SAND2014- 3839P

Sandia

Exce_ptz'onal service in the national interest @ National
Laboratories

= = S NN TNNL
NN

\\“\\\\}\\

A KA <\
Nk
ASANAS S
“““\‘“\“\?‘““3‘3
\‘\

N \‘\]
N \
\}33“\33‘&%%33}‘ = | a) at t=15s onsurface [,
So R / ' 7" E
XL\ o | / |]
. ‘ 0% ," “““ o “n\%‘\\‘: /) | \]
XX “ “ ““‘/ (il ki \ < b / 7 1
. | - o
LAY L \
27 TP B B

T
T T

II. Code Verification

Kevin Copps and Brian Carnes, Org. 1544

ESP700
— April 2014

VA =agd%)
N RG [N A’ R4 andia National Laboratories is a multi-program laboratory managed and o Yy
E E Y N = Sandia National Laboratories i i- b d and
tional Nuclear Socurly dcminisiraion res! Iti-program laborat 9 . |
_ , : perated by Sandia Corporation, a wholl idi i
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE—AC()4y—094wAnLe8d550u0b()sIdSIAaNDOfNLOOCZKhO?jd)X(%t(IPn

Scope of Sierra Software Project

What is Sierra?

Sandia, Org. 1500, modeling and simulation
of engineering systems

Loosely coupled multiphysics, solid
mechanics, structural dynamics, thermal,
aero, fire.

99 physics and supporting executables
including supporting tools: aprepro, epu
12,827 input options

not including sub-options

It’s own secondary department just to support the developers.
50 nightly build, compile and test platforms on the dashboard

16,485 automated tests
(including some serial/parallel redundancy)

Distribution to multiple HPC platforms across DOE labs and DOD sites.

What do we need to convince ourselves
that we trust our software simulations?

Computer programs are the most intricate, delicately
balanced and finely interwoven of all the products of
w» human industry to date. They are machines with far
L~ _ more moving parts than any engine: the parts don't
wear out, but they interact and rub up against one

#° another in ways the programmers themselves cannot
predict.

- James Gleick (2002)

- Weinberg's Second Law: If builders built buildings the
~. way programmers wrote programs, then the first
- woodpecker that came along would destroy

P et == Civilization.

Remember the saying - Gerald Weinberg Murali Chemuturi
garbage-in, garbage out?

With todays supercomputers, it’s easier

than ever to make super-garbage. And it One in a million is next Tuesday.
looks lovely, if you don’t dig too deep. .
- Gordon Letwin

http://en.wikiquote.org/wiki/James_Gleick
http://en.wikiquote.org/wiki/Gerald_Weinberg
http://en.wikiquote.org/w/index.php?title=Murali_Chemuturi&action=edit&redlink=1
http://blogs.msdn.com/larryosterman/archive/2004/03/30/104165.aspx
http://blogs.msdn.com/larryosterman/archive/2004/03/30/104165.aspx

Processes replaced by software

The replacement of processes previously performed by hardware and/or human
action is unprecedented. The science fiction future is not filled with robots, but

software.
Estimated Onboard SLOC Growth
Slope: 0.1778 Intercept: -338.5
Curve Implies SLOC doubles about every 4 years NEXT
20 ' ' ' ' 0 299M
: l : \ 134M
1| | (- S — i,g.1M34
& i BTTTAM o o s2IM
= " B737:470K L :
@B ' B747: 370K + — A220/A340:2M
= B767: 190K~ L JF=—A320: 800K
S 12| B757:190K > g/ +-A31O£?OOK ; p— This line fit is pegged at 2705 M SLOC because the SLOC
S 1 ia " o
=3 . [esi
S 101 . R +A300FF 4PDK UL excess of $108 P
8 . m<—A300B4.6K —&— Straight Line curve fit
""" P oameteaey ¢ 8§00 ¥ —4— Boeing aircraft
6 ~—INS: 0.8K) : _@- Airbus aircraft

1960 1970 1980 1990 2000 2010 2020 - [} - Not affordable extrapolation

ACTOHWTI S: Airbus da;a source: IR !i’otpckr' De Montalk, “Computer

SLOC: software lines of code gomre in Cmmmr%ft. Sixth aldgnuc'g (';_‘onference unD

COCOMO II: COnstructive COst MOdel | 2427, 1991 Boeing data source: .. Chilenski 3009
e st dyiveeie b ot oo . CLOSEX
Image 1 of 2

Group Exercise

" Think of a software tool that you use regularly
1. How much credibility do you put into the results?
2. What is the evidence or why
3. How accurate are the results?

ldeas:

= Microsoft Excel

= Sierra Mechanics

= Google Maps or your favorite GPS
= Search Engine

= Speech Recognition

Code Verification

Considerations:

= Modeling and simulation software running on today’s
supercomputers is an extremely complex system, which in
turn is designed to model another complex system, in our
case: nuclear weapons.

= QOur main difficulty in the design and maintenance of
modeling and simulation software is: managing complexity.

= Basic SQA (Software quality assurance) practices are critical,
and provide the foundation for code verification.

What is Code Verification

= An activity to ensure our modeling and simulation software is
adequate for its intended purpose.

= Ensuring that the approximation to the model equations is
constructed correctly.

= Ensuring defects do not exist in the software, in context.

= Verification is part of a larger SQA (software quality
assurance) effort.

= There are many activities and tools for SQA, however, testing
the order of convergence of numerical approximations is the
essential tool for verification.

Order of convergence tests, on production compute servers,
are a specialized type of integration, or system tests.
X A

Defect Detection Rates

Modal Rate This table refers only to

Informal design reviews

Formal design inspections
Informal code reviews

Formal code inspections
Modeling or prototyping
Personal desk-checking of code
Unit test

New function (component) test
Integration test

Regression test

System test

Low-volume beta test (<10 sites)

High-volume beta test (<1000 sites)

35%
55%
25%
60%
65%
40%
30%
30%
35%
25%
40%
35%
75%

detection, not actually
fixing or resolving the
defects.

is critical for mod-sim
software. Testing can be

tracked and automated in
some sense.

From Programming Productivity (Jones 1986), “Software defect-Removal Efficiency (Jones 1996) and “What We Have Learned

About Fighting Defects” (Shull et al. 2002)

Defect Detection Rates

Conclusions from the table:

Modal rates don’t rise above 75%
Average effectiveness of techniques is around 40%

The most commonly used, unit testing and integration
testing, are only 30%-35%.

The typical organization uses a test-heavy defect removal
approach and often achieve only 60% defect removal
efficiency.

Order of convergence testing on various installed platforms is
a system test.

Defect detection methods work better in combination.

Software Quality Key Points

= SQA requires a reallocation of resources, a major component
of development time and money must go to verification.

= Prefer early cheap defect prevention rather than expensive
fixes later.

= Not all facets of the software and all quality assurance goals
are achievable within a fixed budget. Therefore, we must
identify the goals, limits and scope of the activities explicitly.
Communicate these with developers, analysts and their
customers.

= No single technique is effective by itself. Testing by itself is
not optimally effective at removing defects.

What is a Verification Test?

Verification Test A high quality test of the code, evaluating the accuracy and

precision of the approximation, preferably on a problem with a known analytic exact
solution, or manufactured solution.

Aiming for higher Levels of Rigor as opposed to:

= Code-to-code comparisons

= Benchmarks

= Comparing to the solution of a nearby simpler model (beam/shell theory)

Verification Test Procedure
1. Construct an analytic solution to a problem
a) Find exact solution on a simple domain, or
b) manufacture a solution and reverse engineer boundary conditions, source
terms

2. Compute errors in suitable metrics, the difference between they analytic and
approximate solution produced by the code
3. Examine convergence behavior as mesh size becomes uniformly smaller

Aside: Metrics of Numerical Error

Error in your output Quantity of Interest or Qol
= Directly relevant to your problem

= Examples:
= Coefficient of drag in fluid problems

= Average temperature of a part at a certain time in transient heat
conduction

= Stress intensity factors in linear elastic fracture mechanics
= Mode shapes, or eigenvalues, in structural dynamics

= Often a result of extra post processing of the fields in the code
following the algebraic solve

Aside: Metrics of Numerical Error

Error measured in a Global Norm
" |ncludes field information across the whole simulation
= Scalar quantity
= Much can be proven about their convergence behavior

= Remain finite even when the model allows for infinite field values
for example: linear elasticity allows infinite stresses

= Often behave monotonically as mesh size shrinks
= Can be estimated with simple and computable error estimates

= Can often be computed as a post-process outside the code as they
only require field values

L2 norm of a field function u(x) ||u]|ig = / ()l dx
Q

Often this term is left out,
. . / which is technically called
H1 norm of a field function u(x) ””"iﬂ = ||lu]|f-;2 ‘lk 2 the Hl-seminormy

Example Verification Test

T, =300 coarse mesh

Goal: test whether code achieves
expected order of convergence T,=

= Heat conduction and enclosure
radiation

= Formulated in such a way that an
analytic solution can be represented
in Matlab

= Exact solution provided to the code

Thermal conductivity (block_1) | k; | 2.0

— ' initial condition 7,_, = 300
Thermal conductivity (block_2) | k | 0.35

Density p | 1.0

Specific heat Cp | 1.0 radius of surface_1 | r; | 0.01
emissivity (surface_2) g | 0.50 radius of surface 2 | r» | 0.02
emissivity (surface_3) ey | 0.55 radius of surface_3 | r3 | 0.03
Stefan-Boltzmann constant o | 5.6704e-8 radius of surface_4 | ry | 0.04

Example Verification Test

Passing the test

The problem is run by the code
on a sequence of four meshes
using uniform refinement.

Each subsequence mesh has 8X
the elements as the previous.

From theory, the expected rates
of convergence in the L?, L*, and
H'normsare?2,2,and 1,
respectively.

Error Norm

ol —— L2
F —@— Lnf
[——3gp— Hi1

ik
Num Nodes

IIII
10°

{1072

Feature Coverage Assessment

= Can we provide confidence that the code is tested well in the context of your
problem domain?
That is, are the features of the code you are actually using verified by verification
tests?
= A feature is any single class of input to the simulation code:
= Activating an emissivity boundary condition
= Traction boundary condition
= Choice of algebraic solver
= Contact tolerances, etc.

= In the past any such evidence was only word of mouth, subjective developer
claims, or collected by hand

eature coverage , objective,
and independent assessment of how well the features you using are verified

An FCT Analysis

Example: the structural dynamics cone
problem.

SOLUTION
// eigen nmodes=20
// uncomment all the lines below this to the END and comment the
line above to run a nonlinear blast analysis
NLtransient
time step 2.0e-5
nsteps 8192
nskip 1
rho 0.9
solver = gdsw
END

[...]

GDSW
max iter=1000
solver tol 1e-10
krylov_method=1 //0
overlap = 2
orthog = 1000
// orthog option = 2
END

Disp Magnitude

2 4 6
||\||\|\||\||\||\||\“

0.103 7.34

The main input file.
Specifies the
problem domain, a
grid, boundary
conditions, material
properties, algebraic
solver, etc.

An FCT Analysis

1. Execute the tool:

$ module load sierra Executing the fct

$ fct salinas mycone.inp command line tool

= Compares the parsed input file to the CoverageCertificate for
the version of the code that you are running. A few seconds to
run.

2. Examine Output:
1-way coverage report (*.html) - open in your browser
2-way coverage report (*.xls) - open in Excel

FCT 1-way coverage

One Way
Percent of features (non-commented
lines) in your input file that are covered

verified by at least one verification test.
* pne-way:93%
* two-way:66%

Two Way
* - -
unte::zdway' 100% Percent of pairs of every two features
ignored in the input file that were present in

one or more verification tests.

Input File

SOLUTION +
/7 eigen nmodes=20
// uncomment all the lines below this to the END and comment the line above to run a nonlinear blast
NLtransient +
time step + 2.0e-5
nsteps + 8192
nskip -

cissons_ratio nl.test|visco poissons_ratio nl.npl feti-dp
oissons ratlo nl. test|v1500_polssons ratio nl. npl sparsepak
oissons_ratio nl.test|visco poissons ratio nl.npl gdsw
oissons ratlo nl.test|visco poissons ratio nl. npl cf-feti
tress_relaxatlon_nl testlvisco stress relaxation nl.nnl adsw

tress relaxation nl.test
tress_relaxation_nl test CIICkmg on the eXpanSIon +/-

tress_relaxation “nl.test symbol opens a list of the
oissons ratio nl. test|v1 am c
tress_relaxation nl.test verification tests.

Salinas_rtest/verification/visco/visco
Salinas rtest/verification/visco/visco
Salinas_rtest/verification/visco/visco
Salinas rtest/verification/visco/visco
Salinas_rtest/verification/visco/visco_
Salinas_rtest/verification/visco/visco_
Salinas rtest/verification/visco/visco_
Salinas_rtest/verification/visco/visco_
Salinas rtest/verification/visco/visco
Salinas_rtest/verification/visco/visco_

1

rho + 0.9
solver = gdsw
END

Iltems in the list will soon link to
documentation and a directly of
all the test inputs and outputs.

|+

FCT 1-way coverage

No verification tests exist
= that involve these two
features

PARAMETERS +
wtmass + = 0.00259
+

END

// To run a blast analysis, uncomment the 3 lines inside the BOUNDARY block

BOUNDARY +
nodeset + 100
+ =386.4
function + 600
1/ fixed
END

signifies a limited form of testing: a regression test
(ensures the feature works the same as it did yesterday).

Red color signifies no test of any kind was found that included that feature.

= Results are an opportunity to discuss these features with developers and
whether additional or higher quality testing would be useful.

= 1-way coverage snapshot can be pasted into reports and documentation
of your analysis.

FCT 2-way coverage (Excel table)

!

"SOLVER_TOL"

"KRY ELASTIC"

"JOINT2G"

GENERAL.1.HISTORY "HISTORY"
"PHI_MAX"
GENERAL.1.0UTPUTS "OUTPUTS"
"SEARCH TOLERANCE"
GENERAL.1.GDSW "GDSW"
"NSTEPS"

NU"

"KX ELASTIC"

"MAX_ITER"

“NODESET"

"E"

"KX IWAN"

"CHI"

"NLTRANSIENT"
GENERAL.1.PROPERTY "PROPERTY"
"NUMRAID"

"SOLVER GDSW"

"KRZ ELASTIC"

"BLOCK"

"SURFACE"

"ACCELERATION"

"FUNCTION"

"ACCELX"

"SIDESET"
GENERAL.1.MATERIAL "MATERIAL"
"NONLINEAR_DEFAULT NO"
"TIMING"

GENERAL.1.BLOCK "BLOCK"

"KZ ELASTIC"

"TIME_STEP"

IIR!I

GENERAL.1.FILE "FILE"

"WNnnEQET!

12 3 4 5 6 7 8 910 111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3i

No verification tests exist that
s NN involve a pair of features
on off-diagonals

@ | [[[| [

¢ NN

a | [[T
10 I

of | [[[[[[[[1]

[EREScEEmacEs
No verification tests exist that

e [[[[[[[[. .

5 HTHNEEEEEEEEE involve a single features

16 i

17 ==---------- on the diagonal

18 I

21 HENENENN N

L]
2 AlEEEEEEEEEEEEEEEEEEEE.
23 I v O
2 HEEEEEEEENEN HEEENE

el |][]

28 HEEEEEENEN

» HlEEEEEENEE
& [[[[[[[[T]]
el | | [L]

A | | | |

¥ Hl
ey | |

Summary on Code Verification

= Code verification improves credibility
= Desire to ensure the software works as intended
= Demonstrate there are no defects in how you use it

= Testing and SQA is expensive, but better to prevent issues
cheaply than to discover them later

= The feature coverage tool, FCT, can generate evidence as a
pathway to communication between users and developers

	II. Code Verification�Kevin Copps and Brian Carnes, Org. 1544
	Scope of Sierra Software Project
	What do we need to convince ourselves that we trust our software simulations?
	Processes replaced by software
	Group Exercise
	Code Verification
	What is Code Verification
	Defect Detection Rates
	Defect Detection Rates
	Software Quality Key Points
	What is a Verification Test?
	Aside: Metrics of Numerical Error
	Aside: Metrics of Numerical Error
	Example Verification Test
	Example Verification Test
	Feature Coverage Assessment
	An FCT Analysis
	An FCT Analysis
	FCT 1-way coverage
	FCT 1-way coverage
	FCT 2-way coverage (Excel table)
	Summary on Code Verification

