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Route to Sandia

Ph.D., Computational and Applied Mathematics, NC State
— mathematics, statistics, computer science, immunology
— nondeterministic model calibration (HIV)
— internship at Fred Hutchinson Cancer Research Center

SNL since 2005 to fulfill goals:
— optimization focus (surprise: uncertainty quantification)

— develop algorithms; production software implementation
in DAKOTA

— work with science/engineering application customers;
let their unmet needs drive research and software
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To be credible, simulations must deliver not only a best estimate
of performance, but also its degree of variability or uncertainty.

* Ubiquitous computational simulation
« Why consider uncertainty quantification (UQ)
* Propagating uncertainty through models
— Intro to UQ methods
— Advanced UQ methods in DAKOTA
* Reliability-based MEMS design (OPT+UQ)
* Research challenges in electrical circuit UQ

Slide credits: Mike Eldred, Laura Swiler, Barron Bichon, Genetha Gray,
Bill Oberkampf, Matt Kerschen, others
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'Sandia’s Mission Focus Relies on
Strong Science and Engineering

Computational and {
Information sciences Engineering Sciences Materials Science and
: S Technology
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Computational Simulation

——— Systems of systems
analysis: multi-scale,
multi-phenomenon

Interim Storage
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Hurricane Katrina: weather,
logistics, economics,
human behavior
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Earth penetrator: nonlinear
PDEs with contact, transient
analysis, material modeling
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}.‘ Credible Simulation

« Ultimate purpose of modeling and simulation is
(arguably) insight, prediction, and decision-making -
need credibility for intended application

Analysis Credibility
Deterministic Results

fll ' -
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 Historically: primary focus on modeling fidelity

Sandia
Graphic credit: Bill Oberkampf @ laboraores
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VALIDATION ACTIVITIES \ VERIFICATION ACTIVITIES
Validation experiments

Software quality assurance
Hierarchical experiments SIMULATION CREDIBILI Static testing

Validation simulations ondeterministic Results Dynamic testing

Validation metrics Traditional analytical solutions
Spatial discretization error Qpnufactired SO,

Temporal discretization , Order of accuracy assessment

UNCERTAINTY QUANTIFICATION

Parametric uncertamty N&g-mal environments
Model form uncertainty Abnormal environments
Sensitivity analysis Hostile environments
Extrapolation uncertainty -

Slide credit: Bill Oberkampf

Laboratories



}i Verification & Validation

* Verification: “Are we solving the equations correctly?”

— mathematics/computer science issue: Is our mathematical formulation
and software implementation of the physics model correct?

— code verification (software correctness);
solution verification (e.g., exhibits proper order of convergence)

 Validation — “Are we solving the right equations?”

— a disciplinary science issue: is the science (physics, biology, etc.) model
sufficient for the intended application? Involves data and metrics.

Related concepts:

» Sensitivity Analysis (SA): both local and global
— How do code outputs vary with respect to changes in code inputs?

* Uncertainty Quantification (UQ):

— What are the probability distributions on code outputs, given the probability
distributions on my code inputs? Unknown input distributions?

e Quantification of margins and uncertainties (QMU):

— How “close” are my code output predictions (incl. UQ) to the system’s

required performance level? Sandia
National
Laboratories



— g ' Algorithms for Computational
> Modeling & Simulation

Are you sure you don’t need verification?!

'f System Design Physics
:

v
Geometric Modeling Model Equations
A 2

\4

and Mapping

A 4
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}I Uncertainty Quantification

A single optimal design or nominal performance
prediction is often insufficient for

— decision making / trade-off assessment
— validation with experimental data ensembles

 Need to make risk-informed decisions, based
on an assessment of uncertainty

Sandia
National
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V
* Uncertainties to Quantify

A partial list of uncertainties affecting computational model results

e physics/science parameters

» statistical variation, inherent randomness

 model form / accuracy

e operating environment, interference

* initial, boundary conditions; forcing

« geometry / structure / connectivity

 material properties

 manufacturing quality

« experimental error (measurement error, measurement bias)
 numerical accuracy (mesh, solvers); approximation error
 human reliability, subjective judgment, linguistic imprecision

Sandia
National
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V '
} Categories of Uncertainty

(Often useful distinctions, but not always a clear line between them)

» Aleatory
— Inherent variability (e.g., in a population)
— Irreducible uncertainty — can’t reduce it by further knowledge

» Epistemic (not in this talk, though a crucial research area)
— Subjective uncertainty
— Related to what we don’t know

— Reducible: If you had more data or more information, you
could make your uncertainty estimation more precise

* In practice, people try to transform or translate
uncertainties to the aleatory type and perform sampling

and/or parametric analysis
@ Sandia
National
Laboratories
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To be credible, simulations must deliver not only a best estimate
of performance, but also its degree of variability or uncertainty.

* Propagating uncertainty through models
— Intro to UQ methods
— Advanced UQ methods in DAKOTA

* Reliability-based MEMS design (OPT+UQ)

* Research challenges in electrical circuit UQ
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}I Uncertainty Quantification Example

- Device subject to heating (experiment or de=a f’r
computational simulation) A L_ 17
* Uncertainty in composition/ ;_m

» Response temperature f(u)=T(u,, ...,

environment (thermal conductivity,
density, boundary), parameterized by
U, ...,

Uy

calculated by heat transfer code

uy)

% in Bin
o = N w AN (6)]

Final Temperature Values

30

36

42

48

54 60 66 72 78 84

Temeprature [deg C]

gm

Given distributions of u,,..
UQ methods calculate
statistical info on outputs:
* Probability distribution of
temperatures

 Correlations (trends) and
sensitivity of temperature

« Mean(T), Sthev(T)
Probability(T2 T_...)

Sandia
National
Laboratories



V '
} Uncertainty Quantification

Forward propagation: quantify the effect that uncertain
(nondeterministic) input variables have on model output

4 _ )

I:pu_t Varlablets u T utationaﬂ Variable
(physics parameters, P Performance
geometry, initial and Model ) M f
boundary conditions) easures f(u)

(possibly given distributions)
Potential Goals:

/‘

* based on uncertain inputs, determine N samples\ _Output
variance of outputs and probabilities — Distributions
of failure (reliability metrics) ﬁ — —

u, —

 identify parameter correlations/local — —sure 1
sensitivities, robust optima A\ = >-< meas_ure

- identify inputs whose variances . _ —
contribute most to output variance /N = measure 2
(global sensitivity analysis) u, _J \_

» quantify uncertainty when using Typical method: Monte Carlo Sampling

National
Laboratories

calibrated model to predict @ Sandia



Challenges to This Process

 Engineering application: propagate variability through a computer model.
* Need statistics of response function “f”, e.g., W, o;, Prob[ f > f_ ...

 Characteristics of response function: . jnput parameters specified by
probability density functions
no explicit function for f(x,,x,)

expensive to evaluate f(x,,x,)
and may fail to calculate

limited number of samples
noisy / non-smooth

oy fix,x,) °
/ﬁ

Research Question:
Which is more accurate?

« compute statistics from the f(x,,x,)
sample values, or

e construct an approximation model
based on the f(x,,x,) values and then
compute statistics from the model?

Sandia
National
Laboratories
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4" DAKOTA Motivation Sanoms

Goal: perform iterative analysis on (potentially
massively parallel) simulations to answer
fundamental engineering questions:

 What is the best performing design?
 How safe/reliable/robust is it? Saety Mirgi
« How much confidence do | have in my answer? T

Nominal Optimized

4 DAKOTA h
optimization, sensitivity analysis,
parameter estimation,
\_uncertainty quantification

parameters
(design, UC,
state)

response
metrics

" Computational Model (simulation) )
 Black box: any code: mechanics, circuits,
» high energy physics, biology, chemistry

« Semi-intrusive: Matlab, ModelCenter, Python —
\_ SIERRA multi-physics, SALINAS, Xyce  / @ National

Laboratories
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DAKOTA C++/00 Framework Goals

» Unified software infrastructure: reuse tools and common interfaces; integrate
commercial, open-source, and research algorithms

* Enable algorithm R&D, e.g., for non-smooth/discontinuous/multimodal
responses, probabilistic analysis and design, mixed variables, unreliable
gradients, costly simulation failures

* Facilitate scalable parallelism: ASCI-scale applications and architectures;
4 nested levels of parallelism possible

* Impact: tool for DOE labs and external partners; broad application deployment;
free via GNU GPL (>3000 download registrations)

Iterator

A
' .
ParamStudy UuQ
DoE Ceastod
[poACE—t NCssol——on =
Optimizer| INL2soL]
algorithms 1

hierarch Sandia
[DOT| [CONMIN| [NPSOL| INLPQL||OPT++ [COL.INY| DEGA| [EGO||DIRECT]| [TMF| @ {\Lagj;g?tlmes
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Flexibility with Models & Strategies

DAKOTA models map inputs to response metrics of interest:

*
*

ﬁariableslparameteg

» design: continuous,
discrete

* uncertain: (log)normal,
(log)uniform, interval,
triangular, histogram,
beta/gamma, EV |, II, llI

» state: continuous, /

IIIIIIIIII..

“IIIIIIIII

discrete

*

DAKOTA strateqgies enable

“IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII..

user application
(simulation)

system, fork, direct, grid

*

: optional approximation (surrogate)
* global (polynomial 1/2/3, neural net,
kriging, MARS, RBF)
* local (Taylor); multipoint (TANA/3)
* hierarchical, multi-fidelity

flexible combination of multiple

models and algorithms.
* nested
» layered
e cascaded
e concurrent
» adaptive / interactive

Optimization

*
sssssEnnnn®

/ responses \

» functions: objectives,
constraints, LSQ
residuals, generic

» gradients: numerical,
analytic

e Hessians: numerical,

L4
*

27 PS4
Sy EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEERS

Strategy

analytic, quasi /

\

[Uncertainty

OptUnderUnc

| Surrogate Based

UncOfOptima

| 2¢ Order Probability |

| Pareto/Multi-Start

|Branch&Bound/PICO|

Sandia
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Laboratories



V '
} DAKOTA Sensitivity Analysis Methods

Sensitivity analysis techniques help determine which input variables
are most important (perhaps for which to refine uncertainty estimates)

 Parameter Studies
— Alter variables one at a time or on grid

— Impractical in high dimension d ~ (partitions

* Design of Computer Experiments (DACE)
vs. Design of Experiments (DOE)
— Box-Behnken
— Central Composite
— Factorial and fractional designs
— Orthogonal Arrays

o Correlation Analysis
— Linear correlation
— Variance-based decomposition

* Morris One at a Time Sampling

3 partitions

<.

*—» (1
2

2 partitions

Sandia
National
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SA: Orthogonal Arrays

* For each level of one factor, all levels of

Other factors oCccCcur equal number Of Main Effects Plot (data means) for DispMax
times. _100;::21:ZZ;ZZZEZZZZZIIZZZKZZZ]I
- Orthogonality: statistical independence | § “*1 i i i
between columns of the experimental g N | | |
. . . g -130
design matrix (confounding factors . ~_ -
% 1404 | | |
cancel) g am0] i i i
» Good for main effects, 2 1004 | | |
terrible for variable interactions = 1704 | | |
- -180J__l___I___l__l__|___I___l__l__l___l___l__I
» Large OA databases available 15 20 25 10 15 20 5 10 15
Exp. No [Var. 1 Var. 2 Var. 3 Var. 4 Var. 5 Var. 6 Var. 7 .
1 1 1 1 1 1 1 7| Main effects of
2 1 1 1 2 2 2 2| 7 variables, each
3 1 2 2 1 1 2 2| with 2 levels,
4 L 2 2 2 2 L 1l in 8 samples!
5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2

Sandia
National
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UQ: Sampling Methods

Given distributions of u,,...,u,, UQ
methods...

R a
N samples Output
Distributions

u, ...calculate statistical info
N >-< measure 1 on outputs T(u,,...,u,)

7
il

u, —
/\ — measure 2 Final Temperature Values
4
[=
@ 3
[=
s 2
1
30 36 42 48 54 60 66 |72 78 84
Temeprature [deg C]
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Quasi-Monte Carlo Sequences

* Deterministic sequences
from a series of prime bases

e Designed to produce
uniform random numbers on
the interval [0,1]

* Low discrepancy
« Example: Halton sequences

Sample Number
1

O©CoOoO~NO O WwWN

[EEN
o

Base 2 Base 3
0.5000 0.3333
0.2500 0.6667
0.7500 0.1111
0.1250 0.4444
0.6250 0.7778
0.3750 0.2222
0.8750 0.5556
0.0625 0.8889
0.5625 0.0370
0.3125 0.3704

Base 2 and Base 3

B Halton 100 points
B Halton 25 points
B Halton 10 points

0.9 A [ ]
0.8 1m 5]

0.7 B = |

06 @ E

0.5 1 5] 8

0.3 u

024 m

0.1 = L

Base 5 Base 7
0.2000 0.1429
0.4000 0.2857
0.6000 0.4286
0.8000 0.5714
0.0400 0.7143
0.2400 0.8571
0.4400 0.0204
0.6400 0.1633
0.8400 0.3061
0.0800 0.4490

&)
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}- Centroidal Voroni Tessalation (CVT)

* Generates nearly uniform spacing over arbitrarily shaped
parameter spaces (can also be used for non-uniform
distributions)

 Origin: unstructured meshing for irreqular domains
* Ideal for high dimensional volumetric sampling

& L Lk

| 1
_1' 03 08 D4 D2 0 0z 04 0E 0E 1

National

Gunzburger, et al.: comparison of random sampling and CVT @ Sandia
Laboratories



V '
}- Latin Hypercube Sampling (LHS)

» Specialized Monte Carlo (MC) sampling technique:
workhorse method in DAKOTA / at Sandia

» Stratified random sampling among equal probability bins for
all 1-D projections of an n-dimensional set of samples.

 McKay and Conover (early), restricted pairing by Iman

G
@)
H
I (@)
02 |0202]02] o2
@)
—oo A B C D w J
@)
1 K
08 @
L
0.6 —o0 A B C D 0

A Two-Dimensional Representation of One
Possible LHS of size 5 Utilizing X1 (normal)
and X2 (uniform)

0.4

0.2

0

Intervals_OOUsed with a LHS of S?ze n=5in _
Terms of the pdf and CDF for a Normal @ S
Random Variable Laboratories



Generalized Polynomial Chaos Expansions

Approximate response stochasticity with Galerkin projection using
multivariate orthogonal polynomial basis functions defined over standard

random variables Wo(€) = val€r) wol&s) = 1
Ui(g) = (&) vol&) = &
Wa(g) = wo(&1) vi(&e) = &
U3(8) = va(&) vo(l) = &§-1
Wa(§) = (&) vi(&e) = &é
R(¢) = f(u) Us() = (&) vall) = & -1

e Intrusive

* Nonintrusive: estimate response coefficients using sampling (expectation),
quadrature/cubature (num integration), point collocation (regression)

Wiener-Askey Generalized PCE with adaptivity
 Tailor basis: optimal basis selection leads to exponential convergence rates

Distribution  Density function Polynomial Weight function  Support range
Normal \/LT(T Hermite He,, (x) e [—00, ]
Uniform 1 Legendre P, (x) 1 —1,1]

. (1—a)™ (1 }-l')'1 PR T (a.3) . PR Y
Beta CERSEERY -Tomie B AR Jacobi P, (x) (1 —2)"(1+2) —1,1]
Exponential e Laguerre L, (z) e [0, 0]
Al , Y e”" 4 13 ; [ — (cx) - el = .
Gamma NCES] Generalized Laguerre Ly, ' (x) e [0, 5]

 Tailor expansion order/integration order: adaptivity based on PC error estimates

— Isotropic/anisotropic tensor-product quadrature & @ Sandia

. National
sparse grid Smolyak cubature Laboratories



PCE: Fast Convergence

Residual in PCE CDF for Lognormal Ratio, increasing simulations

1
10 Hermite basis, lognormal distributions
—<— quad order = exp order + 1, 10* samples on PCE
10 —— quad order = exp order + 1, 10° samples on PCE
T _ —t—quad order = exp order + 1, 10° samples on PCE
é 10 B —o— pt colloc ratio = 2, 10% samples on PCE
§ 1 | = ptcolloc ratio = 2, 10° samples on PCE
& 10 37 | — T ptcolloc ratio = 2, 10° samples on PCE
© —— exp samples, exp order = 10, 10* samples on PCE
10 exp samples, exp order = 10, 10° samples on PCE
— 1 exp samples, exp order = 10, 10° samples on PCE
107
10 10
Simulations CDF fo1r Rosenbrock Problem, expansion order = 4, varying distribution/basis
°'l CDF b
08F - Normal: Hermite chaos

o o
=] ~

Cumulative Probability
o
o

Normal: 10% LHS
Uniform: Legendre chaos

Uniform: 10* LHS
Exponential: Laguerre chaos

Exponential: 10* LHS

“k e Beta: Jacobi chaos
04l / 7 Beta: 10* LHS
@ 7 Gamma: gen Laguerre chaos
oab |7 Gamma: 10* LHS
f mixed: Askey chaos
0.2} /¥ mixed: 10* LHS
01 / i
E"I* ) e
0% g ) . .
0 200 400 600 800 1000

Response Value




V '
}- UQ Not Addressed Here

» Efficient epistemic UQ (big research area)

* Fuzzy sets (Zadeh)

* Imprecise Probability (Walley)

 Dempster-Shafer Theory of Evidence (Klir, Oberkampf, Ferson)
» Possibility theory (Joslyn)

* Probability bounds analysis (p-boxes)

 Info-gap analysis (Ben-Haim)

 Production Bayesian analysis capability

 Bayesian approaches: Bayesian belief networks, Bayesian
updating, Robust Bayes, etc.

 Scenario evaluation

Sandia
National
Laboratories
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| Calculating Probability of Failure

» Given uncertainty in materials, geomeftry, and
environment, determine likelihood of failure

Probability(T 2 T_,;..)

Final Temperature Values

5 |

2 -
1 -
0 T T T T T e T T T e T

30 36 42 48 54 60 66 72 78 84

% in Bin

Temeprature [deg C]

e Could perform 10,000
Monte Carlo samples and
count how many exceed the
threshold...

e Or directly determine input
variables which give rise to
failure behaviors by solving
an optimization problem.

By combining optimization, uncertainty analysis methods, and surrogate
(meta-) modeling in a single framework, DAKOTA enables more efficient UQ.

Sandia
National
Laboratories
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| Analytic Reliability: MPP Search

Perform optimization in uncertain variable space to determine Most
Probable Point (of response or failure occurring) for G(u) = T(u).

Reliability Index Approach (RIA)

minimize ulnu

subject to G(u) =2

—=
T

=]
w
T

A Region of u

values where 8l T ¢
/ Tz Tcritical map cr.iti.cal 04
7 probability

(=]
[==]

(=]
-

=]
(=]
T

=
tn

T ‘ T

Cumulative Probability
o
P

O MY

O x-/u-space AMY

O x-fu-space AMV+ & FORM

+ 100k Latin hypercube samples

=]
%]
T

=]
%]
T

01

Response Value



i Reliability: Algorithmic Variations

Many variations possible to improve efficiency, including in DAKOTA...
« Limit state linearizations: use a local surrogate for the limit state G(u) during
optimization in u-space (or x-space):
u-space AMV: G(u) = G(pu) + VuG(pu) (u = pu)
u-space AMV+: G(u) = G(u*) + V,G(u*)L'(u — u*)
u-space AMV2+:  G(u) = G(u*) + Vu,G(u*)T(u — u*) + %(u —u")IVv2G(u*)(u — u*)

(could use analytic, finite difference, or quasi-Newton (BFGS, SR1) Hessians in
approximation/optimization — results here mostly use SR1 quasi-Hessians.)

* Integrations (in u-space to determine probabilities): may need higher order
for nonlinear limit states

: n—1
p(g E‘: z} = (I’{_-{ff:df} 1
Ist-order: , 2nd_order: { p= ®(—73) S—
{ p(g > z) = "I'{_-'{ff:cdf} ! ( - E Y, 1+ ."Ijﬁ'?'

curvature correction

 MPP search algorithm: Sequential Quadratic Prog. (SQP) vs. Nonlinear Interior Point (NIP)

 Warm starting (for linearizations, initial iterate for MPP searches): speeds
convergence when increments made in: approximation, statistics requested, design

variables Sandia
@ National
Laboratories
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}J Efficient Global Reliability Analysis

« EGRA (B.J. Bichon) performs reliability analysis with EGO (Gaussian
Process surrogate and NCSU DIRECT optimizer) coupled with Multimodal
adaptive importance sampling for probability calculation.

* Created to address nonlinear and/or multi-modal limit states in MPP

searches.
125
10 GP surrogate -+
8] T
6
4_'
] True tn
21
0 :
0 2 4 6 8 10 12
121 0.06

Expected
Improvement

70.05

-10.04
-10.03
-10.02
—10.01

0 2 4 6 8 10 12
From Jones, Schonlau, Welch, 1998

Sandia
National
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Efficient Global Reliability Analysis

« EGRA (B.J. Bichon) performs reliability analysis with EGO (Gaussian
Process surrogate and NCSU DIRECT optimizer) coupled with Multimodal
adaptive importance sampling for probability calculation.

* Created to address nonlinear and/or multi-modal limit states in MPP
searches.

Gaussian process model of reliability limit state with
10 samples 28 s/a_Qples

N\ s

Ve exploit

=] explore

_ Sandia
] 5 National
: Laboratories
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To be credible, simulations must deliver not only a best estimate
of performance, but also its degree of variability or uncertainty.

* Reliability-based MEMS design (OPT+UQ)

* Research challenges in electrical circuit UQ

Sandia
National
Laboratories



- Shape Optimization of Compliant MEMS -

* Micro-electromechanical system (MEMS): typically made from silicon,
polymers, or metals; used as micro-scale sensors, actuators, switches,
and machines

« MEMS designs are subject to substantial variability and lack historical
knowledge base. Materials and micromachining, photo lithography,
etching processes all yield uncertainty.

* Resulting part yields can be low or have poor cycle durability

* Goal: shape optimize finite element model of bistable switch to...
— Achieve prescribed reliability in actuation force
— Minimize sensitivity to uncertainties (robustness)

actuation force

uncertainties to be considered
(edge bias and residual stress)

variable mean std. dev. | distribution
. FANTE -0.2 pm 0.08 normal
bistable S 11 I:I a 4.13 normal
MEMS o L '

switch

Sandia
National
Laboratories



Tapered Beam Bistable Switch:
Performance Metrics

Bl | \ tapered beam [ ] anchor
| 13 design vars d:
= Wi, I_i, ei $<—— s— shuttle
. _, > -/actuat—i'[n force
§ -1.
> 2
-25 W, s
i | \
-35
-4 & A £ A A / v . di
L, L, L, L, |_new tapered beam design %s;g!
R—T T80 50 10 20 0 . jszgwaoo
X (1 m)
force )
! Switeh _ _ Typical design specifications:
key relationship: force i .
Frnax] . - actuation force F_; reliably 5 uN
vs. displacement !
- bistable (F_,> 0, F_, <0)
] E2 E*\/ « maximum force: 50 <F__ <150
1
> » equilibrium E2 < 8 ym
(¢ .
o displacem .
L * maximum stress <1200 MPa




A 4

Optimization Under Uncertainty

Rather than design and then post-process to evaluate uncertainty...
actively design optimize while accounting for uncertainty/reliability metrics
s,(d), e.g., mean, variance, reliability, probability:

min f(d) + Wsyu(d)

Optl| -«

{d}‘

- UQle, __|

{u} {R,}
[Simj

(nested paradigm)

{Su}

S.t.

91 < g9(d) < gu
h(d) = hy

d; < d < dy

a; < A;su(d) < ay
Ae sy(d) = ay

Bistable switch problem formulation (Reliability-Based Design Optimization):

simultaneously reliable and robust designs

max E [Finin(d,x)]
[s.t. 2 < Becar(d)
50 < E[Fmaz(d,x)]

E[Ex(d,x)]
E [Smaz(d, x)]

IAIATA

8
3000

150

E

F

force

A switch
contact

13 designvars d: W, L, g,
2 random variables x: AW, S,

Ez E3

min

QQ

displacem




RB

D

O Finds Optimal & Robust Design

|-

!
B
1
1
i
!
!
H
H
H
!

displacement (um)

— MVFOSM
=t AMVEE
""" target force

6.5 7

7.5 8

displacement (um)

Close-coupled results: DIRECT / CONMIN + reliability method yield optimal
and reliable/robust design:

metric MVFOSM AMVZ+ FORM
l.b. name u.b. | initial d° | optimal d*, | optimal d% | optimal d%

E [Finin] (uN) -26.29 -5.896 -6.188 -6.292

2 I} 5.376 2.000 1.998 1.999

50 E [Frnaz] (uN) 150 68.69 50.01 57.67 57.33

E[E2] (um) 8 4.010 5.804 5.990 6.008

E [Smaz] (MPQ) 1200 470 1563 1333 1329
AMV?+ verified B 3.771 1.804 - -
FORM verified g 3.771 1.707 1.784 -

&)
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DAKOTA UQ Algorithms Summary
Goal: bridge robustness/efficiency gap

LHS/MC, IS/AIS/MMAIS, Bootstrap, Gunzburger
QMC/CVT Incremental LHS Jackknife
1st/2nd-order local: Global: EGRA Renaud,
MVFOSM/SOSM, Mahadevan
x/u AMV/AMV?/
AMV+/AMV2+, x/u
TANA, FORM/SORM
Wiener-Askey SC: Adaptivity, Ghanem
gPC: sampling, cubature Wiener-Haar
quad/cubature, gPC/SC:
pt collocation arbitrary
SC: quadrature input PDFs
Dimension Youn
reduction
Second-order Dempster-Shafer Bayesian, Higdon,
probability evidence theory Imprecise Williams,
probability Ferson
Importance factors, | Main effects, Stepwise Storlie
Partial correlations Variance-based regression

decomposition




Outline
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To be credible, simulations must deliver not only a best estimate
of performance, but also its degree of variability or uncertainty.

« Research challenges in electrical circuit UQ

Sandia
National
Laboratories



Circuit Board - ; é an |
g — = 'K ; :
ASIC: 1000s to  \, — A S
millions of devices | Large Digital Circuit
(e.g., ASIC)
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100s of devices
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device: 1 to 100s of params (G. Gray, M. M-C)

* simple devices: 1 parameter, - complex devices: many parameters, some
typically physical and physical, others “extracted” (calibrated)

measurable - multiple modes of operation
* e.g., resistor @ 100Q +/- 1% * e.g., zener diode: 30 parameters, 3 bias

* resistors, capacitors, inductors, states; many transistor models (forward,

voltage sources reverse, breakdown modes) @ ﬁgtqdial
ona
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Electrical Circuit UQ

 Circuit analysis challenges

— network of nonlinearly coupled components, feedback loops, staged behavior,
or discrete digital logic, mandating all-at-once circuit solution techniques

— long simulation time involving iterative solvers (often hours to simulate
microseconds, particularly in oscillating electronics);

— combination of analog and digital circuits: consider separately or together

» analog circuits typically < 100 devices, including replicates, less predictable topology
across designs

« digital circuits 1,000 to 1,000,000 transistors (identical or similar), small number of
well-defined connection types.

* Typical parametric uncertainties:
— process parameters (e.g., diffusion times, oven temperatures)
— physical parameters (e.g., line widths, channel doping)
— model parameters (e.g., BSIM3 transistor compact model)

— electrical parameters (e.g., line resistance, saturation current, threshold
voltage)
 Mapping reality to compact model parameters not always easy; compact model
may be more behavioral than physics-based Sond
@ Na?iull?al
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UQ: Explosion of Factors!

complex device models + replicates in circuits

* Tor Fjeldy radiation photocurrent models for transistors

— 20 model parameters, three levels for each (low, nominal, high) ~ 3 billion combinations
— not practical via factorial brute force, but LHS might miss extreme “corner” behaviors
— 6 devices in circuit of interest; mitigated via OAs

« Simple voltage regulator circuit

— 4 BJTs, 1 MOSFET, 17 resistors, 1 capacitor, 1 zener diode *

— over 100 parameters if considered naively

— mitigate by determining parameter sets giving rise to low, nominal, T
high response for each device

« CMOS 7 ViArray: generic ASIC implementation platform
— Approx 1 million transistors

— adding parasitics yields a simulation with millions of resistors,
capacitors, inductors

— mitigated by grouping within process layers

Approaches curbing the curse of dimensionality crucial in
analyzing these kinds of systems!
@ Sandia
National
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Zener Low-Nominal-High Models

* For single device, perform LHS
samples of 20 parameters fes2

Te+1 A1
1e+0 A
Te-1 A

» Determine 3 sets of parameters 1e-2

= . . . 1e-3 A

giving rise to nominal and extreme et |
device response

1e-5 A
1e-6 A
1e-7 A
1e-8 A
1e-9 A

Reverse Current (A)

 When performing circuit UQ, fe-10-
sample uniformly from L,N,H and o
set all 20 parameters accordingly hoh | | | | | | |
in the full simulation °© s 0 15 220 2 0 3

Reverse Voltage (V)

Sandia
National
Laboratories



Hierarchical/Network Structure

« How can we exploit electrical systems’ natural
hierarchy or network structure?

system level
 How does uncertainty propagate? Sufficient to (performance metrics)

propagate variance? T
» Use surrogate/macro-models as glue between _ circuit level
(circuit characteristics)
levels? T
« Can approaches be implemented generically to

device level
(model parameters)

T

process level
(physical parameters)

apply to any circuit implemented in Xyce?

Sandia
National
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* Other Relevant Technologies

* Apply existing reliability and polynomial chaos methods;
benefit of embedded techniques?

* Principal components analysis (PCA, SVD, POD), reduced-
order modeling techniques: only vary uncorrelated
parameters

» Surrogate/macro modeling, insert current/voltage sources
representative of the effect of uncertainty

» Leverage structure of network, DAE system under the hood;
automatic structure analysis, macro-model creation?

Sandia
National
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}- Summary

To be credible, simulations must deliver not only a best estimate
of performance, but also its degree of variability or uncertainty.

* Uncertainty quantification algorithms are essential in
credible simulation

« Complex, large-scale simulations demand research in
advanced efficient UQ methods

Thank you for your attention!

briadam@sandia.gov
http://www.sandia.gov/~briadam
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Abstract

2008 CSRI Summer Lecture Series

Title: "From uncertainty to credibility: UQ algorithms and research challenges™
Speaker: Brian Adams (Org. 1411)

Date/Time: Wednesday, July 2, 3-4pm (MST)

Location:
NM: CSRI/90
CA: 915/S145

Abstract:

Computational simulations are routinely used to assess the performance, reliability, and safety of existing and
proposed systems, and are increasingly used for risk-informed decision making in the presence of uncertainties.
To be credible, simulations must deliver not only a best estimate of performance, but also its degree of variability
or uncertainty.

Uncertainty quantification (UQ) algorithms compute the effect of uncertain input variables on response metrics of
interest, enabling risk assessment, model calibration, and model validation. In this talk, | will motivate simulation-
based UQ with examples from electrical circuit and MEMS design. | will survey methods from ubiquitous Monte
Carlo sampling through more advanced reliability analysis and polynomial chaos expansions available in Sandia's
DAKOTA toolkit. In particular, DAKOTA'’s reliability analysis methods employ a mix of probability, optimization,
and surrogate (meta-) modeling to efficiently perform UQ.

Challenges in large-scale electrical circuit UQ will motivate unmet algorithm research needs.
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Epistemic UQ

Total Normalized Releases: Replicate R1

Second-order probability oo 100 Cienatons, 10000 PubrealOiovaios
— Two levels: distributions/intervals on ol e 1
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Epistemic Uncertainty Quantification

Epistemic uncertainty refers to the situation where one does not know
enough to specify a probability distribution on a variable

Sometimes it is referred to as subjective, reducible, or lack of knowledge
uncertainty

The implication is that if you had more time and resources to gather more
information, you could reduce the uncertainty

Initial implementation in DAKOTA uses Dempster-Shafer belief structures.
For each uncertain input variable, one specifies “basic probability

assignment” for each potential interval where this variable may exist.
Intervals may be contiguous, overlapping, or have “gaps”

BPA=0.2 |
Variable 1

BPA=0.5 | BPA=0.3| BPA=0.2

Variable 2 Sandia
National
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pistemic Uncertainty Quantification

Look at various combinations of intervals. In each joint interval “box”, one needs to

find the maximum and minimum value in that box (by sampling or optimization)

Order these beliefs and plausibility to get CDFs
Draws on the strengths of DAKOTA
— Requires surrogates

Belief is a lower bound on the probability that is consistent with the evidence
Plausibility is the upper bound on the probability that is consistent with the evidence

— Requires sampling and/or optimization for calculation of plausibility and belief

within each interval “cell”
— Easily parallelized

0.1 o o o ©

Variable 2 0.2 ° @ (@)
o | Aa

07 © A‘ AA

o
A ‘AA
S 3 2
Variable 1

@ Original LHS samples used
To generate a surrogate

Million sample points
generated from the

A surrogate, used to

determine the max and
min in each “cell” to
calculate plausibility and

belief
Sandia
National
Laboratories



Bayesian Analysis

¥’.

 Construct a prior distribution on a parameter (which
might be a parameter of a distribution)

e The prior distribution should be based on previous
experience, engineering judgment

* The distribution on the prior is updated with actual
data. The resulting updated distribution is called the

posterior.
Frequentist Bayesian
Assumes there is an unknown Assumes a distribution on
but fixed parameter 6 unknown parameter 0
Estimates 6 with some Uses probability theory, treats 0
confidence interval as a random variable
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V
* Bayesian Analysis

« Why would we use it for CS&E problems?

* Nice feature of incorporating additional data as it becomes
available

* We often don’t have good estimates: Bayes provides a
framework for starting with what we do know, and refining our
estimates in a statistically consistent manner

« Examples:
— Reliability problems: Update probability of failure

— Response surfaces: Update parameters in a surrogate
model for a trust region

— Calibration under Uncertainty (CUU): Update our parameter
estimates based on experimental data AND uncertainty in a
model

Sandia
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p‘ Bayesian Methods

Discrete Case

p(x,0) _ p(X|10)p@) _  p(X|9)p(9)
p(x) p(X) 2, P(x10)p()

p@[x) =

where 0 is a parameter(s), x is a data vector, and p
is a probability mass function.

pP(@ | X) = posterior «c p(x| &) p(&) = likeltihood * prior
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Examples

¥’.

» Use Binomial distribution to model the number of failures, x, in n
trials.

f(x]0)= @9*(1 — )"

» We obtain data that shows 2 failures in 5 trials

Prior Probability Posterior Probability
P{6=0.3}=0.1 P{6=0.3}=0.13
P{6=0.6}=0.9 P{6=0.6}=0.87

* The posterior distribution reflects the fact that in this set of
data, 0 = 0.4 which is closer to 0.3 than 0.6 and so the
probability of 6=0.3 has risen slightly.
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