability from launcher, for several base angles (colors)

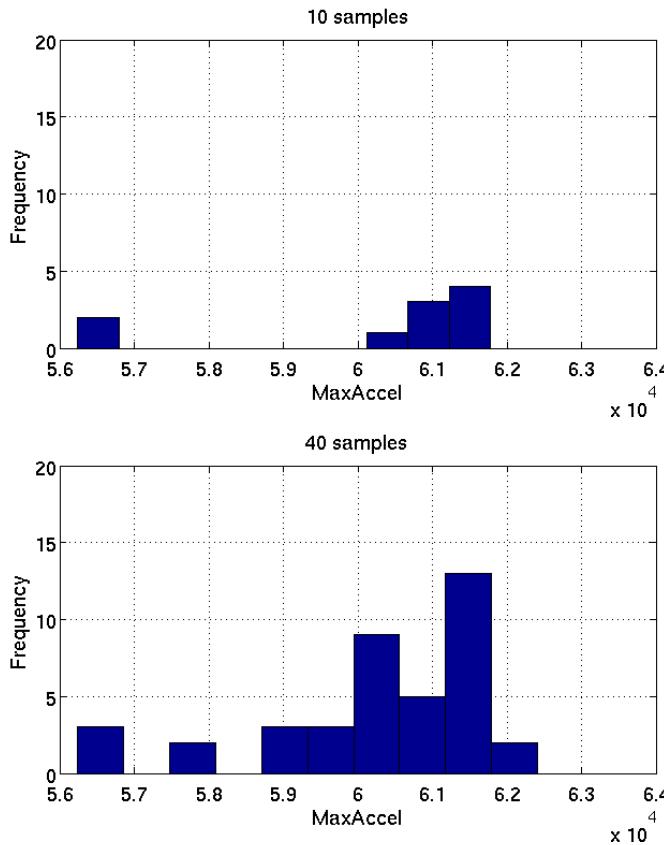
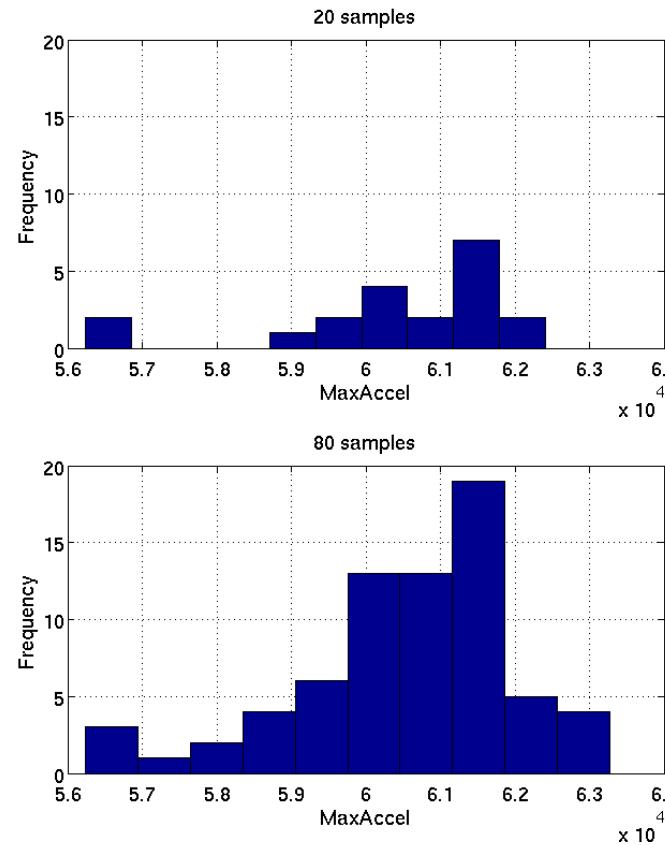


Example: 3leg Characterization

- Experimental data – 20 tests on different joints
- Iwan Model: **Calibrate** 4 model parameters to each
 - Result – 20 “best estimates”
 - Represents variability of joint behaviors
 - Aleatoric uncertainty
- Generalize this small set of data to a 4D joint pdf
 - Make assumptions → find a pdf that is (mostly) consistent with data
 - Example – Multivariate Gaussian, Karhunen-Loeve Expansions
- Also have epistemic uncertainty with the parameters
 - Related to assumptions
 - Related to imperfect calibration
 - Related to model form uncertainty, experimental uncertainty
 - Advanced topic – we will ignore this for now...

Example: 3leg

- 20 sets of best estimates for 4 parameters
 - Assume Gaussian distributions w/ correlations
- Propagate w/ incremental LHS: 10, 20, 40, 80 samples



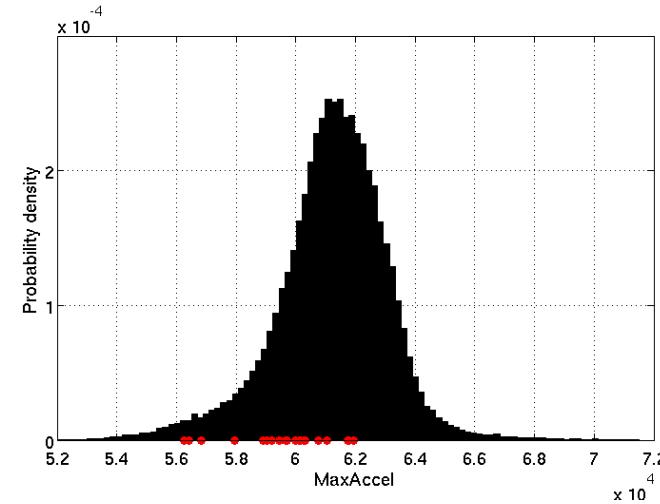
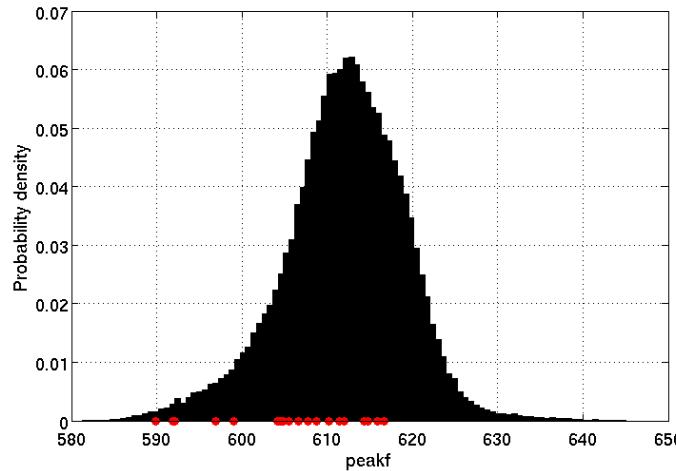
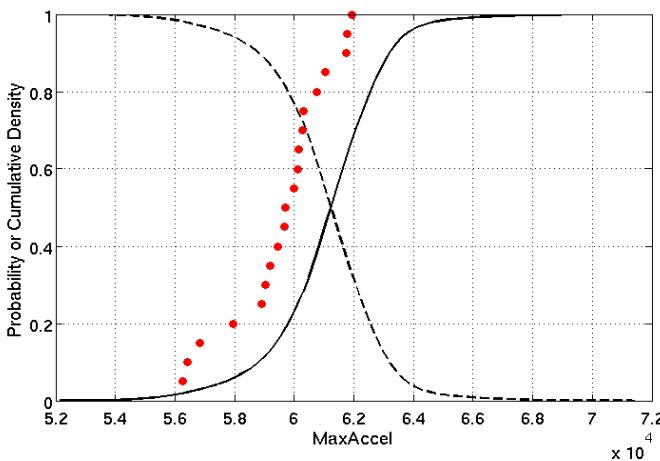
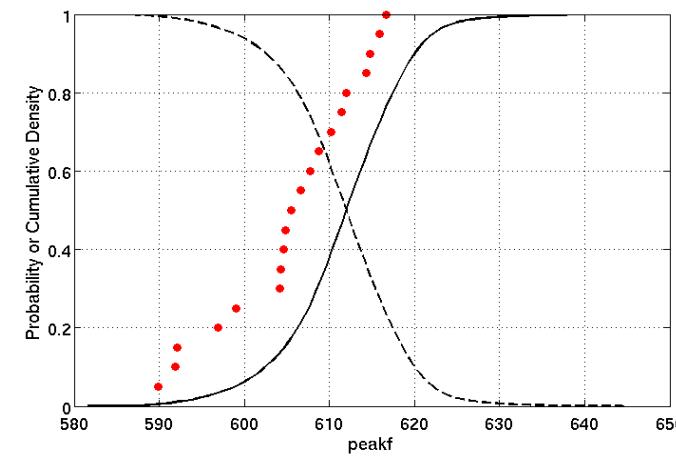
Samples	Mean	Std Dev
10	60297	2131.5
20	60488	1700.4
40	60365	1558.6
80	60589	1496.3

Higher moments
need more samples
to converge

- Sampling → histogram
 - With many LHS samples, normalized histogram → pdf
 - CDF – cumulative distribution function, “integrated pdf”
 - CCDF – complementary CDF
 - Many other ways to present information
- Statistics: mean, median, variance, percentiles
- Layers of information!
 - Inputs → Model → Quantity of interest
 - UQ → uncertainty / information quantification on QoI
 - Quality of UQ – convergence, data analysis on uncertainty

Example: 3leg

- Construct surrogate models from LHS
 - Gaussian Process w/ 1e6 samples



Salinas propagated
best estimates
Surrogate propagated
Gaussians

Same information as pdf
Different look

- Difference: mathematical form
 - Polynomials
 - Polynomial chaos expansions
 - Gaussian process
 - MARS
 - Radial basis functions
 - Neural Network
- Train from “data” = full model evaluations
 - **No physics, just fitting to data**
- Diagnostic metrics: R^2 , mean absolute error, sum-squared error, **cross-validation metrics**
- Often the surrogate is less accurate at bounds or endpoints: use caution

Assess UQ results

- UQ → what we know about QoI's
 - Based on model, inputs, parameters
- Also need to consider the process!
 1. Characterization of parameter uncertainty
 2. Limited LHS sampling
 3. Constructing surrogates
- What to do? How to assess the effect?
 1. Verify data analysis, document assumptions
 2. Incremental LHS → check convergence of statistics
 3. Surrogate diagnostics, cross-validation, multiple surrogates

Notes on Uncertainty Quantification

- More samples → more information
- Sampling, especially LHS, gives more samples in high probability areas
 - Very good for mean, standard deviation – “bulk properties”
 - **NOT good for tails, “extreme events”**
- Same for characterization of parameter uncertainty
- Surrogate models – accurate where training data exists
- For tails: Advanced methods – reliability

Uncertainty Quantification Conclusion

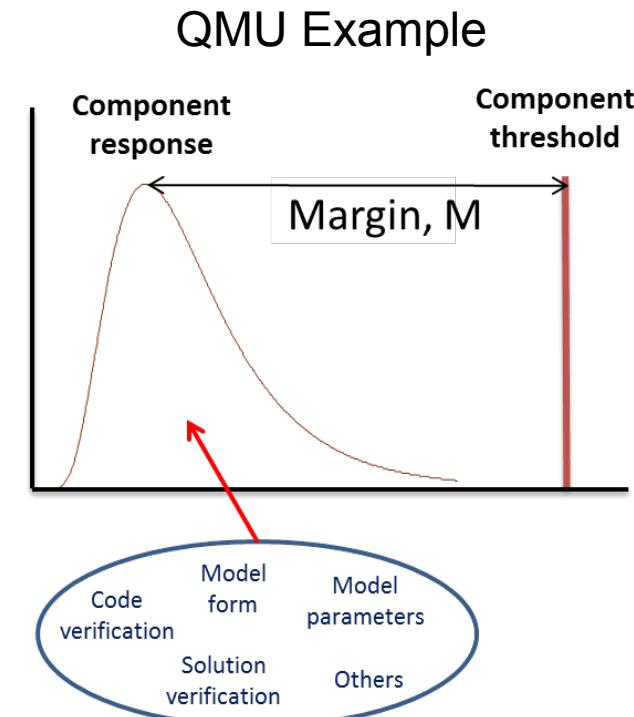
- How to do UQ? Method, # samples, surrogates?
- **Recall goal: understand QoI information**
 - Why?: QMU? PLoAS? Design study? Validation?
- Principles
 - Fidelity of UQ should be determined by intended use
 - Always have option to do more UQ – iterate w/ application
 - Balance sources of uncertainty (“the uncertainty budget”)
 - Uncertain parameters, mesh, code, model form, UQ methods, surrogate
 - Don’t need high fidelity UQ when mesh is poor quality

Questions?

- No “standard” texts
- Recent book:
 - http://www4.ncsu.edu/~rsmith/UQ_TIA/
- Dakota Users and Theory Manuals have many references

Big Picture

- Discussed sensitivity analysis, uncertainty quantification for model parameters
 - SA → prioritization of resources
 - UQ → pdf of QoI
- Demonstrate how each is used for an engineering project
 - 3leg example
- Understand **cost and benefit**
 - Uncertainty budget concept
 - Driven by the decision to be made, not math/ computer time



Contact

V&V/UQ Applications and Credibility

Angel Urbina, Dept. 1544
(505) 844-4988
aurbina@sandia.gov

Uncertainty Quantification

Ken Hu, Dept. 1544
(505) 284-2894
khu@sandia.gov