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Thin-film P(L)ZT ferroelectrics are important 
for capacitor applications

Pb(Zr,Ti)O3 and (Pb,La)(Zr,Ti)O3:

High-dielectric-constant (K) ferroelectrics for 
multilayer thin films

Referred to as PZT and PLZT

Multiple phases can form during processing

Act as series capacitors

 Loss of overall capacitance of device

Electrode

Electrode

High-K phase

Low-K phase

C1

C2 21

TOTAL

C
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C
1

1
C


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Lowest capacitance value 
dominates device performance!
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PbO volatility can result in poor film quality

Only the perovskite phase of P(L)ZT has high K

Perovskite is intolerant of Pb non-stoichiometry

When Pb-deficient, fluorite phase forms, with poor 
dielectric properties

PbO is volatile  lost during processing 

mixed-phase films with low K-values

P(L)ZT gel

Substrate

Heat treatment
Perovskite

Substrate

Fluorite

PbO loss
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Excess Pb avoids fluorite formation, but 
has detrimental effects

Typically, 10+% excess Pb is added to the 
precursor

Thinner films require more Pb excess, which 
interacts with the electrode and substrate

Can we produce single-phase perovskite P(L)ZT 
without excess Pb?

P(L)ZT gel
+ excess Pb

Substrate

Heat treatment

Perovskite

Substrate

PbO loss
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Will annealing crystallized films under a 
PbO solution restore the desired phase?

Hypothesis: If we coat mixed-phase perovskite + 

fluorite films with PbO solution and anneal, the 
fluorite will convert to the desired perovskite phase

Perovskite

Substrate

Fluorite

PbO spin-coat
Perovskite

Substrate

Fluorite
PbO layer

Anneal
(650°C/45 min)

Perovskite

Substrate



6

Microscopy shows mixed-phase structures 
converted to single-phase

PZT 53/47

PLZT 
12/70/30

Before overcoat+anneal After overcoat+anneal

FIB-Pt

Pt

Film

Pt
Ti

SiO2
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XRD, HREM, and electrical properties 
confirm the hypothesis
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XRD, HREM, and electrical properties 
confirm the hypothesis

Hypothesis: If we coat mixed-phase perovskite + 

fluorite films with PbO solution and anneal, the 
fluorite will convert to the desired perovskite phase

Perovskite

Substrate

Fluorite

PbO spin-coat
Perovskite

Fluorite
PbO layer

Substrate
Anneal

(650°C/45 min)

Perovskite
Above experiments: 
Brennecka et al., Adv. 
Mater., 2008



9

We’ve characterized the structure – but 
what about the chemistry?

The previous experiments showed us the 
structural evolution

P(L)ZT film properties are sensitive to local 
chemistry

• Pb/B-site ratio

• Zr/Ti ratio

• La doping

Can we use EDS in STEM to study this local 
chemistry?
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Accurate measurement of cation content is 
important to interpret properties

Haertling, J. Am. Ceram. 
Soc., V82, 1999, P.797

PZT 53/47

PLZT 12/70/30

In general, best 
dielectric properties 
at phase boundaries



11

EDS allows us to qualitatively and 
quantitatively measure chemistry

Scanning TEM (STEM) beam

To imaging detector

EDS detector
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Quantification of linescans time-consuming, 
but straightforward

222





































 













B

B

A

A

AB

AB

B

A

B

A

B

A
AB

B

A

I

I

I

I

k

k

C

C

C

C

I

I
k

C

C

Parish, Brennecka, Tuttle, 
and Brewer, J. Mater. 

Res., submitted

±3

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200

Distance (nm)

P
b

 /
 (

Z
r 

+
 T

i)

Single phase

Mixed phase

650°C/30 min
0.0

0.4

0.8

1.2

1.6

2.0

0 50 100 150 200

Distance (nm)

Z
r 

/ 
T

i

Single phase

Mixed phase

650°C/30 min



13

We need a technique to measure 
representative cation ratios

EDS linescan sampling
<10 nm

 feature size

SIMS, XPS, AES depth profiling
~several 10s of m

 feature size

Feature size
~hundreds of nms

How to 
quantify at 
this length 

scale?
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Comparisons: linescans and spectrum 
images (SIs)

EDS linescans

Small sampling area

Quantification 
established in 
the literature
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Can we use spectrum imaging?

Feature size  SI size

Spectrum imaging has the right 
length scale, but:

•How to get cation fractions 
CPb, CZr,…?
•How to get statistical 
uncertainties ?

Some 
literature 
available

Unable to 
find any 
literature

Larger 
area

?

CPb

CZr

CTi

CLa

Pb
Zr
Ti
La
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Spectrum imaging – need to mine the data

Typical dataset:
128128 pixels

2048 channels/pix
34 million datapoints

How to make use of this?
Multivariate Statistical 

Analysis (MSA)

X pixels
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Color image: an example of a 3-channel 
spectrum image

One spectrum

Intensity

RED GREEN    BLUE

point “spectrum”

(Slide courtesy 
M. Keenan and 
P. Kotula)
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Spectrum image = 
(Concentration) · (Spectral component)T

note the linearity assumption(Slide courtesy 
M. Keenan and 
P. Kotula)
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MSA finds the most relevant variations in 
the data

2-component model 
of color image

Original image

Processed spectral 
image

Score 
images (           )Loading 

spectra

T



Original data 



(Slide courtesy M. 
Keenan and P. Kotula)
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MSA finds the most relevant variations in 
the data

 

D = Unfolded 
spectral image 

matrix

C =Score images

D STC 

n p

S = Loading 
spectra

p
n

mm
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Principal Component Analysis (PCA) used 
to analyze our EDS spectrum images

 

D = Unfolded 
spectral image 

matrix

C =Score images

D STC 

n p

S = Loading 
spectra

p
n
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Many papers have quantified from dot 
maps or SIs (without MSA)

Pb(Mg,Nb)O3-PbTiO3

•Gorzkowski et al., J. Mat. Sci., V39, 
P.6735 (2004)

•(Lehigh Univ. VG STEM)

Al-4% Cu

•Carpenter et al., M&M, V5, P.254 
(1999)

•(Lehigh Univ. VG STEM)

Prior-austenite grain 
boundary in steel

•Williams et al., J. Elec. Micros., 
V51(Supp.), P. S113 (2002)
•(Lehigh Univ. VG STEM)
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A few papers have quantified with MSA

Ni-based superalloy Irradiated alloy steel

•Burke et al., J. Mat. Sci., V41, P.4512 
(2006)

•Lehigh Univ. VG STEM
•Watanabe et al., M&M, V12, P.515 (2006)

•Lehigh Univ. VG STEM (Cs corrected)
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Fe-Ni meteorite

•Goldstein et al., Meteoritics & 
Planetary Sci., V42, P.913 (2007)
•Sandia Labs Tecnai TEM/STEM

STEM

Cr Fe

TiAl

Nb Zr
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PCA produces a noise-filtered 
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Noise-filtered spectra can be deconvolved 
and integrated

TiO2

La2O3

Top-hat filter + MLSQ 
deconvolve the overlap:

Data
Fit
Residuals
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Ti K and 
La L lines 
overlap:

TiO2

La2O3
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Integration and deconvolution at each pixel 
yields count-maps

0 50 100 150 2000 100 200 300 400

Pt counts Pb counts
0 10 20 30 40 50 60 70

Zr counts

0 50 100 150 200

Ti counts
0 5 10 15 20 25 30

La counts
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Count maps and the Cliff-Lorimer equation 
yield quantitative maps

Cliff-Lorimer equation:

Quantitative mapping:

Ti

Zr
ZrTi

Ti

Zr k
C

C

I

I


0 2 4 6 8 10 0 10 20 30 40 50 60 70

Zr counts
0 50 100 150 200

Ti counts

= kZrTi  

Zr/Ti cation ratio

J. Micros., V103(2), 1975, P.203



29

The overcoat+anneal process 
restores the Pb-stoichiometry

0 0.2 0.4 0.6 0.8 1 1.2

Pb/(Zr+Ti)

Mixed phase Single phase

PLZT 12/70/30
650°C / 30 min

PZT 53/47
650°C / 30 min

200 nm
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Zr segregates to the fluorite
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perovskite conversion
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However, little Zr-segregation is seen in 
the PZT 53/47 material

Currently under investigation
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La segregation is also present

0 0.05 0.1 0.15 0.2 0.25 0.3

La/(Zr+Ti)

PZT 53/47
650°C/30 min
Single-phase

PZT 53/47
650°C/30 min
Mixed-phase
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Accurate measurement of cation content is 
important to interpret properties

Haertling, J. Am. Ceram. 
Soc., V82, 1999, P.797

Measured chemistry 
crosses phase 
boundaries –

This may degrade 
properties
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0 0.5 1 1.5 2 2.5 3

EDS linescan: 
Spot size ~10 nm

SIMS depth-profile:
Sampled area 4040 m

Quantified SI:
500250 nm

Drazic & Kosec, Ferroelectrics, 
V201, P.23, 1997

Etin et al., J. Am. Ceram. Soc., 
V89, P.2387, 2006

Zr/Ti ratio

We have succeeded in mapping cations at a 
length scale  feature size
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We have succeeded in mapping cations at a 
length scale  feature size

EDS linescan sampling
~several nanometers

 feature size

SIMS, XPS, AES depth profiling
~several 10s of microns

 feature size

Feature size
~hundreds of nms

Used STEM-EDS SIs 
to sample this scale
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We’ve been able to quantify point-by-point

A novel overcoat+anneal technique allows us to 
make single-phase perovskite without excess Pb-
additions

Spectrum images have the proper size scale to 
study inhomogeneities in PLZT thin films

Severe Zr-segregation found in PLZT but not PZT 
samples

PCA analysis + Cliff-Lorimer quantification allows 
mapping of the quantitative cation contents
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What we’re still missing:
statistical uncertainty
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What we’re still missing:
statistical uncertainty

 ?

Zr/Ti
0 2 4 6 8 10
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What if we apply our uncertainty equation 
point-by-point?
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What if we apply our uncertainty equation 
point-by-point?
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We thus have cation fraction and 
uncertainty with < 10 nm resolution

Zr/Ti
0 2 4 6 8 10


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These uncertainties are very large – how to 
do better?

Uncertainties are 20-40% relative:

This is a result of the small # counts/pixel:

How can we use MSA to improve our statistics?
5 10 15 20

0

2

4

6

8

20% 40% 60%

Zr/Ti relative error
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PCA solutions can be 
mathematically rotated

PCA solution:

For some rotation R:

Choose R to maximize spatial contrast

TCSD 

  TT SRCRSCD 1
~~

D=data
C=score images

S=loading spectra
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Rotate into a spatially-
simple case -1 -0.5 0 0.5 1

Pixel score

600 nm
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Z-contrast
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score images

Ti

SiO2
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If 70% of the counts in a pixel are from one 
PC, define it as single-phase

Z-contrast

Platinum

No single phase

Perovskite

Fluorite
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This is an unbiased way to perform phase 
analyses

Manual method:
Choose a box with STEM software
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After-the-fact statistical selection
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This is an unbiased way to perform phase 
analyses
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It’s possible to use MSA to define phase 
boundaries for quantification

Single-pixel analysis gave 5-10 nm resolution, but 
30% errors (1) in cation content

With MSA-defined phases, <10% error (3) in 
quantification:

Of course, we can’t speak about variations within a 
phase – we’re assuming it’s homogenous

Cation fraction ratio Cation fraction

Pb/(Zr+Ti) Zr/Ti La/Pb La/(Zr+Ti) Pb Zr Ti La

Perovskite 0.86 ± 0.03 2.09 ± 0.14 0.18 ± 0.03 0.16 ± 0.02 43% 34% 16% 8%

Fluorite 0.34 ± 0.02 3.85 ± 0.28 0.52 ± 0.07 0.18 ± 0.02 22% 53% 14% 12%
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We’ve quantified PLZT chemistry at high 
resolution, and are studying the statistics

We produced single-phase 
perovskite without 
excess Pb-additions

Quantification of spectrum 
images allowed high-
resolution study of 
segregation

We’re exploring statistical 
error in quantitative SIs
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Platinum electrodes must be 
accommodated for

Platinum electrodes are sputtered above and 
below the films

Platinum will strongly absorb X-rays of interest

Should use a tilt-rotation holder in TEM to point the 
interfaces directly at the EDS to avoid absorption

Pt PtPLZT

Pt absorption

Pt

Pt
PLZT

Beam Beam

Rotate 
sample

Growth direction Growth direction
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Errors in Pb quantification?

Oddly, the perovskite PZT is measured ~20% Pb deficient 
 Real or artifact?  Still under investigation

Theory: Damage from FIB sample preparation

TEM Beam

Perovskite

Damage

Damage

t

r

r
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Errors in Pb quantification?

Let’s make some assumptions:
t =100 nm
Perovskite is (t-2r) thick, and has CPb=0.5
Damaged layers are each r thick, and have CPb=0.25

EDS measured CPb = (0.5  (t-2r) ) + (0.25  2r )=0.4

Thus,  r20nm   reasonable for FIB-damage

TEM Beam

Perovskite

Damage

Damage

t

r

r
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Errors in Pb quantification?

Further analysis:
•FIB-lift out sections are dog-bone shaped
•EDS of different thicknesses  different Pb-fractions

Measured CPb:  ~0.48    ~0.40

•Assume the thick section has t=300 nm, r=20 nm
•Assume CPb of 0.50 and 0.25 in thick-section perovskite 
and damaged layer

Expect to measure CPb~0.46; actually measure CPb~0.48
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