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ESP700: Verification

Overall Goals for Verification

= |dentify numerical error and its sources
= Understand and apply models of numerical error

= Understand code verification and assess feature coverage for
a given Sierra model

= Quantify numerical error using a mesh refinement study
= Learn about advanced topics such as mesh adaptivity




Motivating Factors for Verification

= Helps answer the questions:
1. How confident am | in the simulation tools?
2. What s the accuracy of the results?

= Verification is part of the Predictive Capability Maturity Model
(PCMM)

= Verification is part of the Comp/Sim RPP (NW)
= Credibility requires attention to accuracy

= Accuracy should be assessed along with other uncertainties in
a model prediction
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Slelpner A Offshore PIatform

@ Descends to a water depth of 82m.

@ Concrete gravity base structure
consisting of 24 cells, each 12m in
diameter.

@ Total base area of 16,000m?; height
110m; concrete volume 75,000m3.

@ Top deck weighs 57,000 tons,
supports drilling equipment and
accommodation for 200 people
weighing 40,000 tons.




Sleipner A Offshore Platform

23 August 1991: During the ballasting to pre-  SINTEF investigated the accident, produc-
pare for deck mating in Gandsfjorden outside Sta- ing 16 reports.

vanger, Norway, the first concrete base structure . o
sprang a leak and sank the platform. @ A cell wall failed, resulting in a crack

and a leakage that the pumps were
not able to cope with.

@ Computed stresses, which were

critical to the design of the thickness
of the wall had a 47% error.

@ The cause was a combination of a
serious error in the finite element
analysis and insufficient anchorage of
the reinforcement in a critical zone.

Proper solution verification could have
avoided the accident.

@ Structure crushed into debris no More careful finite element analysis, made
larger than 10m, at a depth of 220m.  after the accident, predicted that failure
@ Seismic event registering 3.0 on the would occur with this design at a depth of
Richter scale. 62m, which matches well with the actual

. . occurrence at 6bm.
@ Total economic loss of $700 million.




Models for Physical Events

= First need to identify different kinds of models:
= Conceptual/physical model:
= Continuum mechanics, Cauchy stress, Linear elasticity
= Mathematical model:
= Momentum balance equations, boundary conditions
= Linear elastic constitutive models
= Numerical model:
= Finite element shape functions; discrete balance equations
= Meshes for the domain (8 node hex elements)
= Computer model:
= Assembly of nodal forces, stiffness/mass matrices

= Solution of linear systems, eigenvalue problems




Different Errors for Different Models

= Could say errors or discrepancies

= Errors can arise in all levels of modeling:
= Conceptual/physical model:
" Neglected finite strain effects or inertial effects
= Mathematical model:
= Wrong boundary condition (neglected friction)
= Numerical model:
= Mesh is too coarse for desired accuracy
= Computer model:

" Incorrect implementation of material model

= Qur focus in this part of the course is on errors from the
numerical and computer models.




Quantities of Interest (Qol)

= The models are used to predict something

= in our case typically a physical event that could potentially be realized
experimentally

= [tisimportant to be clear about the precise quantities of
interest (Qol) to be predicted:

= Average displacement (at point, over surface)
= Max stress/strain in a material

= Resulting load on a surface (integrated force)
= Max acceleration over a time interval
= Some Qols can be computed more accurately than others:

* |ntegrated quantities (space/time) are usually more accurate than
localized quantities



Back to Numerical Error

= \What are the sources of numerical error?

= Approximations made in order to turn the math model into
something a computer can solve
= Spatial discretization (mesh error)
= Time integration (discrete time steps)
= |terative methods to solve nonlinear equations
= Numerical integration
= Truncation of infinite series
= Finite sampling (uncertainty quantification)

= Numerical error can be reduced with additional computational
effort




Models for Numerical Error

= The most common model you will see:
Qh)=Q + ChP
= “Approximate Qol = exact Qol + error term”
= What are all the parameters?
= Mesh size: h or Ax (“delta x”)
= Qol as function of mesh size: Q(h)

= Rate of convergence: p
" Error constant: C

= Whatis h? A measure of the available resolution
= The size (diameter) of the grid cells used in the mesh
= The size of the time step



Example: Numerical Error Model

= Compare Qol values for different rates of
convergence (p=1 and 2) with exact Qol =1
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Example: Numerical Error Model (2)

= When we know the exact Qol, we can compute the
exact error at each mesh level
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Numerical Error: A Simple Example

= ODE problem for integration of

1
mechanical system (spring) Tl = Tn + Dtv, + g(At)2an
. At
“F=ma” <= —kx = max Un+1 = Up + 7(an+1 + an)
k
= We can build a numerical model any1 =m 'Fypq = — Tt

(central difference)

. : : . : Central Diff
= Think of this as a simplified version enra’ HITerence

. : Integrator
of a solid mechanics code (the numerical model).
= We have an exact solution: Second order time
accuracy.

z(t) = zg cos(wt), w=+\k/m




Simple Example: Position Output

= We plot position versus
time for exact and o2r — 102
numerical solutions
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Simple Example: Position Errors

= Since we have the exact

solution, we can plot the 10 —g0’
. -_ + dlf1 7]

difference (errors) | —m— a :

between numerical | il e A

solutions and the exact
solution

= We clearly see the errors
reducing with time step
size (here near final time)

Displacement Error

= |s this enough evidence?

19 19.2 19.4 19.6 19.8 20




Simple Example: Rate of Convergence

= We plot the errors versus
the time step at final time
(log-log scale)

= Now we see the second
order slope and have
verified that the
implementation appears
to deliver as promised

= |ater we will discuss
extrapolation when the
exact solution is unknown
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Simple Example: Code Verification

= Suppose we made a code mistake: Un+1 = Unp

= We can get larger errors, lower convergence rates, sometime
no convergence at all!
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Code and Solution Verification

Code Verification is the activity of ensuring that the code
correctly implements the numerical model.

= Errorsin computer models are called code defects or bugs

= The code developers/testers have primary responsibility for
identifying and eliminating code bugs

Solution Verification is the quantification and reduction of
numerical error.

= Done in the context of the overall uncertainty budget.

= Error may or may not need to be reduced.




Examples of Theoretical
Convergence Rates

= We will use solid mechanics as an example
= Assume we are using linear finite elements (8-node hex)
= Modal analysis:

= Eigenvalues and eigenvectors: p=2

= Static problems:
= Displacements: p=2
= Strains and stresses: p=1

= Dynamic problems (with second order time integrator)
= Velocities: p=2 (other variables same as static case)

= These are the optimal rates. In practice, geometric and
material irregularities will reduce the actual rate!




Outline of Class

= Part I: Introduction
= Part Il: Code Verification
= Part Illl: Solution Verification

= Part IV: Adaptivity and Advanced Topics
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