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Solution Verification

= |n the Intro, we discussed the error model:
Q(h) =Q+Ch”
= When the true solution (Q) is unknown, we need solutions

computed on 3 meshes to estimate Q.
= This is a costly exercise, but is general and robust

= |n this part, we discuss:
= How we generate the meshes (UMR)
= Further details on extrapolation
= Basic examples of solution verification
= What can go wrong

= Complex examples: interpreting the results




Uniform Mesh Refinement (UMR)

= We assume that someone has already built a mesh

|Ideally the CAD geometry should be preserved

= Multiple meshes are needed to assess convergence
= |deally the mesh size should be uniformly reduced
= Geometric resolution should improve

= Tools for making finer (and coarser meshes):

= Remeshing using the mesh generator (Cubit)

= Uniform refinement by regular subdivision of each element (Percept or
Cubit)

= Mesh scaling to generate coarser or finer meshes (Cubit)




UMR: Example Meshes
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Handling Numerical Controls

= Most of the cost of UMR convergence studies arises from the
use of increasingly finer meshes

= Many other numerical knobs should be controlled:

Time step size

Linear solver tolerances

Search tolerances (contact)

View factor resolution (enclosure radiation)

Iterative convergence for nonlinear & coupled physics

= Best practice: do a sensitivity study on the coarse mesh of all
other numerical controls

Which are most sensitive?
What are sufficiently small tolerances?



Example: Numerical Controls

= We demonstrate the effect of not refining the time step or
adequately controlling the linear solver tolerance
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Using the Error Model for Extrapolation

= 3 parameters (Q,C,p) => Qh)=Q + ChP

need 3 equations

= Main assumptions: hi>hy>hs, T h _ he

= |deally choose common ha h3
mesh size ratio (r) —
typically 2

= But can still handle non- p = log (Q2 — Ql) /log(r)

uniform mesh size case Q3 — Q2
= Resulting solution—note (o — Q2 — Q1

that rate (p) depends hy — hY

mainly on ratio of the Q=0Q;—C hﬁ’

changes in Qol




Extrapolation in Pictures
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= Compute Q(h) for three
mesh levels: h,>h,>h,

= Compute differences
= Compute ratio
= Compute rate (p)

Ratio=(0,— Q1) / (O~ Q) =1*

p = log(Rati0) / log(r)

Question: when will the rate (p) be positive?




What Can Go Wrong
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In these cases, should consider additional meshes, or investigate
numerical controls




Extrapolation by Numbers

= Extrapolation using data

Nodes
45
225
1377
9537
70785
545025

Nodes

45 0.281
225 0.164
1377 0.090
9537 0.047

70785 0.024
545025 0.012

h
0.281
0.164
0.090
0.047
0.024
0.012

Temperature at Point

h

Q(h)
400.136
400.092

Ratio

p Q(extrap)

400.076 2.777 1.473 400.056
400.074 6.779 2.761 400.073
400.073 2.630 1.395 400.072
400.073 4.130 2.046 400.073

Q(h) Ratio
-0.564
-1.991
-2.293 4.728
-2.358 4.657
-2.373 4.387
-2.376 4.173

p Q(extrap)  Error

2.241
2.219
2.133
2.061

Integrated Heat Flux

78.34%
17.04%
-2.604 3.64%
-2.400 0.83%
-2.380 0.21%
-2.378 0.06%

* Repeat the extrapolation for
each set of 3 meshes

e Monitor the rate of convergence

e Use the extrapolated value to
estimate the error for each mesh




What Can Cause Lower Rates of
Convergence in Practice

= Sources of error that alter the expected rate

Geometric features (reentrant corners)

Material discontinuities (jumps in gradients)

Shocks (jumps in solution values)

Inconsistent initial/boundary conditions

Poor mesh gquality (initial mesh or from mesh deformation)
Irregular source terms (switching on/off)

Phase change / material failure (element death)

Undetected errors in the computer model




How to Estimate Mesh Size

Often meshes are complex, unstructured

We can use the case of a uniform mesh to generate an
expression for an approximate mesh size

Let h be the mesh size, N be the number of elements
= 1D: 1/N=h.

* Think of a line with N elements.
= 2D:1/N=h? h=N12

= Think of a square with N = (1/h)(1/h) elements
= 3D:1/N=h. h=N13

= Think of a cube with N = (1/h)(1/h)(1/h) elements
= General formula: A= N1/dim




Example: Transient Thermal

= Mock AFF for solution verification (metal case, foam, mock
components, temperature-dependent properties)
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Example: Transient Thermal (2)

= Convergence rates can vary over time
= Extrapolation enables quantification of errors in Qols
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Example: Explicit Dynamics

= Taylor bar impact test (elastic-plastic deformation)
= Qols: time history of axial displacement, force
= Four hex meshes were used (coarsest shown)

Displace.
Qol

EQPS
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0 .44

Force Qol




Example: Explicit Dynamics (2)

= These Qols exhibit very different behavior
= QOverlaying the plots does not quantify numerical error
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Example: Explicit Dynamics (3)

= Displacement exhibits convergence at most times
= The rate of convergence is less than the optimal (2)
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Example: Explicit Dynamics (4)

= Reaction force is initially highly oscillatory
= Later in time extrapolation works — but in a limited way
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The Example Problem:
Solution Verification for Modal Analysis

= This problem has a complex mesh, but few numerical controls
(only solver tolerance, contact search tolerance)

= Qols are the eigenvalues

Next slide we will
zoom to the region
indicated

Disp Magnitude
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The Example Problem:

Generation of Refined Meshes

= We used Sierra/Percept to generate refined meshes

coarse

medium aﬂ?

fine %_ T

EReEEE:

o

v

[




The Example Problem:

Numerical Error Estimates

= Errors from extrapolation (first 14 nonzero frequencies)
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e In this case, we see
convergence for all
frequencies

¢ This allows us to assess
the accuracy of each
mesh

e Suitable accuracy
depends on the
application and other
uncertainties
(parametric, validation
data, etc.)



Summary of Solution Verification

Clearly define the quantity of interest (Qol) and the level of
acceptable numerical error

Conduct uniform mesh refinement (UMR) studies to quantify
the numerical error in Qols

Use extrapolation when possible to assess convergence of
Qols and numerical error

When errors and convergence rates are indeterminate,
investigate

= Numerical controls

= Factors that may affect convergence

= Further mesh refinement
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