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 Introduction of instructors and students

 Introduction to Sandia National Laboratories

* Orientation to facilities

* Groundrules for visitors to Sandia National Laboratories

* Discussion of professional roles and responsibilities of
students in Iraq

* Discussion of objectives for class
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* Provide an overview of the major principles of groundwater
flow and groundwater flow systems

* Present the mathematical basis for quantifying groundwater
flow and well hydraulics

* Introduce the concepts of groundwater contamination and
the processes of contaminant transport in groundwater

* Provide technical background for well construction,
groundwater monitoring, and groundwater sampling

* Provide an overview of radionuclide sources,
contamination, and transport processes in groundwater

* Discuss real-world applications of hydrogeologic principles
of flow and transport to radionuclide contamination of

groundwater
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Water Cycle

Surface area Volume Volume  Equivalent

Parameter (km2)x106  (km3)x106 (%) depth (m)* Residence time
QOceans and seas 361 1370 94 2500 ~ 4000 years
Lakes and reservoirs 1.55 0.13 <0.01 0.25 ~ 10 yeats
Swamps <0.1 <0.01 <0.01 0.007 1-10 years
River channels <0.1 <0.01 <0.01 0.003 ~ 2 weeks
Soil moisture 130 0.07 <0.01 0.13 2 weeks—1 year
Groundwater 130 60 4 120 2 weeks—10,000 years
Icecaps and glaciers 17.8 30 2 60 10-1000 years
Atmospheric water 504 0.01 <0.01 0.025 ~ 10 days
Biospheric water <0.1 <0.01 <0.01 0.001 ~1 week

SOURCE: Nace, 1971.
*Computed as though storage were uniformly distributed over the entire surface of the earth.
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Groundwater as a Resource
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Groundwater as a Resource

Marsh and trees transpiring water

-~

- Influent streams
‘\(fee_ding ground water

Rejected
"~ recharge

Water table at or
near land surface
at least part of the time

\. v -/ Water table
Recharge

Successive positions of
cone of depression

Figure 6.1

Factors controlling the response of a ground water basin to discharge
by wells (from Theis, 1940). Reprinted with permission of The
American Society of Civil Engineers.
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Groundwater as a Resource

Flood water table]

Baseflow water table} " - -
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Groundwater as a Resource

* Limitations on groundwater
utilization as a resource:

— Storage capacity of the
groundwater system

— Slow recharge of the system

— Degradation of water quality
with continued extraction

— Interaction with surface water
resources (stream and spring
flow)

— Subsidence

Pumping
well
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Groundwater as a Resource

« Qanats developed as a
method of
groundwater
extraction in ancient
Persia

* Energy saving
technology for
accessing
groundwater resource
Is still used in Middle
East and Central Asia

Section

Figure 1. General Schematic for a Qanat.
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Groundwater Regimes

‘ Soil
water

 Water movement is primarily
vertical in the vadose zone

* Thickness of the vadose zone
varies considerably depending
on climate and location in the
groundwater flow system

« Groundwater flow in the
phreatic zone tends to be
primarily horizontal in high-
permeability layers and vertical
in low-permeability layers combination with reck

Intermediate
vadose
water

Vadose water

Capillary
Water table water

Phreatic water
(ground water)

Water in
unconnected pores

~<— Phreatic zone-*‘<— Vadose zohe ——
Interstitial water
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Groundwater Regimes

« Capillary suction causes
saturation of above the

water table ey —=1
 Groundwater movement in = - r{gg;igz
the vadose zone tends to : PresSure
be dominated by capillary Water table 2
forces :-:—‘é{—:—:—:—:—:—:—:—:—:—:—:~:—:—:5;::—:::::::::::::::::::::::::;_—:_‘—:;:;
 Groundwater movement EZE:E:E:E:E:E:E:EE:E:E:EEEEEEEEEEEEEEEE—:EEEEEEEEEEEZEIEZEIEZEIEZEI: =5
below the water tableis _Zone of
dominated by viscous Posive o |
forces
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Groundwater Regimes

* Local or isolated liquid
saturation in the vadose
zone is referred to as
“perched water”

* Perched water occurs
wherever the downward

percolation rate exceeds the '.

hydraulic conductivity of
the medium

TI7777 7777777777 77777777777 777777,
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Sand
Clay

[ ] Unsaturated
V' /] Saturated
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Darcy’s Law
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Figure 2.1 Experimental apparatus for the illustration of Darcy’s law.

@ Sandia
National
14 Laboratories



Darcy’s Law
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— KA—
¢ Al
Ah
=K
1 Al

O = volumetric flow rate
g = specific discharge
K = hydraulic conductivity
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Hydraulic Properties

K=iP &
L

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

T'=b-K

k = 1ntrinsic permeability

p = density of water

g = acceleration of gravity

1= dynamic viscosity of water

T'= aquifer transmissivity
b = aquifer thickness
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Hydraulic

Properties

Ss :p-g(oc+nB)

Ay
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sy
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S=b-8,

S, = specific stora

ge (confined aquifer)

S, = specific yield (uncontined aquifer)

S = storativity of a confined aquifer

o = compressibility of the aquifer
P = compressibility of water
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Properties of Geologic Media

Figure 2,11 Relation between texture and porosity. (a) Well-sorted sedimen-
tary deposit having high porosity ; (b) poorly sorted sedimentary
deposit having low porosity ; (c)well-sorted sedimentary deposit
consisting of pebbles that are themselves porous, so that the
deposit as a whole has a very high porosity; (d) well-sorted
sedimentary deposit whose porosity has been diminished by the
deposition of mineral matter in the interstices; (e) rock rendered

porous by solution ; (f) rock rendered porous by fracturing (after
Meinzer, 1923).
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Properties of Geologic Media

Porous Media
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Properties of Geologic Media

Fractured Media
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Properties of Geologic Media

Table 2.2 Range of Values of Hydraulic Conductivity
and Permeability
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Properties of Geologic Media

* Porosity indicates the
groundwater content under
saturated conditions

- “Effective porosity” is defined
as the porosity accessible by
significant groundwater flow
and is less than total porosity

* Groundwater velocity is
inversely proportional to
effective porosity of the
medium

Table 2.4 Range of Values of Porosity

n(%)

Unconsolidated deposits
Gravel
Sand
Silt
Clay

Rocks
Fractured basalt
Karst limestone
Sandstone
Limestone, dolomite
Shale
Fractured crystalline rock
Dense crystalline rock

25-40
25-50
35-50
40-70

5-50
5-50
5-30
0-20
0-10
0-10
0-5
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Properties of Geologic Media

» Geologic materials differ from
engineered materials because
they are typically highly
heterogeneous and
anisotropic

» Layered sedimentary geologic
media usually have significant
vertical anisotropy, with
vertical hydraulic conductivity
much less than horizontal
hydraulic conductivity

* Groundwater flow direction is
influenced by anisotropy in
hydraulic conductivity

Homogeneous, Isotropic

Homogeneous, Anisotropic

Kz

z
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Figure 2.8 Four possible combinations of heterogeneity and anisotropy.
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Figure 2.9 Relation between layered heterogeneity and anisotropy.
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Properties of Geologic Media

Textural and +-|t. ./~
compositional [
variation

Depth (m)

Bedding
plane

Zone of j .
— ! fracture -
! concentration

90 L { /
Figure 2.3

Occurrence of permeability zones in fractured carbonate rock. Highest well
yields occur in fracture intersection zones (from Lattman and Parizek, 1964).

Reprinted with permission of Elsevier Science Publishers, from J. Hydrol., v.
27 p 73_9 1 .
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Properties of Geologic Media

Gravel

Gravel

Fine sand
or mud

Y

< 1-5 km

Figure 2.8
Diagrammatic cross section of an alluvial fan (from Rust and Koster, 1984).
Reprinted with permission of the Geol. Assoc. of Canada.
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 Geometric structure of
sedimentary geologic material
is often determined by its
depositional environment

Alluvial
fan
breccias

Meander belt built
up above flood plain

* Understanding the continuity Vercal acoreion

(a)

and structure of hydraulic
conductivity in an aquifer may
be critical to predicting
groundwater movement and
contaminant migration

Active only at
flood stage

SRR 2\ 1.,‘.’.:_.“,_ /..
< In-channel "Nz e
and bar top .

deposits ~~___ Vertical B
accretion” *,*,

(d)
Figure 2.7
Contrasting the geometry of meandering (@) and braided () rivers
(from Walker and Cant, 1984). Reprinted with permission of the
Geol. Assoc. of Canada.
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Unsaturated Groundwater Flow

<——— Unsaturated———>t<—Saturated >

* Flow in the vadose zone is a non- Td—* o
linear process and a complex topic o 130

* Moisture content (degree of SR E
saturation) of unsaturated media is IR $3
a function of capillary pressure Weiing :

* Hydraulic conductivity of a0 0 20 w0 o 00
unsaturated media is also a - Saturated 0,03
function of capillary pressure : ';“;O;ZGJ 3

 Both functional relationships are o 002"%
hysteretic, with the functional form 100
differing for wetting and drying = Lo T

Pressure head,  (cm of water)
(b)

Figure 2.13 Characteristic curves relating hydraulic conductivity and mois-
ture content to pressure head for a naturally occurring sand soil
(after Liakopoulos, 1965a).
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Unsaturated Groundwater Flow

* Infiltration,
evapotranspiration, and
percolation of moisture in !
the vadose zone tend to be
transient processes

* In temperate climates soil
moisture increases during
months of low plant activity
and solar radiation in the T T + s o W~ b
winter and decreases Months of the Year
during the summer

Potential evapotranspiration

moisture

Inches of water
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