
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Photos placed in horizontal position
with even amount of white space

 between photos and header

II. Code Verification
Kevin Copps and Brian Carnes, Org. 1544

ESP700
April 2014

SAND2014-3839P

Scope of Sierra Software Project
What is Sierra?
Sandia, Org. 1500, modeling and simulation
of engineering systems
 Loosely coupled multiphysics, solid

mechanics, structural dynamics, thermal,
aero, fire.

 99 physics and supporting executables
including supporting tools: aprepro, epu

 12,827 input options
not including sub-options

2

 It’s own secondary department just to support the developers.
 50 nightly build, compile and test platforms on the dashboard
 16,485 automated tests

(including some serial/parallel redundancy)
 Distribution to multiple HPC platforms across DOE labs and DOD sites.

What do we need to convince ourselves
that we trust our software simulations?

Computer programs are the most intricate, delicately
balanced and finely interwoven of all the products of
human industry to date. They are machines with far
more moving parts than any engine: the parts don't
wear out, but they interact and rub up against one
another in ways the programmers themselves cannot
predict.
- James Gleick (2002)

Weinberg's Second Law: If builders built buildings the
way programmers wrote programs, then the first
woodpecker that came along would destroy
civilization.
- Gerald Weinberg cited in: Murali Chemuturi (2010)

One in a million is next Tuesday.
- Gordon Letwin

 3

Remember the saying
garbage-in, garbage out?
With todays supercomputers, it’s easier
than ever to make super-garbage. And it
looks lovely, if you don’t dig too deep.

http://en.wikiquote.org/wiki/James_Gleick
http://en.wikiquote.org/wiki/Gerald_Weinberg
http://en.wikiquote.org/w/index.php?title=Murali_Chemuturi&action=edit&redlink=1
http://blogs.msdn.com/larryosterman/archive/2004/03/30/104165.aspx
http://blogs.msdn.com/larryosterman/archive/2004/03/30/104165.aspx

Processes replaced by software
The replacement of processes previously performed by hardware and/or human
action is unprecedented. The science fiction future is not filled with robots, but
software.

4

Group Exercise

 Think of a software tool that you use regularly
1. How much credibility do you put into the results?
2. What is the evidence or why
3. How accurate are the results?

Ideas:
 Microsoft Excel
 Sierra Mechanics
 Google Maps or your favorite GPS
 Search Engine
 Speech Recognition

5

Code Verification

Considerations:
 Modeling and simulation software running on today’s

supercomputers is an extremely complex system, which in
turn is designed to model another complex system, in our
case: nuclear weapons.

 Our main difficulty in the design and maintenance of
modeling and simulation software is: managing complexity.

 Basic SQA (Software quality assurance) practices are critical,
and provide the foundation for code verification.

6

What is Code Verification

 An activity to ensure our modeling and simulation software is
adequate for its intended purpose.

 Ensuring that the approximation to the model equations is
constructed correctly.

 Ensuring defects do not exist in the software, in context.
 Verification is part of a larger SQA (software quality

assurance) effort.
 There are many activities and tools for SQA, however, testing

the order of convergence of numerical approximations is the
essential tool for verification.

7

Order of convergence tests, on production compute servers,
are a specialized type of integration, or system tests.

Defect Detection Rates
Technique Modal Rate
Informal design reviews 35%

Formal design inspections 55%

Informal code reviews 25%

Formal code inspections 60%

Modeling or prototyping 65%

Personal desk-checking of code 40%

Unit test 30%

New function (component) test 30%

Integration test 35%

Regression test 25%

System test 40%

Low-volume beta test (<10 sites) 35%

High-volume beta test (<1000 sites) 75%

From Programming Productivity (Jones 1986), “Software defect-Removal Efficiency (Jones 1996) and “What We Have Learned
About Fighting Defects” (Shull et al. 2002)

This table refers only to
detection, not actually
fixing or resolving the
defects.

Testing is not the most
effective technique, but it
is critical for mod-sim
software. Testing can be
tracked and automated in
some sense.

Defect Detection Rates

Conclusions from the table:
 Modal rates don’t rise above 75%
 Average effectiveness of techniques is around 40%
 The most commonly used, unit testing and integration

testing, are only 30%-35%.
 The typical organization uses a test-heavy defect removal

approach and often achieve only 60% defect removal
efficiency.

 Order of convergence testing on various installed platforms is
a system test.

 Defect detection methods work better in combination.

Software Quality Key Points

 SQA requires a reallocation of resources, a major component
of development time and money must go to verification.

 Prefer early cheap defect prevention rather than expensive
fixes later.

 Not all facets of the software and all quality assurance goals
are achievable within a fixed budget. Therefore, we must
identify the goals, limits and scope of the activities explicitly.
Communicate these with developers, analysts and their
customers.

 No single technique is effective by itself. Testing by itself is
not optimally effective at removing defects.

What is a Verification Test?

Aiming for higher Levels of Rigor as opposed to:
 Code-to-code comparisons
 Benchmarks
 Comparing to the solution of a nearby simpler model (beam/shell theory)

11

Verification Test A high quality test of the code, evaluating the accuracy and
precision of the approximation, preferably on a problem with a known analytic exact
solution, or manufactured solution.

Verification Test Procedure
1. Construct an analytic solution to a problem

a) Find exact solution on a simple domain, or
b) manufacture a solution and reverse engineer boundary conditions, source

terms
2. Compute errors in suitable metrics, the difference between they analytic and

approximate solution produced by the code
3. Examine convergence behavior as mesh size becomes uniformly smaller

Aside: Metrics of Numerical Error

Error in your output Quantity of Interest or QoI
 Directly relevant to your problem
 Examples:

 Coefficient of drag in fluid problems
 Average temperature of a part at a certain time in transient heat

conduction
 Stress intensity factors in linear elastic fracture mechanics
 Mode shapes, or eigenvalues, in structural dynamics

 Often a result of extra post processing of the fields in the code
following the algebraic solve

Aside: Metrics of Numerical Error
Error measured in a Global Norm

 Includes field information across the whole simulation
 Scalar quantity
 Much can be proven about their convergence behavior
 Remain finite even when the model allows for infinite field values

for example: linear elasticity allows infinite stresses
 Often behave monotonically as mesh size shrinks
 Can be estimated with simple and computable error estimates
 Can often be computed as a post-process outside the code as they

only require field values

L2 norm of a field function u(x)

H1 norm of a field function u(x)
Often this term is left out,
which is technically called
the H1-seminorm

Example Verification Test

Goal: test whether code achieves
expected order of convergence
 Heat conduction and enclosure

radiation
 Formulated in such a way that an

analytic solution can be represented
in Matlab

 Exact solution provided to the code

14

T4 = 1300

T1 = 300

initial condition Tt = 0 = 300

coarse mesh

Example Verification Test

Passing the test
 The problem is run by the code

on a sequence of four meshes
using uniform refinement.

 Each subsequence mesh has 8X
the elements as the previous.

 From theory, the expected rates
of convergence in the L2, L∞, and
H1 norms are 2, 2, and 1,
respectively.

15

Feature Coverage Assessment
 Can we provide confidence that the code is tested well in the context of your

problem domain?
That is, are the features of the code you are actually using verified by verification
tests?

 A feature is any single class of input to the simulation code:
 Activating an emissivity boundary condition
 Traction boundary condition
 Choice of algebraic solver
 Contact tolerances, etc.

 In the past any such evidence was only word of mouth, subjective developer
claims, or collected by hand

The Sierra feature coverage tool is intended to provide an automated, objective,
and independent assessment of how well the features you using are verified

An FCT Analysis

17

Example: the structural dynamics cone
problem.

SOLUTION
// eigen nmodes=20
// uncomment all the lines below this to the END and comment the
line above to run a nonlinear blast analysis
 NLtransient
 time_step 2.0e-5
 nsteps 8192
 nskip 1
 rho 0.9
 solver = gdsw
END

[...]

GDSW
 max_iter=1000
 solver_tol 1e-10
 krylov_method=1 //0
 overlap = 2
 orthog = 1000
// orthog_option = 2
END

The main input file.
Specifies the
problem domain, a
grid, boundary
conditions, material
properties, algebraic
solver, etc.

An FCT Analysis

18

1. Execute the tool:

 Compares the parsed input file to the CoverageCertificate for
the version of the code that you are running. A few seconds to
run.

2. Examine Output:
1-way coverage report (*.html) - open in your browser
2-way coverage report (*.xls) - open in Excel

$ module load sierra
$ fct salinas mycone.inp

Executing the fct
command line tool.

FCT 1-way coverage

19

Clicking on the expansion +/-
symbol opens a list of the
verification tests.

Items in the list will soon link to
documentation and a directly of
all the test inputs and outputs.

One Way
Percent of features (non-commented
lines) in your input file that are covered
by at least one verification test.

Two Way
Percent of pairs of every two features
in the input file that were present in
one or more verification tests.

FCT 1-way coverage

20

No verification tests exist
that involve these two
features

Amber color signifies a limited form of testing: a regression test
(ensures the feature works the same as it did yesterday).
Red color signifies no test of any kind was found that included that feature.

 Results are an opportunity to discuss these features with developers and
whether additional or higher quality testing would be useful.

 1-way coverage snapshot can be pasted into reports and documentation
of your analysis.

FCT 2-way coverage (Excel table)

21

No verification tests exist that
involve a pair of features
on off-diagonals

No verification tests exist that
involve a single features
on the diagonal

Summary on Code Verification

 Code verification improves credibility
 Desire to ensure the software works as intended
 Demonstrate there are no defects in how you use it
 Testing and SQA is expensive, but better to prevent issues

cheaply than to discover them later
 The feature coverage tool, FCT, can generate evidence as a

pathway to communication between users and developers

22

	II. Code Verification�Kevin Copps and Brian Carnes, Org. 1544
	Scope of Sierra Software Project
	What do we need to convince ourselves that we trust our software simulations?
	Processes replaced by software
	Group Exercise
	Code Verification
	What is Code Verification
	Defect Detection Rates
	Defect Detection Rates
	Software Quality Key Points
	What is a Verification Test?
	Aside: Metrics of Numerical Error
	Aside: Metrics of Numerical Error
	Example Verification Test
	Example Verification Test
	Feature Coverage Assessment
	An FCT Analysis
	An FCT Analysis
	FCT 1-way coverage
	FCT 1-way coverage
	FCT 2-way coverage (Excel table)
	Summary on Code Verification

