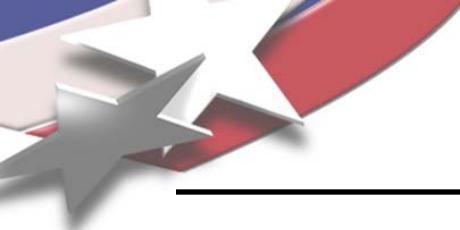


From Uncertainty to Credibility: UQ Algorithms and Research Challenges

Brian M. Adams
Sandia National Laboratories
Optimization and Uncertainty Quantification

July 2, 2008

2008 CSRI Summer Lecture Series
Sandia National Laboratories
Albuquerque, NM



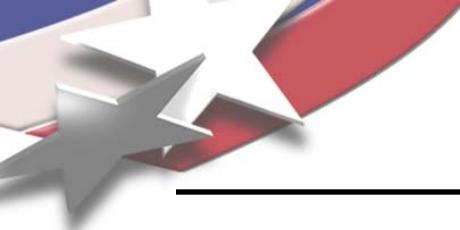
Route to Sandia

Ph.D., Computational and Applied Mathematics, NC State

- mathematics, statistics, computer science, immunology
- nondeterministic model calibration (HIV)
- internship at Fred Hutchinson Cancer Research Center

SNL since 2005 to fulfill goals:

- optimization focus (surprise: uncertainty quantification)
- develop algorithms; production software implementation in DAKOTA
- work with science/engineering application customers;
let their unmet needs drive research and software



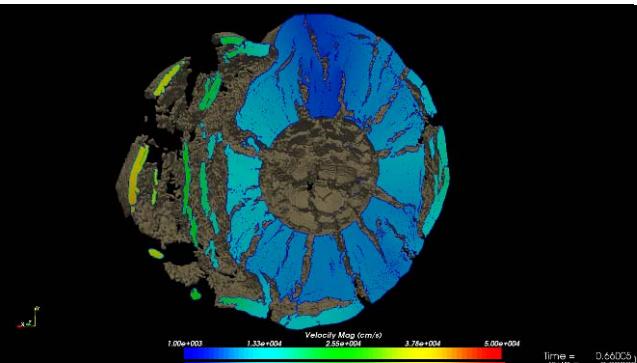
Outline

To be credible, simulations must deliver not only a best estimate of performance, but also its degree of variability or uncertainty.

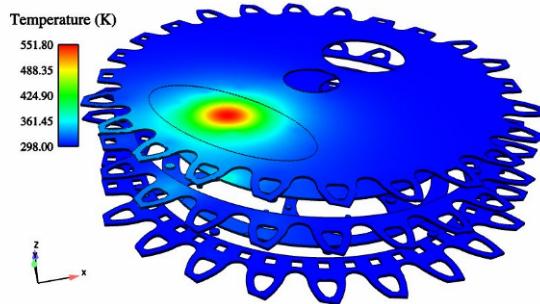
- Ubiquitous computational simulation
- Why consider uncertainty quantification (UQ)
- Propagating uncertainty through models
 - Intro to UQ methods
 - Advanced UQ methods in DAKOTA
- Reliability-based MEMS design (OPT+UQ)
- Research challenges in electrical circuit UQ

Slide credits: Mike Eldred, Laura Swiler, Barron Bichon, Genetha Gray, Bill Oberkampf, Matt Kerschen, others

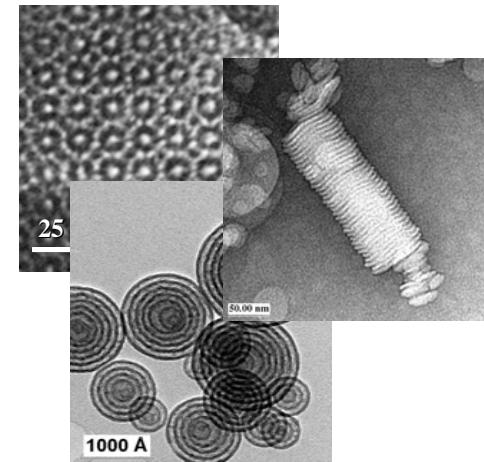
Sandia's Mission Focus Relies on Strong Science and Engineering



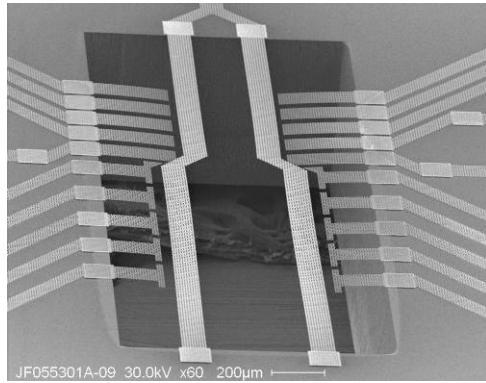
Computational and Information sciences



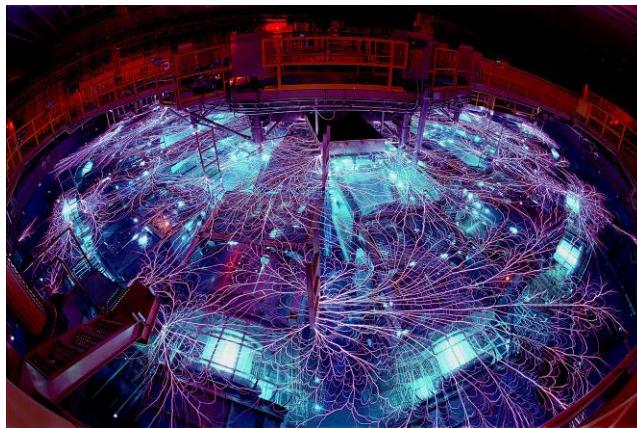
Engineering Sciences



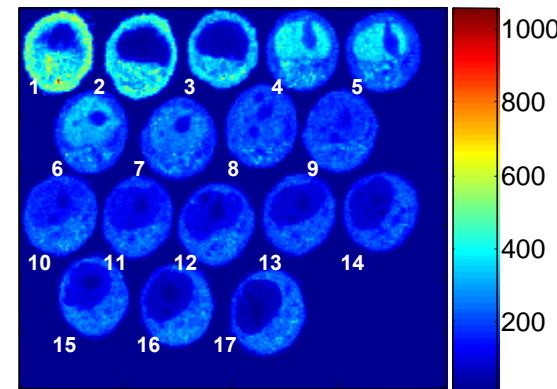
Materials Science and Technology



Microelectronics and Photonics

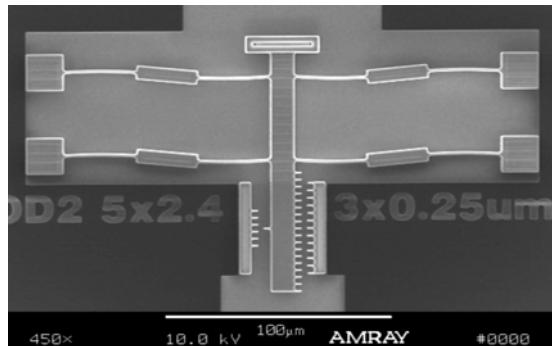


Pulsed Power

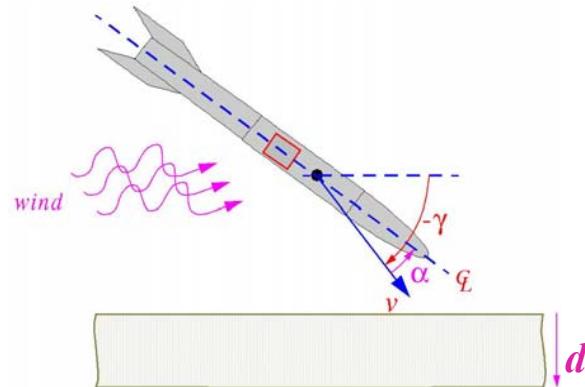


Bioscience

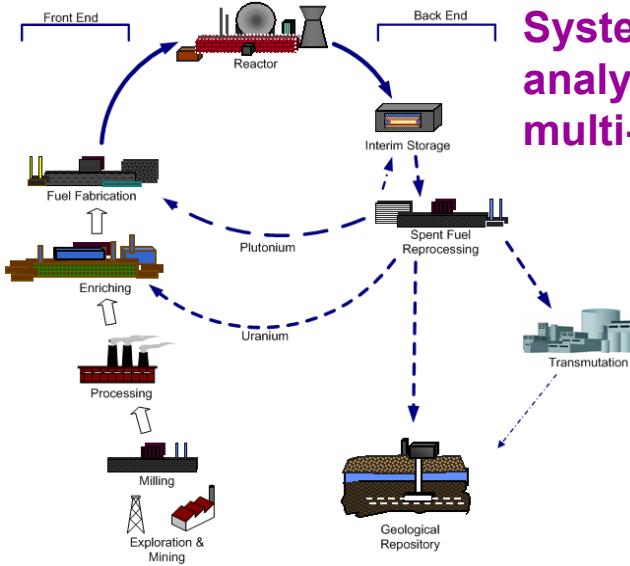
Computational Simulation



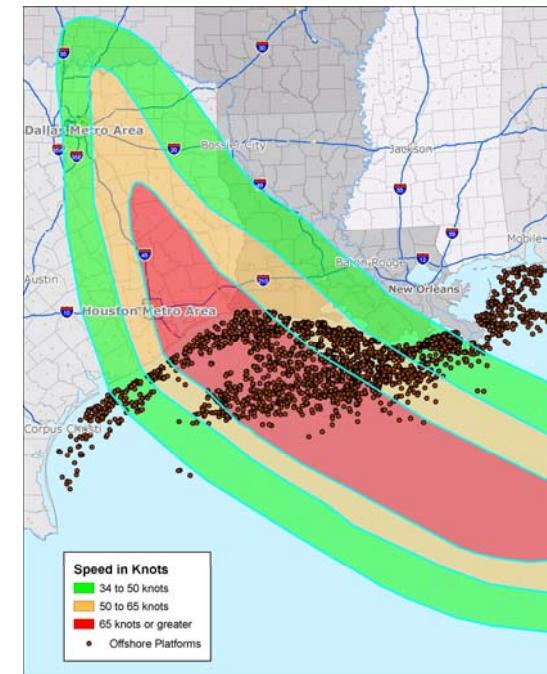
Micro-electro-mechanical systems (MEMS): quasi-static nonlinear elasticity, process modeling



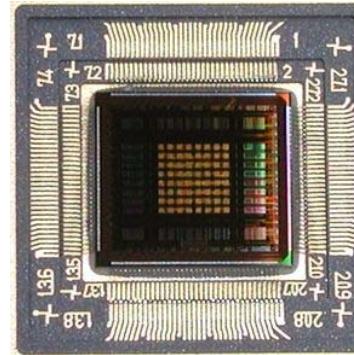
Earth penetrator: nonlinear PDEs with contact, transient analysis, material modeling



Systems of systems analysis: multi-scale, multi-phenomenon

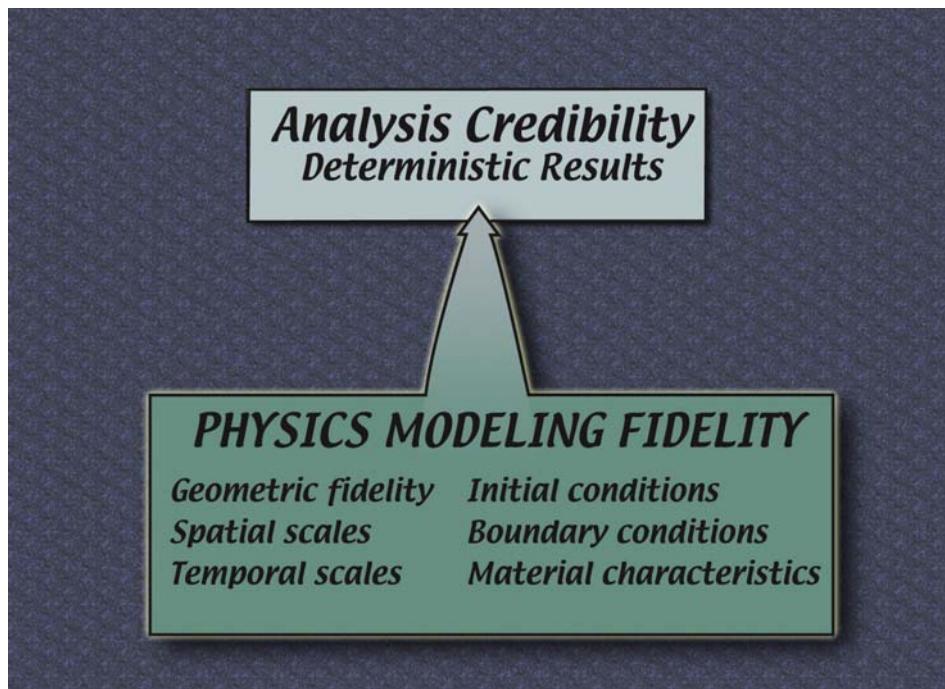


Hurricane Katrina: weather, logistics, economics, human behavior



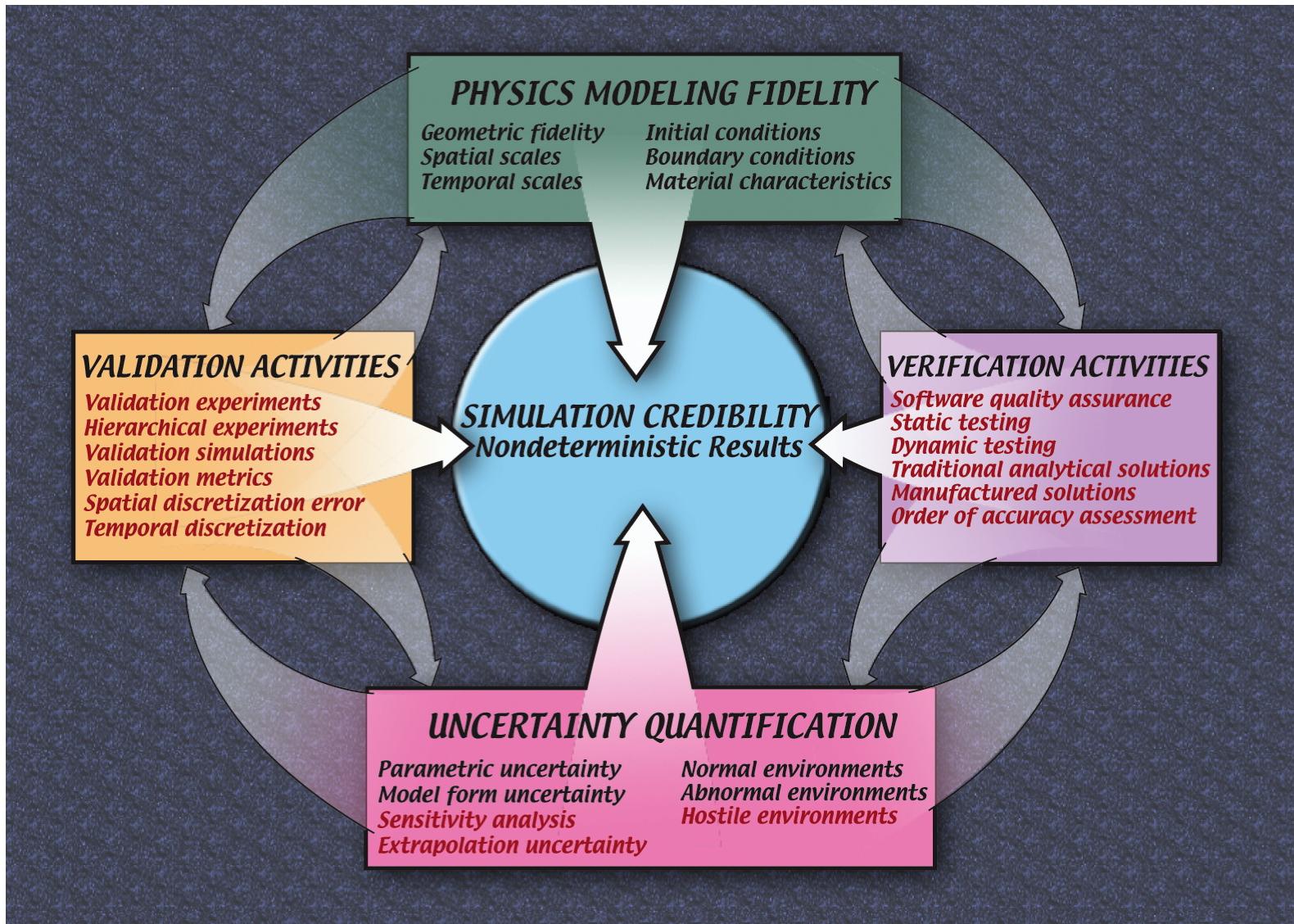
Credible Simulation

- Ultimate purpose of modeling and simulation is (arguably) insight, prediction, and decision-making → *need credibility for intended application*



- Historically: primary focus on *modeling fidelity*

Credible Simulation: Beyond Nominal



Slide credit: Bill Oberkampf



Verification & Validation

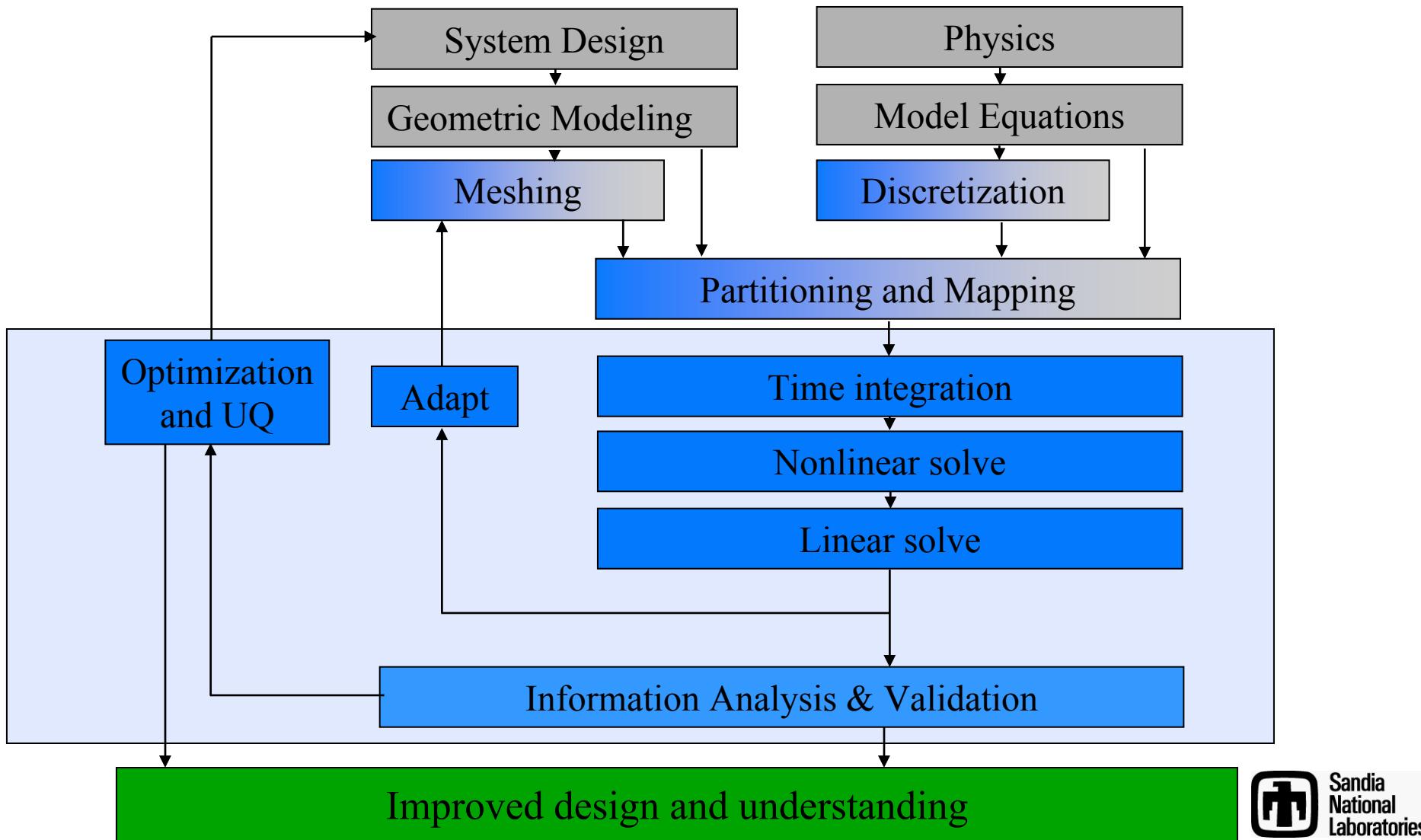
- **Verification:** “Are we solving the equations correctly?”
 - mathematics/computer science issue: Is our mathematical formulation and software implementation of the physics model correct?
 - *code verification* (software correctness);
solution verification (e.g., exhibits proper order of convergence)
- **Validation** – “Are we solving the right equations?”
 - a disciplinary science issue: is the science (physics, biology, etc.) model sufficient *for the intended application*? Involves ***data and metrics***.

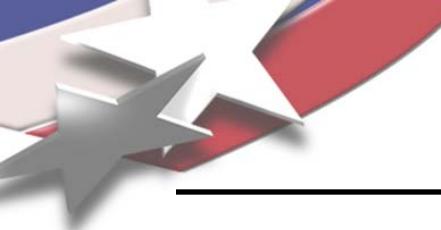
Related concepts:

- Sensitivity Analysis (SA): both local and global
 - How do code outputs vary with respect to changes in code inputs?
- Uncertainty Quantification (UQ):
 - What are the probability distributions on code outputs, given the probability distributions on my code inputs? Unknown input distributions?
- Quantification of margins and uncertainties (QMU):
 - How “close” are my code output predictions (incl. UQ) to the system’s required performance level?

Algorithms for Computational Modeling & Simulation

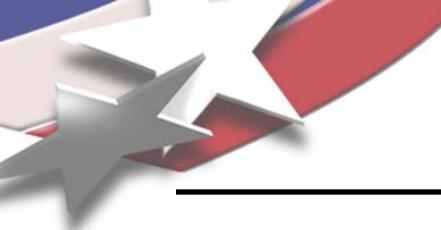
Are you sure you don't need verification?!





Uncertainty Quantification

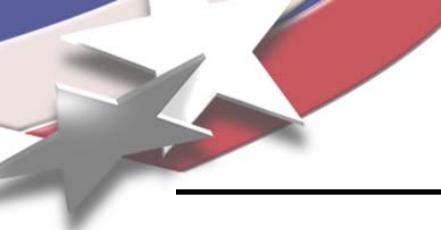
- A single optimal design or nominal performance prediction is often insufficient for
 - decision making / trade-off assessment
 - validation with experimental data ensembles
- *Need to make risk-informed decisions, based on an assessment of uncertainty*



Uncertainties to Quantify

A partial list of uncertainties affecting computational model results

- physics/science parameters
- statistical variation, inherent randomness
- model form / accuracy
- operating environment, interference
- initial, boundary conditions; forcing
- geometry / structure / connectivity
- material properties
- manufacturing quality
- experimental error (measurement error, measurement bias)
- numerical accuracy (mesh, solvers); approximation error
- human reliability, subjective judgment, linguistic imprecision



Categories of Uncertainty

(Often useful distinctions, but not always a clear line between them)

- **Aleatory**
 - Inherent variability (e.g., in a population)
 - Irreducible uncertainty – can't reduce it by further knowledge
- **Epistemic** *(not in this talk, though a crucial research area)*
 - Subjective uncertainty
 - Related to what we don't know
 - Reducible: If you had more data or more information, you could make your uncertainty estimation more precise
- In practice, people try to transform or translate uncertainties to the aleatory type and perform sampling and/or parametric analysis

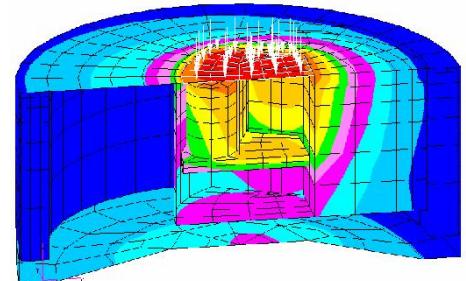
Outline

To be credible, simulations must deliver not only a best estimate of performance, but also its degree of variability or uncertainty.

- Ubiquitous computational simulation
- Why consider uncertainty quantification (UQ)
- Propagating uncertainty through models
 - Intro to UQ methods
 - Advanced UQ methods in DAKOTA
- Reliability-based MEMS design (OPT+UQ)
- Research challenges in electrical circuit UQ

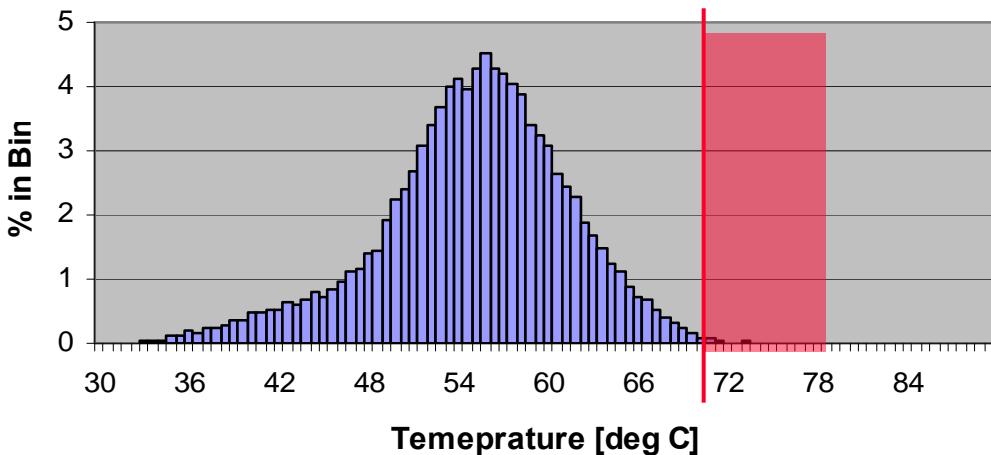
Uncertainty Quantification Example

- Device subject to heating (experiment or computational simulation)
- Uncertainty in composition/ environment (thermal conductivity, density, boundary), parameterized by u_1, \dots, u_N
- Response temperature $f(u)=T(u_1, \dots, u_N)$ calculated by heat transfer code



Given distributions of u_1, \dots, u_N , UQ methods calculate statistical info on outputs:

Final Temperature Values



- Probability distribution of temperatures
- Correlations (trends) and sensitivity of temperature
- $\text{Mean}(T)$, $\text{StdDev}(T)$, $\text{Probability}(T \geq T_{\text{critical}})$

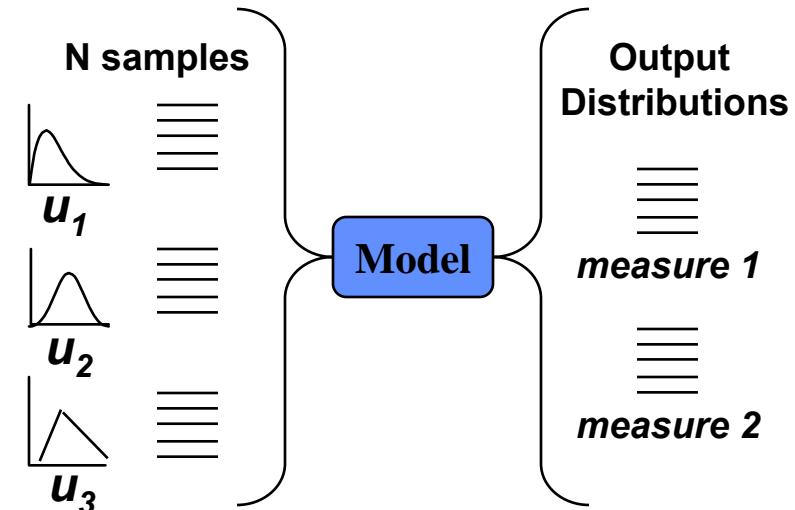
Uncertainty Quantification

Forward propagation: quantify the effect that uncertain (nondeterministic) input variables have on model output

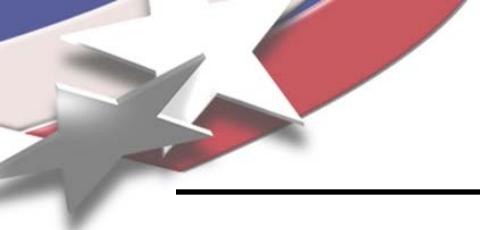


Potential Goals:

- based on uncertain inputs, determine variance of outputs and probabilities of failure (reliability metrics)
- identify parameter correlations/local sensitivities, robust optima
- identify inputs whose variances contribute most to output variance (global sensitivity analysis)
- quantify uncertainty when using calibrated model to predict



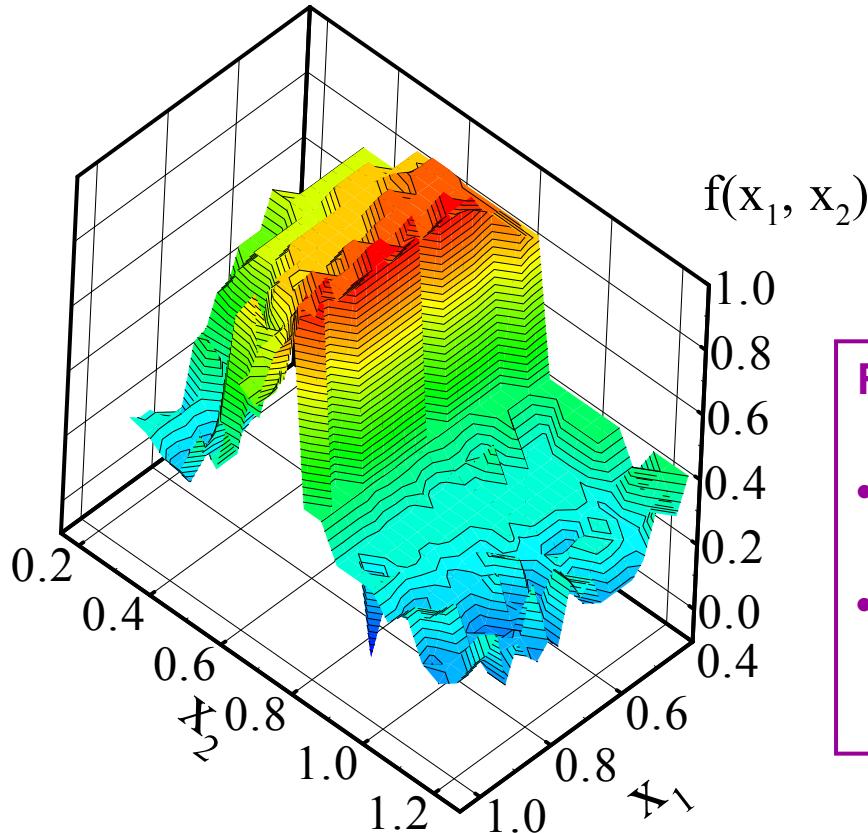
Typical method: Monte Carlo Sampling



Challenges to This Process

- Engineering application: propagate variability through a computer model.
- Need statistics of response function “ f ”, e.g., μ_f , σ_f , $\text{Prob}[f > f_{\text{critical}}]$
- Characteristics of response function:

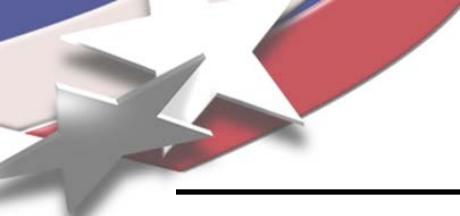
- input parameters specified by probability density functions
- no explicit function for $f(x_1, x_2)$
- expensive to evaluate $f(x_1, x_2)$ and may fail to calculate
- limited number of samples
- noisy / non-smooth



Research Question:

Which is more accurate?

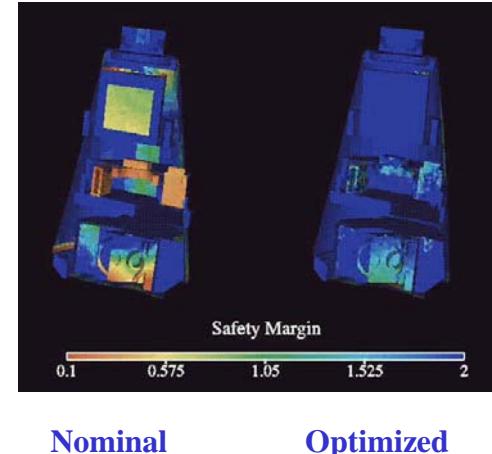
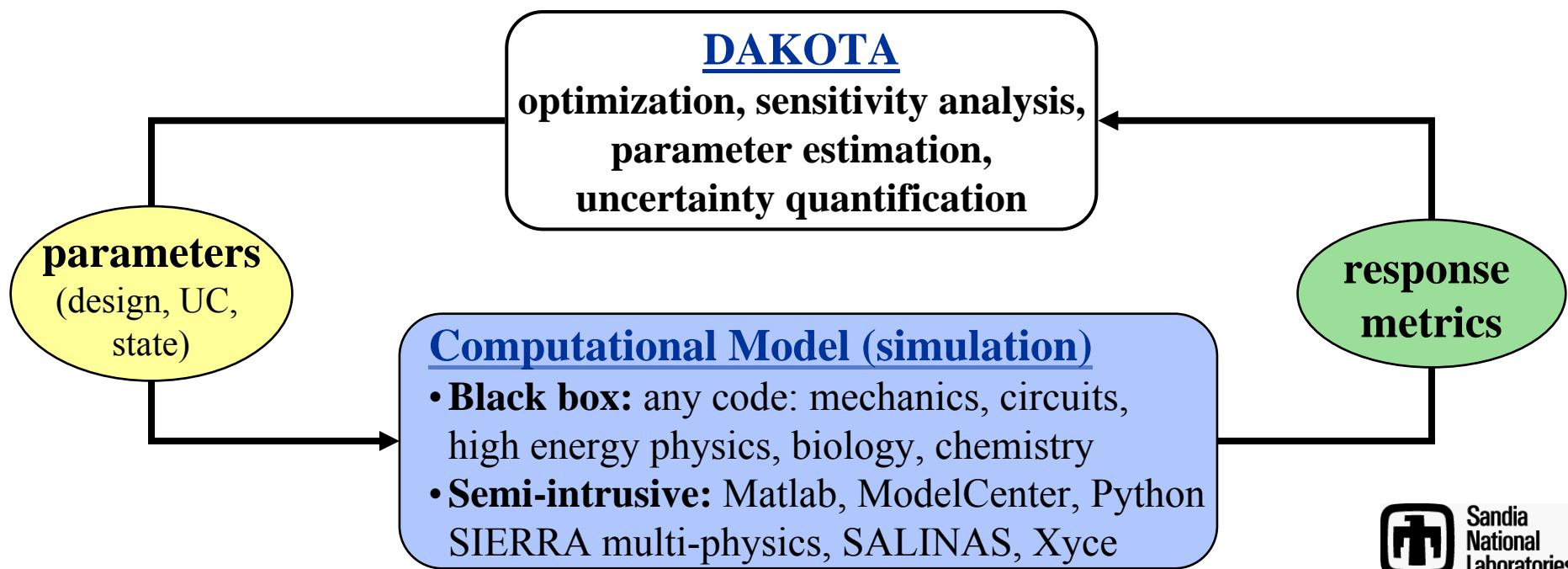
- compute statistics from the $f(x_1, x_2)$ sample values, or
- construct an approximation model based on the $f(x_1, x_2)$ values and then compute statistics from the model?



DAKOTA Motivation

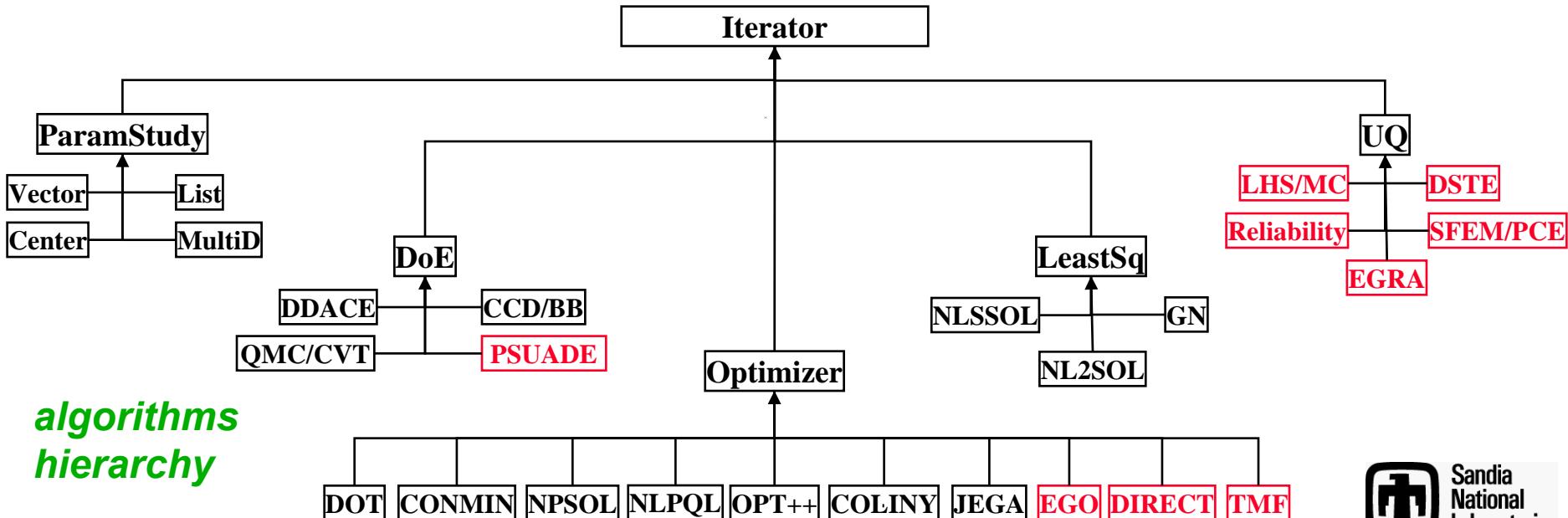
Goal: perform iterative analysis on (potentially massively parallel) simulations to answer fundamental engineering questions:

- **What is the best performing design?**
- **How safe/reliable/robust is it?**
- **How much confidence do I have in my answer?**



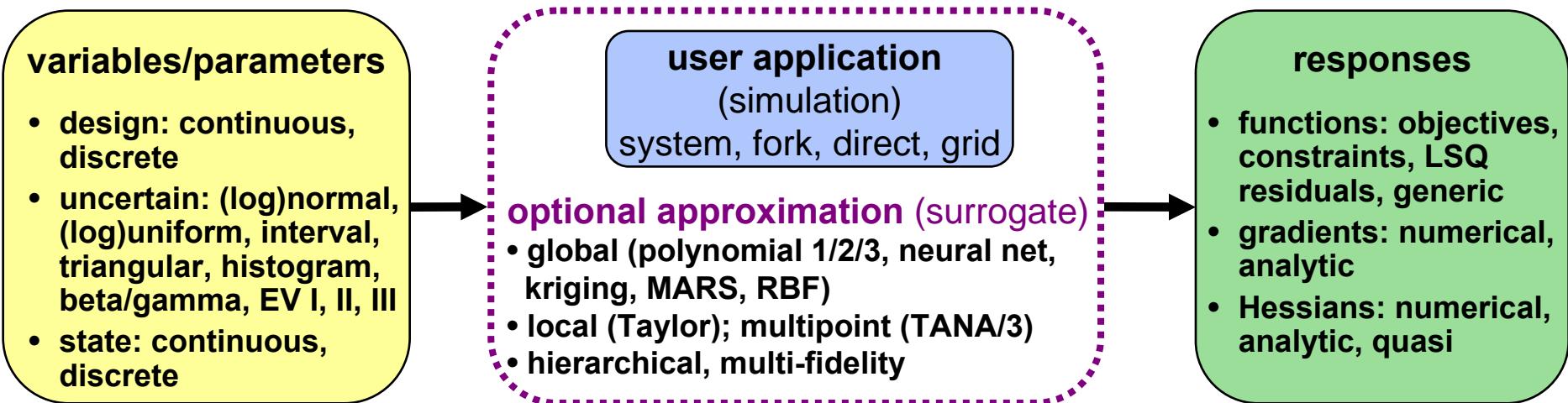
DAKOTA C++/OO Framework Goals

- **Unified software infrastructure:** reuse tools and common interfaces; *integrate commercial, open-source, and research algorithms*
- **Enable algorithm R&D**, e.g., for non-smooth/discontinuous/multimodal responses, probabilistic analysis and design, mixed variables, unreliable gradients, costly simulation failures
- **Facilitate scalable parallelism:** ASCI-scale applications and architectures; *4 nested levels of parallelism possible*
- **Impact:** tool for DOE labs and external partners; broad application deployment; *free via GNU GPL (>3000 download registrations)*



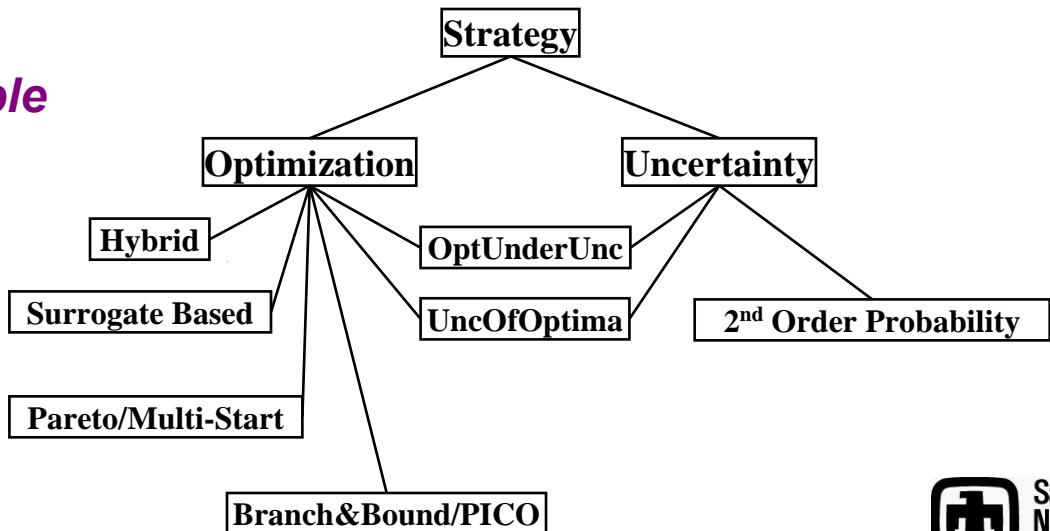
Flexibility with Models & Strategies

DAKOTA models map inputs to response metrics of interest:



DAKOTA strategies enable flexible combination of multiple models and algorithms.

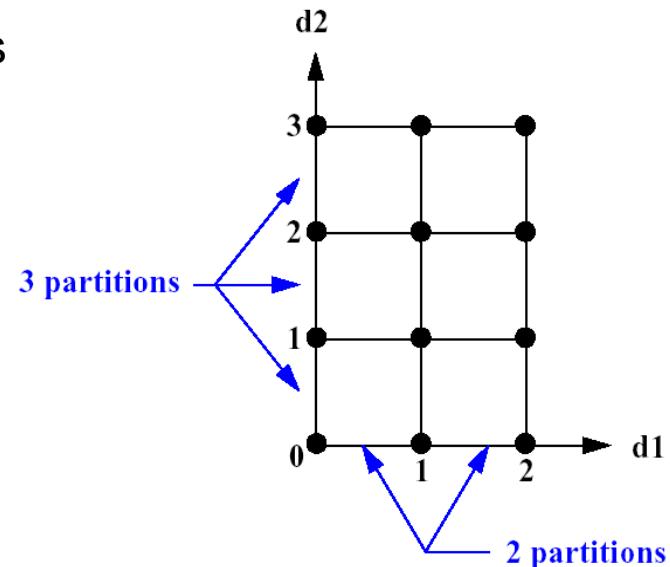
- ***nested***
- ***layered***
- ***cascaded***
- ***concurrent***
- ***adaptive / interactive***



DAKOTA Sensitivity Analysis Methods

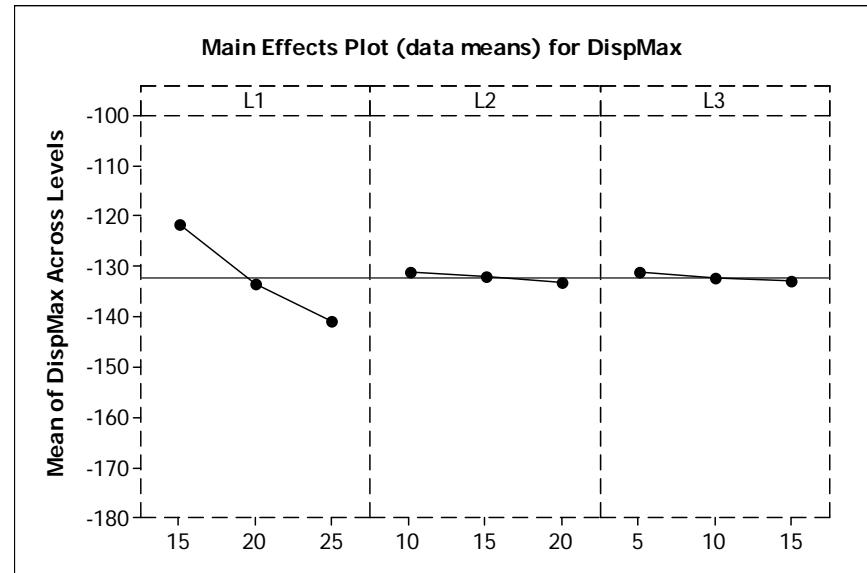
Sensitivity analysis techniques help determine which input variables are most important (perhaps for which to refine uncertainty estimates)

- **Parameter Studies**
 - Alter variables one at a time or on grid
 - Impractical in high dimension $d \sim$ (partitions)
- **Design of Computer Experiments (DACE) vs. Design of Experiments (DOE)**
 - Box-Behnken
 - Central Composite
 - Factorial and fractional designs
 - Orthogonal Arrays
- **Correlation Analysis**
 - Linear correlation
 - Variance-based decomposition
- **Morris One at a Time Sampling**



SA: Orthogonal Arrays

- For each level of one factor, all levels of other factors occur equal number of times.
- **Orthogonality:** statistical independence between columns of the experimental design matrix (confounding factors cancel)
- Good for main effects, terrible for variable interactions
- Large OA databases available

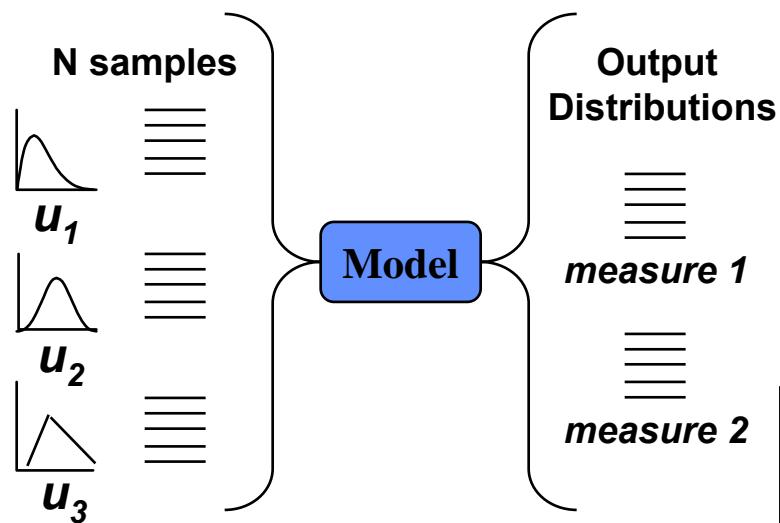


Exp. No	Var. 1	Var. 2	Var. 3	Var. 4	Var. 5	Var. 6	Var. 7
1	1	1	1	1	1	1	1
2	1	1	1	1	2	2	2
3	1	2	2	1	1	2	2
4	1	2	2	2	2	1	1
5	2	1	2	1	2	1	2
6	2	1	2	2	1	2	1
7	2	2	1	1	2	2	1
8	2	2	1	2	1	1	2

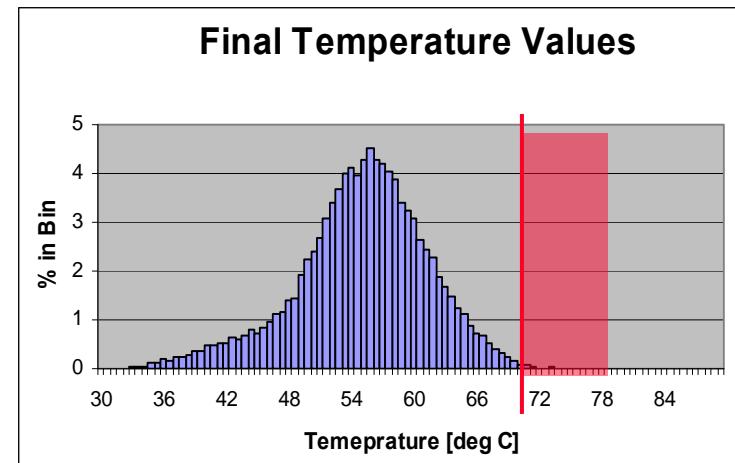
Main effects of 7 variables, each with 2 levels, in 8 samples!

UQ: Sampling Methods

Given distributions of u_1, \dots, u_N , UQ methods...



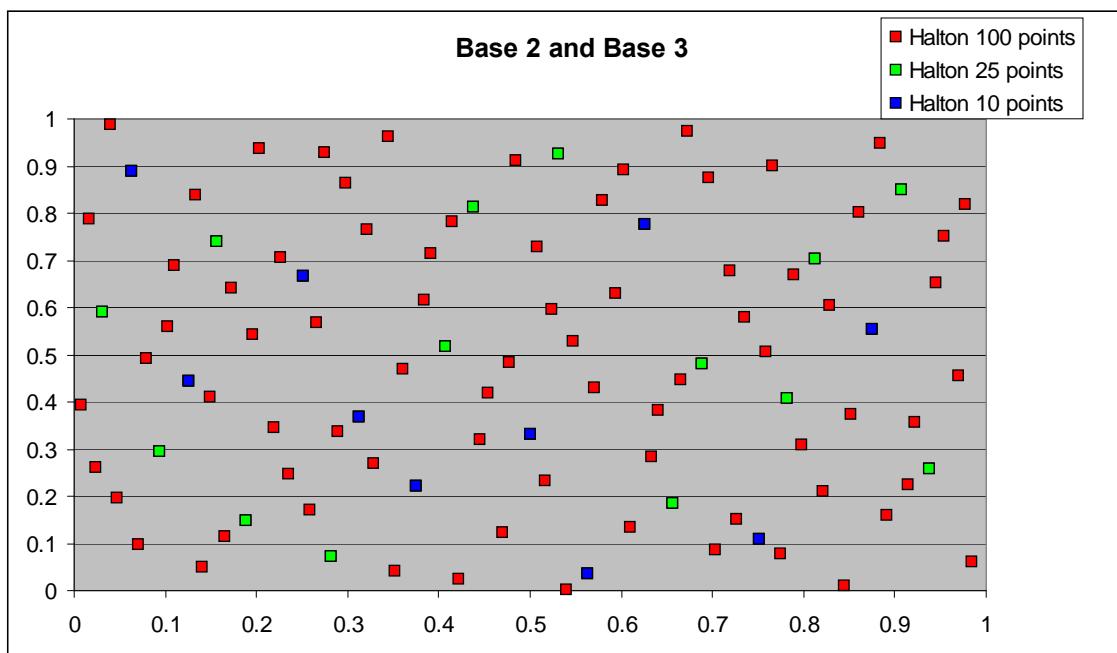
...calculate statistical info on outputs $T(u_1, \dots, u_N)$

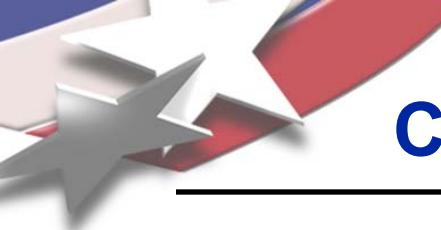


Quasi-Monte Carlo Sequences

- Deterministic sequences from a series of prime bases
- Designed to produce uniform random numbers on the interval $[0,1]$
- Low discrepancy
- Example: Halton sequences

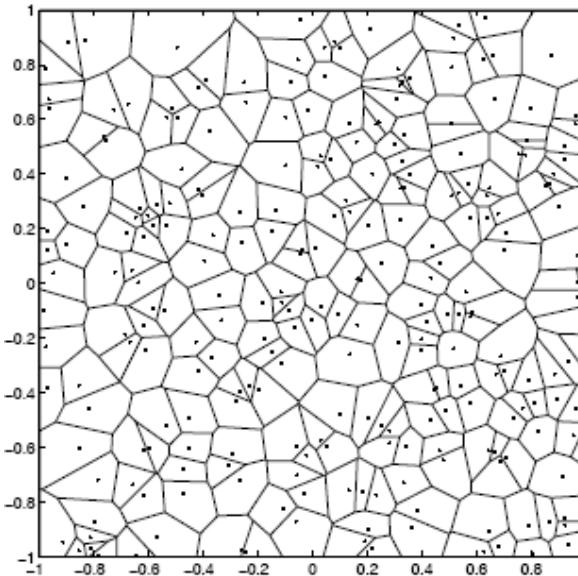
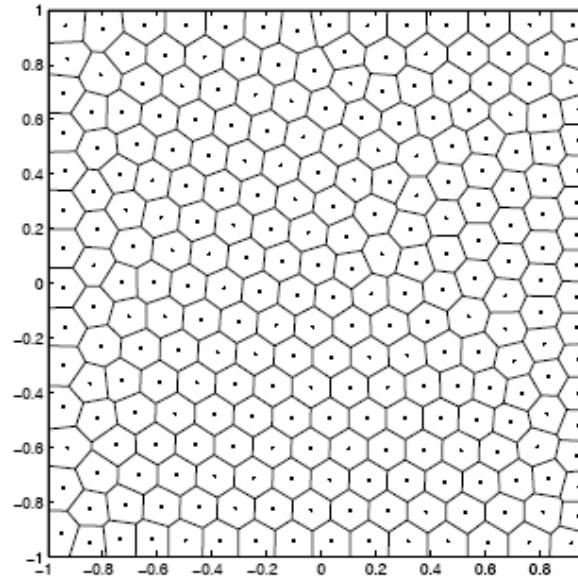
Sample Number	Base 2	Base 3	Base 5	Base 7
1	0.5000	0.3333	0.2000	0.1429
2	0.2500	0.6667	0.4000	0.2857
3	0.7500	0.1111	0.6000	0.4286
4	0.1250	0.4444	0.8000	0.5714
5	0.6250	0.7778	0.0400	0.7143
6	0.3750	0.2222	0.2400	0.8571
7	0.8750	0.5556	0.4400	0.0204
8	0.0625	0.8889	0.6400	0.1633
9	0.5625	0.0370	0.8400	0.3061
10	0.3125	0.3704	0.0800	0.4490





Centroidal Voronoi Tessellation (CVT)

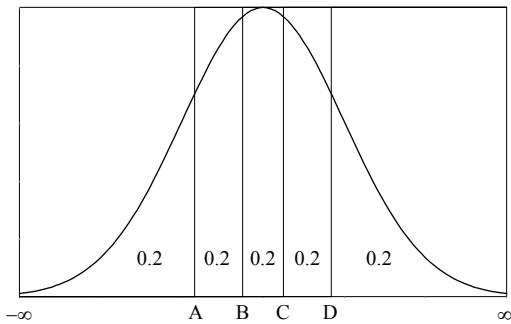
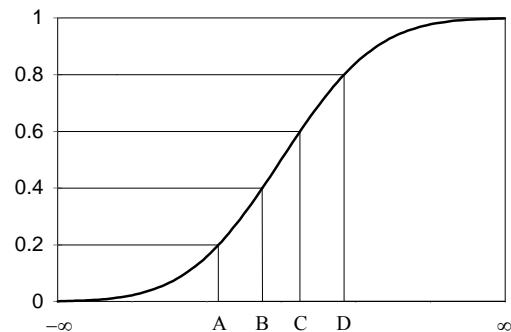
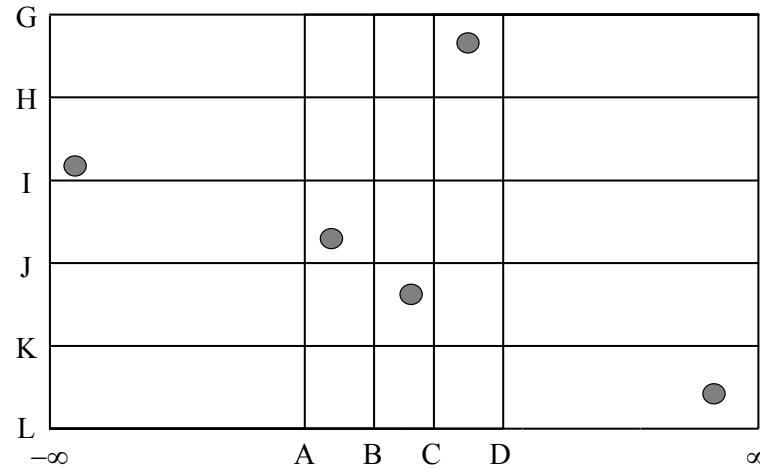
- Generates nearly uniform spacing over arbitrarily shaped parameter spaces (can also be used for non-uniform distributions)
- Origin: unstructured meshing for irregular domains
- Ideal for high dimensional volumetric sampling



Gunzburger, et al.: comparison of random sampling and CVT

Latin Hypercube Sampling (LHS)

- Specialized Monte Carlo (MC) sampling technique: workhorse method in DAKOTA / at Sandia
- *Stratified random sampling among equal probability bins* for all 1-D projections of an n-dimensional set of samples.
- McKay and Conover (early), restricted pairing by Iman



A Two-Dimensional Representation of One Possible LHS of size 5 Utilizing X1 (normal) and X2 (uniform)

Intervals Used with a LHS of Size $n = 5$ in Terms of the pdf and CDF for a Normal Random Variable

Generalized Polynomial Chaos Expansions

Approximate response stochasticity with Galerkin projection using multivariate orthogonal polynomial basis functions defined over standard random variables

e.g.
$$R = \sum_{j=0}^P \alpha_j \Psi_j(\xi)$$
 using

$$R(\xi) \approx f(u)$$

$\Psi_0(\xi)$	$=$	$\psi_0(\xi_1) \psi_0(\xi_2)$	$=$	1
$\Psi_1(\xi)$	$=$	$\psi_1(\xi_1) \psi_0(\xi_2)$	$=$	ξ_1
$\Psi_2(\xi)$	$=$	$\psi_0(\xi_1) \psi_1(\xi_2)$	$=$	ξ_2
$\Psi_3(\xi)$	$=$	$\psi_2(\xi_1) \psi_0(\xi_2)$	$=$	$\xi_1^2 - 1$
$\Psi_4(\xi)$	$=$	$\psi_1(\xi_1) \psi_1(\xi_2)$	$=$	$\xi_1 \xi_2$
$\Psi_5(\xi)$	$=$	$\psi_0(\xi_1) \psi_2(\xi_2)$	$=$	$\xi_2^2 - 1$

- **Intrusive**
- **Nonintrusive:** estimate response coefficients using sampling (expectation), quadrature/cubature (num integration), point collocation (regression)

Wiener-Askey Generalized PCE with adaptivity

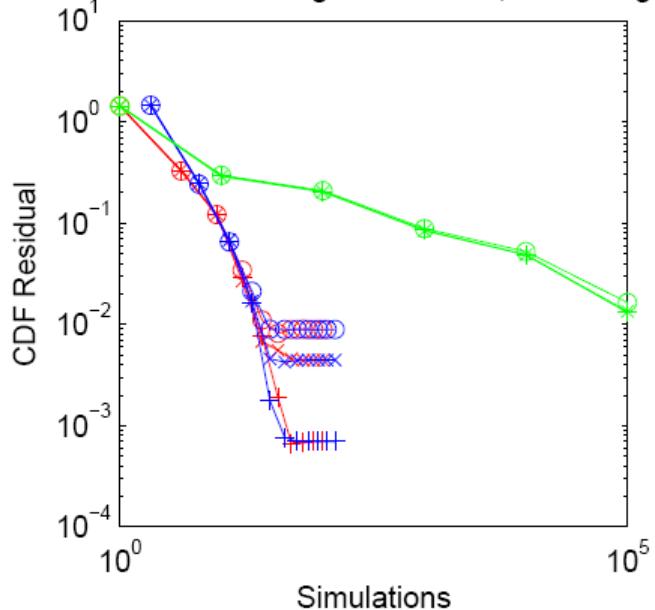
- Tailor basis: optimal basis selection leads to exponential convergence rates

Distribution	Density function	Polynomial	Weight function	Support range
Normal	$\frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}$	Hermite $He_n(x)$	$e^{\frac{-x^2}{2}}$	$[-\infty, \infty]$
Uniform	$\frac{1}{2}$	Legendre $P_n(x)$	1	$[-1, 1]$
Beta	$\frac{(1-x)^\alpha (1+x)^\beta}{2^{\alpha+\beta+1} B(\alpha+1, \beta+1)}$	Jacobi $P_n^{(\alpha, \beta)}(x)$	$(1-x)^\alpha (1+x)^\beta$	$[-1, 1]$
Exponential	e^{-x}	Laguerre $L_n(x)$	e^{-x}	$[0, \infty]$
Gamma	$\frac{x^\alpha e^{-x}}{\Gamma(\alpha+1)}$	Generalized Laguerre $L_n^{(\alpha)}(x)$	$x^\alpha e^{-x}$	$[0, \infty]$

- Tailor expansion order/integration order: adaptivity based on PC error estimates
 - Isotropic/anisotropic tensor-product quadrature & sparse grid Smolyak cubature

PCE: Fast Convergence

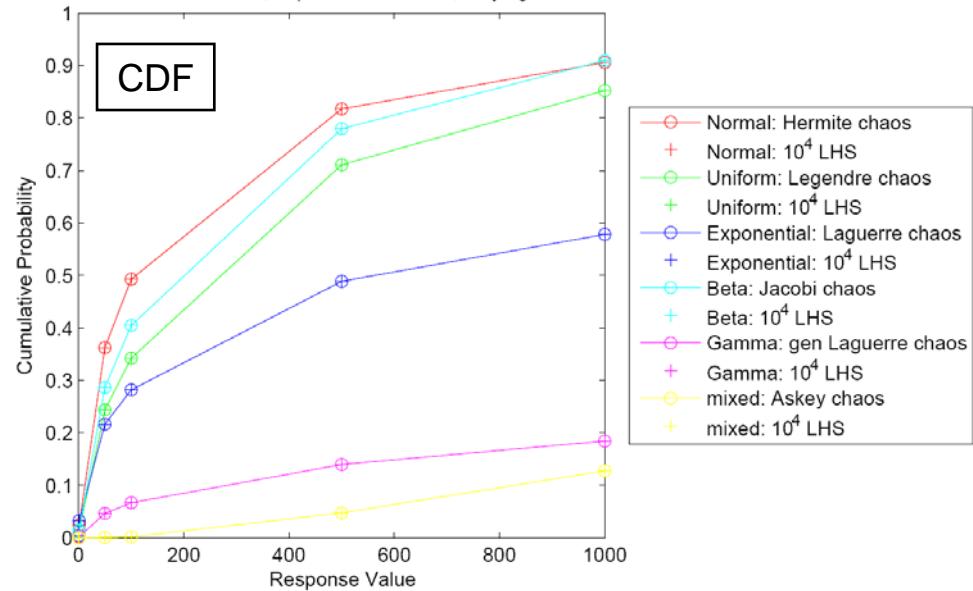
Residual in PCE CDF for Lognormal Ratio, increasing simulations

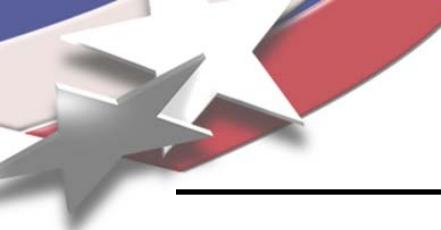


Hermite basis, lognormal distributions

- quad order = exp order + 1, 10^4 samples on PCE
- ✖ quad order = exp order + 1, 10^5 samples on PCE
- ✚ quad order = exp order + 1, 10^6 samples on PCE
- pt colloc ratio = 2, 10^4 samples on PCE
- ✖ pt colloc ratio = 2, 10^5 samples on PCE
- ✚ pt colloc ratio = 2, 10^6 samples on PCE
- exp samples, exp order = 10, 10^4 samples on PCE
- ✖ exp samples, exp order = 10, 10^5 samples on PCE
- ✚ exp samples, exp order = 10, 10^6 samples on PCE

CDF for Rosenbrock Problem, expansion order = 4, varying distribution/basis





UQ Not Addressed Here

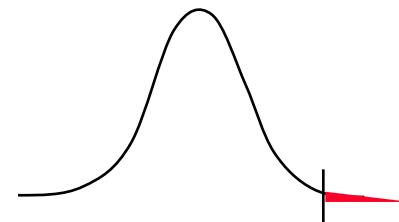
- *Efficient epistemic UQ (big research area)*
- Fuzzy sets (Zadeh)
- Imprecise Probability (Walley)
- Dempster-Shafer Theory of Evidence (Klir, Oberkampf, Ferson)
- Possibility theory (Joslyn)
- Probability bounds analysis (p-boxes)
- Info-gap analysis (Ben-Haim)

- *Production Bayesian analysis capability*
- Bayesian approaches: Bayesian belief networks, Bayesian updating, Robust Bayes, etc.
- Scenario evaluation

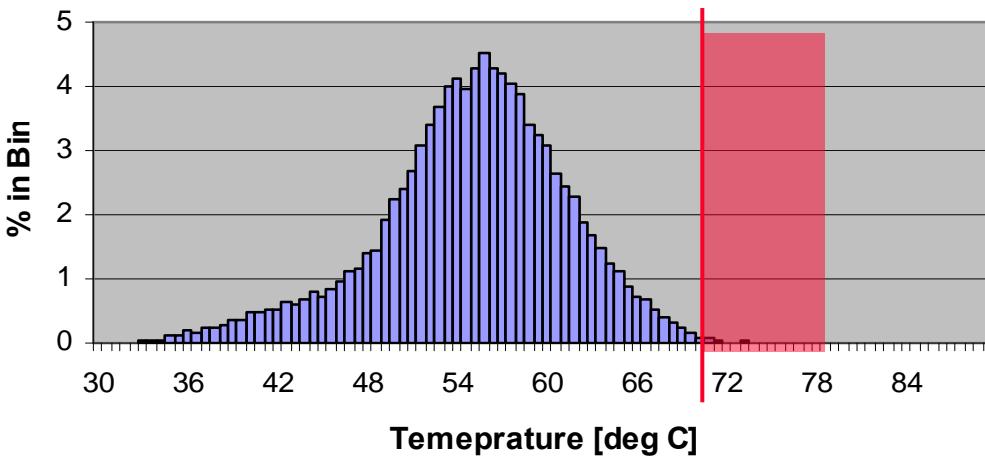
Calculating Probability of Failure

- Given uncertainty in materials, geometry, and environment, determine likelihood of failure

Probability($T \geq T_{critical}$)



Final Temperature Values



- Could perform 10,000 Monte Carlo samples and count how many exceed the threshold...
- Or directly determine input variables which give rise to failure behaviors by solving an optimization problem.

By combining optimization, uncertainty analysis methods, and surrogate (meta-) modeling in a single framework, DAKOTA enables more efficient UQ.

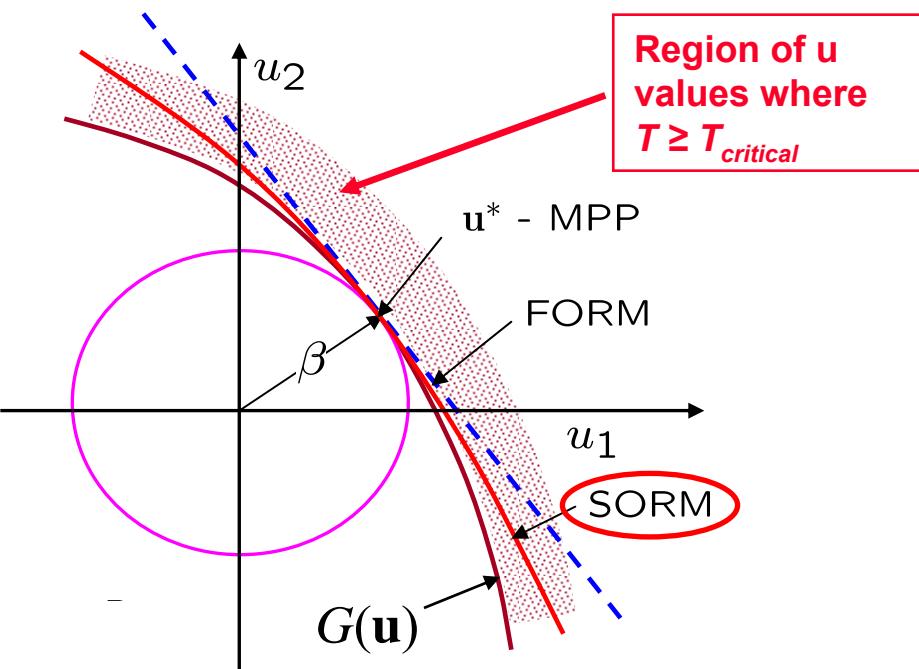
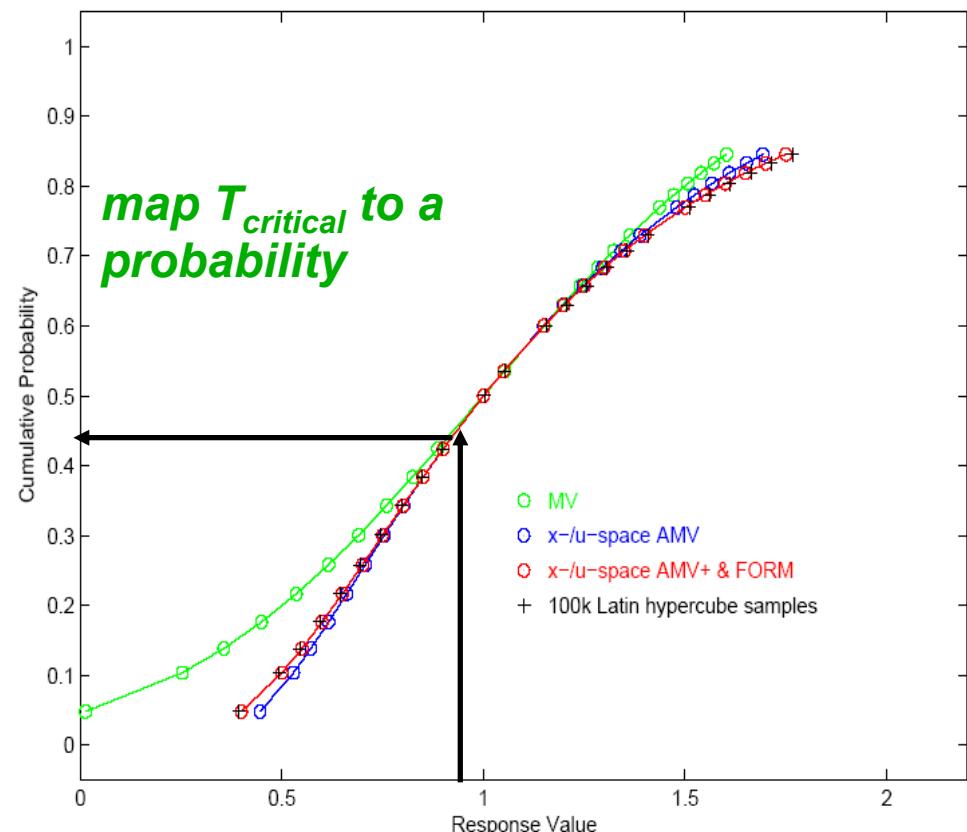
Analytic Reliability: MPP Search

Perform optimization in uncertain variable space to determine Most Probable Point (of response or failure occurring) for $G(\mathbf{u}) = T(\mathbf{u})$.

Reliability Index Approach (RIA)

$$\text{minimize } \mathbf{u}^T \mathbf{u}$$

$$\text{subject to } G(\mathbf{u}) = \bar{z}$$



Reliability: Algorithmic Variations

Many variations possible to improve efficiency, including in DAKOTA...

- Limit state linearizations: use a local surrogate for the limit state $G(u)$ during optimization in u-space (or x-space):

$$\text{u-space AMV: } G(\mathbf{u}) = G(\boldsymbol{\mu}_u) + \nabla_u G(\boldsymbol{\mu}_u)^T (\mathbf{u} - \boldsymbol{\mu}_u)$$

$$\text{u-space AMV+: } G(\mathbf{u}) = G(\mathbf{u}^*) + \nabla_u G(\mathbf{u}^*)^T (\mathbf{u} - \mathbf{u}^*)$$

$$\text{u-space AMV}^2+: \quad G(\mathbf{u}) = G(\mathbf{u}^*) + \nabla_u G(\mathbf{u}^*)^T (\mathbf{u} - \mathbf{u}^*) + \frac{1}{2} (\mathbf{u} - \mathbf{u}^*)^T \nabla_u^2 G(\mathbf{u}^*) (\mathbf{u} - \mathbf{u}^*)$$

(could use analytic, finite difference, or quasi-Newton (BFGS, SR1) Hessians in approximation/optimization – results here mostly use SR1 quasi-Hessians.)

- Integrations (in u-space to determine probabilities): may need higher order for nonlinear limit states

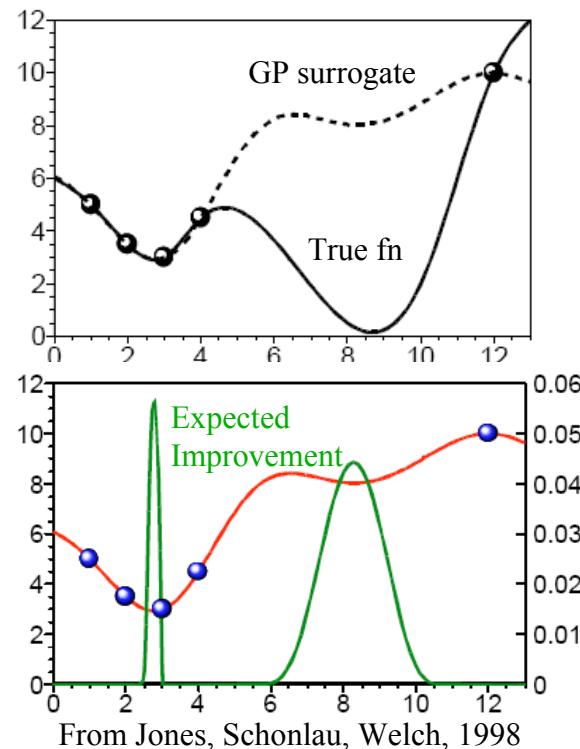
$$\text{1}^{\text{st}}\text{-order: } \begin{cases} p(g \leq z) &= \Phi(-\beta_{cdf}) \\ p(g > z) &= \Phi(-\beta_{ccdf}) \end{cases} \quad \text{2}^{\text{nd}}\text{-order: } \begin{cases} p = \Phi(-\beta) \prod_{i=1}^{n-1} \frac{1}{\sqrt{1 + \beta \kappa_i}} \end{cases}$$

curvature correction

- **MPP search algorithm**: Sequential Quadratic Prog. (SQP) vs. Nonlinear Interior Point (NIP)
- **Warm starting (for linearizations, initial iterate for MPP searches)**: speeds convergence when increments made in: approximation, statistics requested, design variables

Efficient Global Reliability Analysis

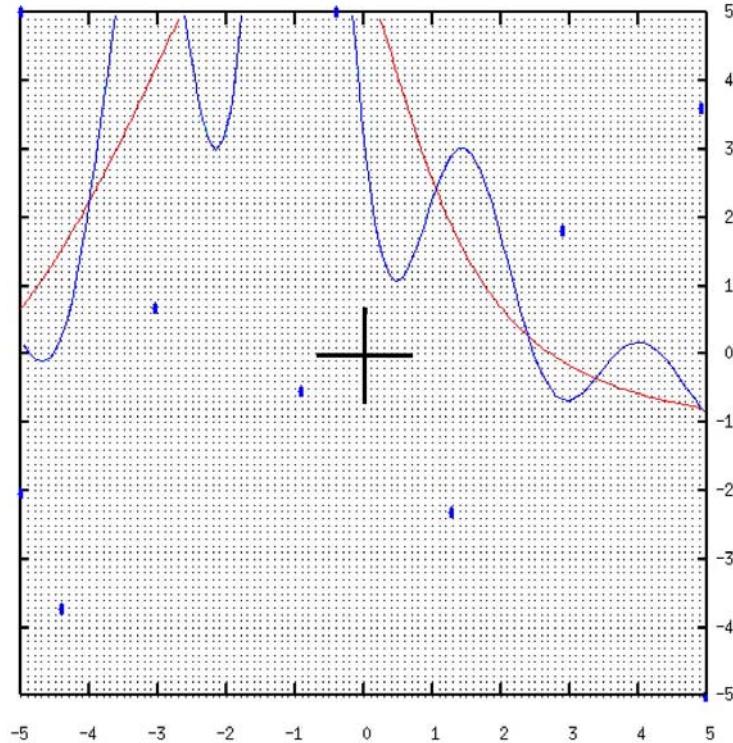
- **EGRA** (B.J. Bichon) performs reliability analysis with EGO (Gaussian Process surrogate and NCSU DIRECT optimizer) coupled with Multimodal adaptive importance sampling for probability calculation.
- Created to address nonlinear and/or multi-modal limit states in MPP searches.



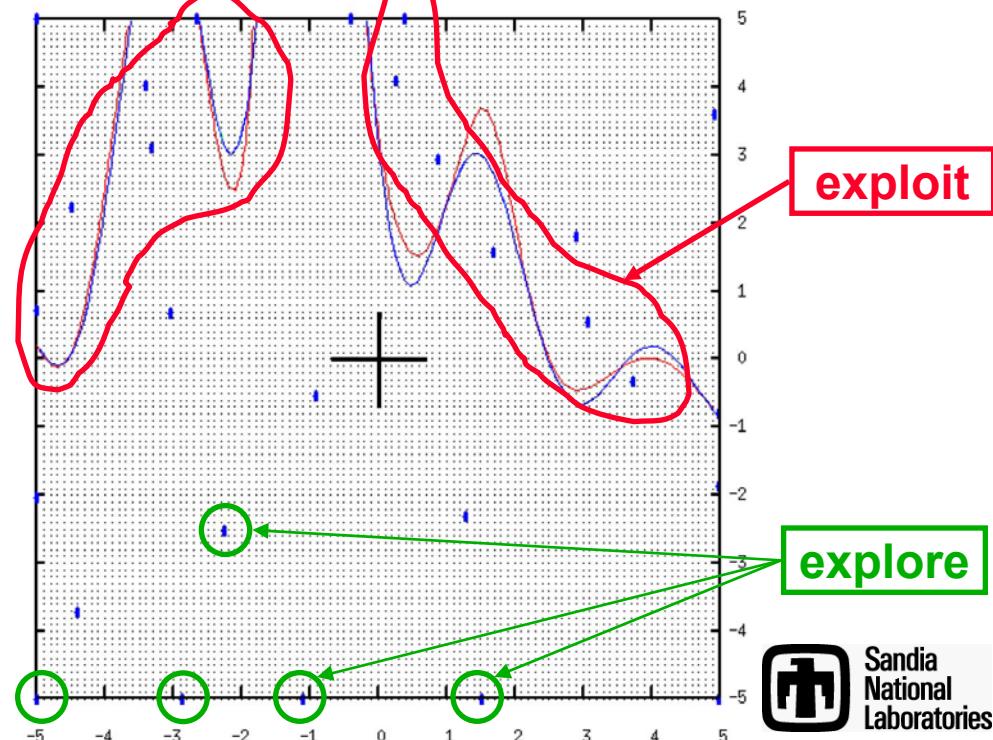
Efficient Global Reliability Analysis

- **EGRA** (B.J. Bichon) performs reliability analysis with EGO (Gaussian Process surrogate and NCSU DIRECT optimizer) coupled with Multimodal adaptive importance sampling for probability calculation.
- Created to address nonlinear and/or multi-modal limit states in MPP searches.

Gaussian process model of reliability limit state with 10 samples



28 samples



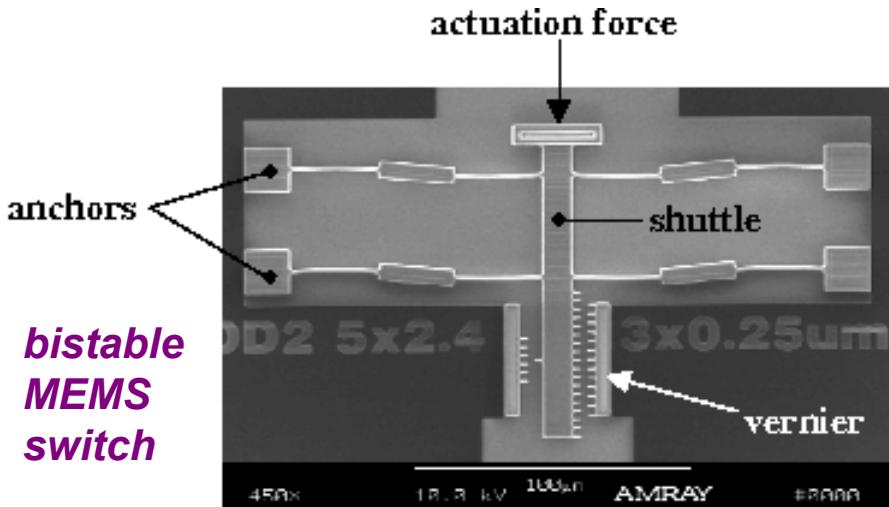
Outline

To be credible, simulations must deliver not only a best estimate of performance, but also its degree of variability or uncertainty.

- Ubiquitous computational simulation
- Why consider uncertainty quantification (UQ)
- Propagating uncertainty through models
 - Intro to UQ methods
 - Advanced UQ methods in DAKOTA
- **Reliability-based MEMS design (OPT+UQ)**
- **Research challenges in electrical circuit UQ**

Shape Optimization of Compliant MEMS

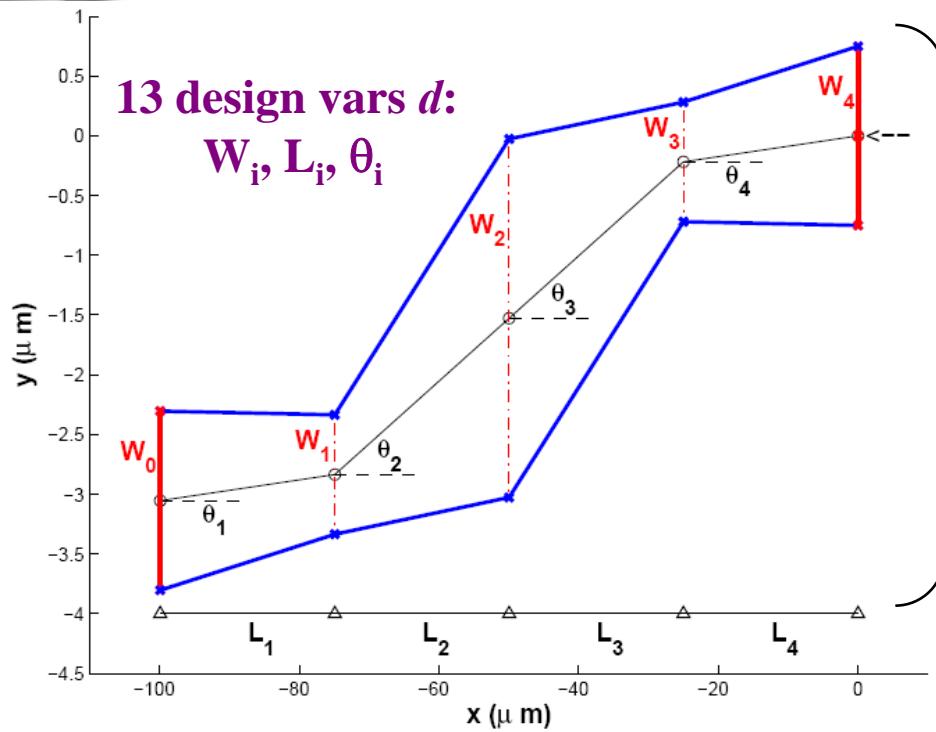
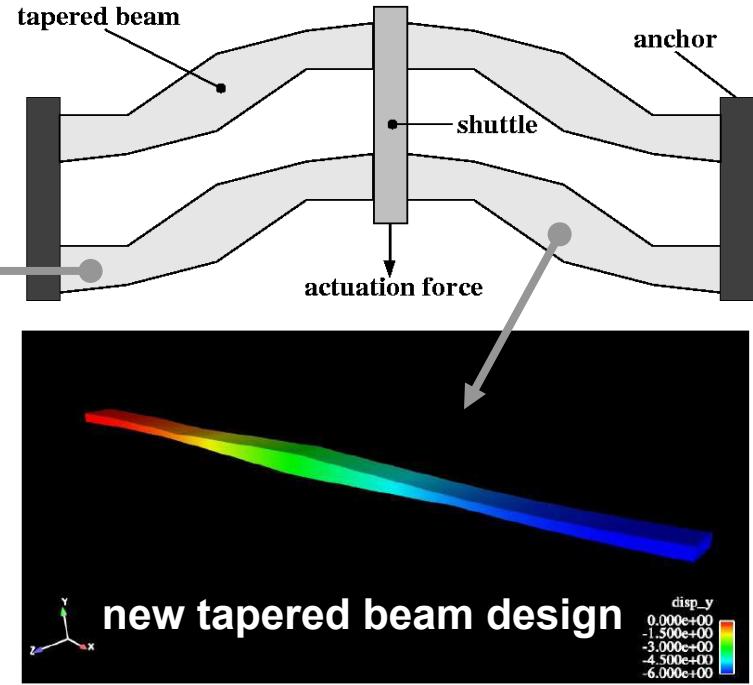
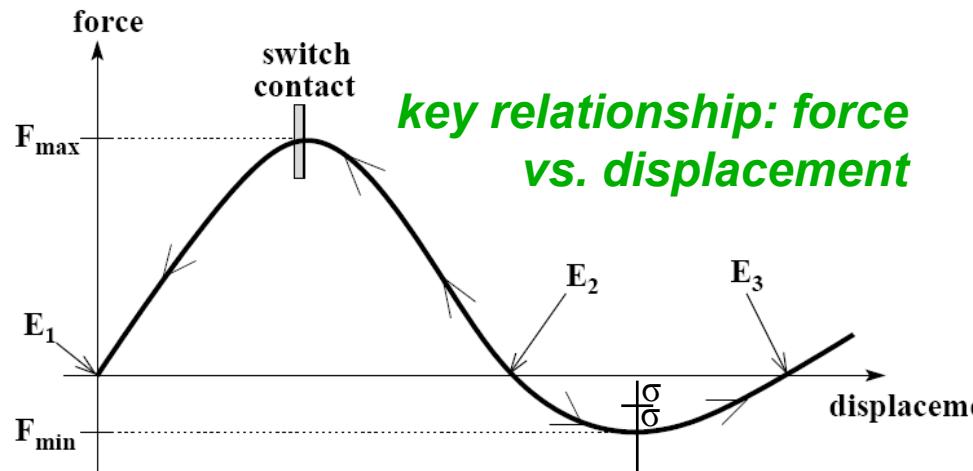
- **Micro-electromechanical system (MEMS):** typically made from silicon, polymers, or metals; used as micro-scale sensors, actuators, switches, and machines
- **MEMS designs are subject to substantial variability** and lack historical knowledge base. Materials and micromachining, photo lithography, etching processes all yield uncertainty.
- Resulting part yields can be low or have poor cycle durability
- **Goal: shape optimize finite element model of bistable switch to...**
 - Achieve prescribed reliability in actuation force
 - Minimize sensitivity to uncertainties (**robustness**)



*uncertainties to be considered
(edge bias and residual stress)*

variable	mean	std. dev.	distribution
Δw	-0.2 μm	0.08	normal
S_r	-11 Mpa	4.13	normal

Tapered Beam Bistable Switch: Performance Metrics

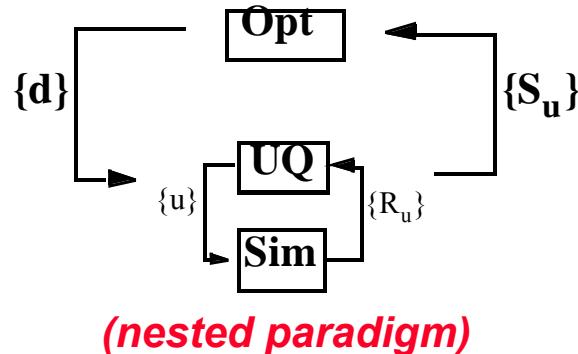


Typical design specifications:

- actuation force F_{\min} reliably $5 \mu\text{N}$
- bistable ($F_{\max} > 0, F_{\min} < 0$)
- maximum force: $50 < F_{\max} < 150$
- equilibrium $E_2 < 8 \mu\text{m}$
- maximum stress $< 1200 \text{ MPa}$

Optimization Under Uncertainty

Rather than design and then post-process to evaluate uncertainty...
actively design optimize while accounting for uncertainty/reliability metrics
 $s_u(d)$, e.g., mean, variance, reliability, probability:

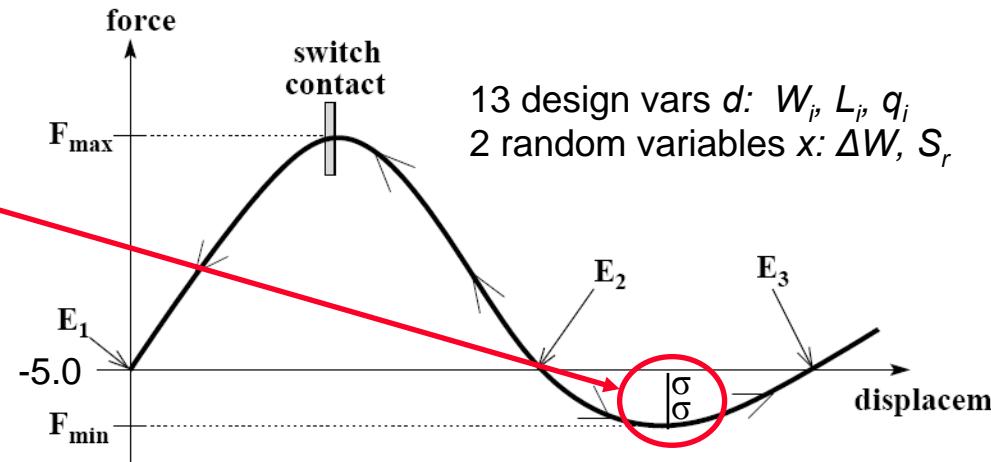


$$\begin{aligned}
 & \min f(d) + W s_u(d) \\
 \text{s.t. } & g_l \leq g(d) \leq g_u \\
 & h(d) = h_t \\
 & d_l \leq d \leq d_u \\
 & a_l \leq A_i s_u(d) \leq a_u \\
 & A_e s_u(d) = a_t
 \end{aligned}$$

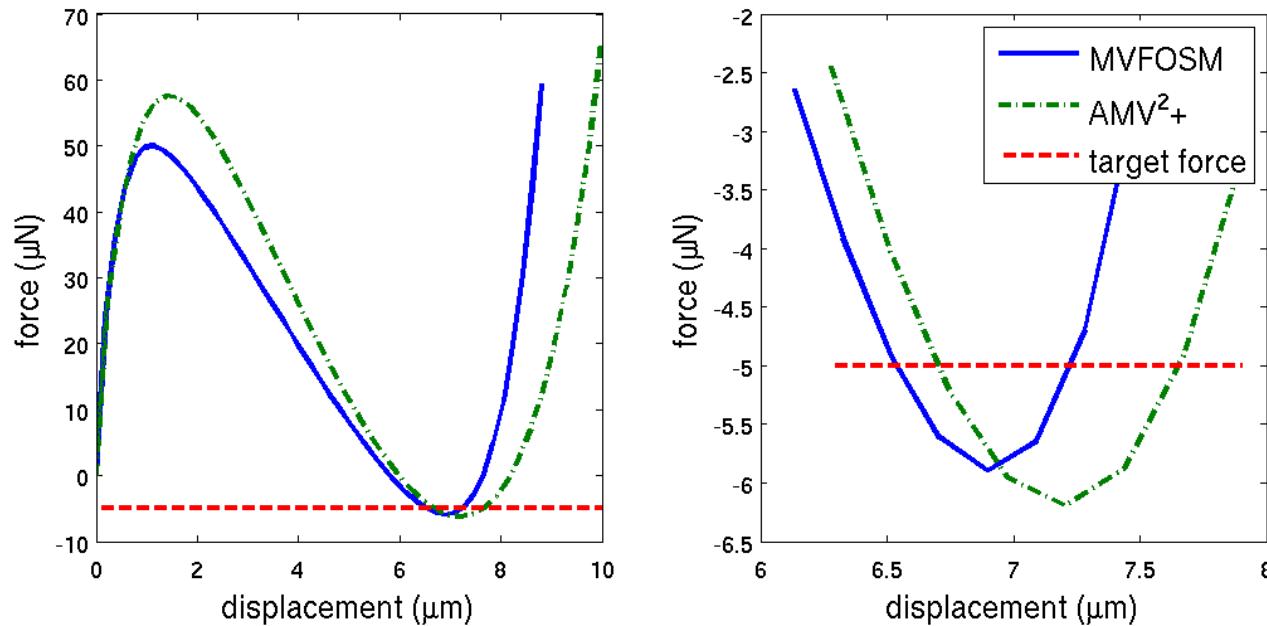
Bistable switch problem formulation (Reliability-Based Design Optimization):

simultaneously reliable and robust designs

$$\begin{aligned}
 \max & \quad \mathbb{E}[F_{min}(d, x)] \\
 \text{s.t.} \quad & 2 \leq \beta_{ccdf}(d) \\
 & 50 \leq \mathbb{E}[F_{max}(d, x)] \leq 150 \\
 & \mathbb{E}[E_2(d, x)] \leq 8 \\
 & \mathbb{E}[S_{max}(d, x)] \leq 3000
 \end{aligned}$$

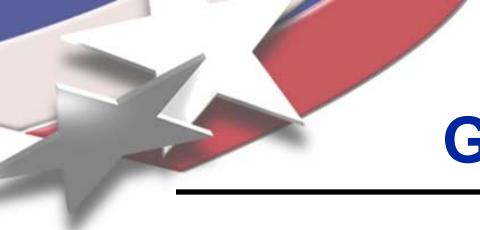


RBDO Finds Optimal & Robust Design



Close-coupled results: DIRECT / CONMIN + reliability method yield optimal and reliable/robust design:

metric			initial \mathbf{d}^0	MVFOSM	AMV^2+	FORM
I.b.	name	u.b.	initial \mathbf{d}^0	optimal \mathbf{d}_M^*	optimal \mathbf{d}_A^*	optimal \mathbf{d}_F^*
	$\mathbb{E}[F_{min}] (\mu\text{N})$		-26.29	-5.896	-6.188	-6.292
2	β		5.376	2.000	1.998	1.999
50	$\mathbb{E}[F_{max}] (\mu\text{N})$	150	68.69	50.01	57.67	57.33
	$\mathbb{E}[E_2] (\mu\text{m})$	8	4.010	5.804	5.990	6.008
	$\mathbb{E}[S_{max}] (\text{MPa})$	1200	470	1563	1333	1329
	AMV ² + verified β		3.771	1.804	-	-
	FORM verified β		3.771	1.707	1.784	-



DAKOTA UQ Algorithms Summary

Goal: bridge robustness/efficiency gap

	Production	New	Under dev.	Planned	Collabs.
Sampling	LHS/MC, QMC/CVT	IS/AIS/MMAIS, Incremental LHS		Bootstrap, Jackknife	Gunzburger
Reliability	1 st /2 nd -order local: MVFOSM/SOSM, x/u AMV/AMV ² / AMV+/AMV ² +, x/u TANA, FORM/SORM	Global: EGRA			Renaud, Mahadevan
Polynomial chaos/ Stochastic collocation		Wiener-Askey gPC: sampling, quad/cubature, pt collocation SC: quadrature	SC: cubature gPC/SC: arbitrary input PDFs	Adaptivity, Wiener-Haar	Ghanem
Other probabilistic				Dimension reduction	Youn
Epistemic	Second-order probability	Dempster-Shafer evidence theory		Bayesian, Imprecise probability	Higdon, Williams, Ferson
Metrics	Importance factors, Partial correlations	Main effects, Variance-based decomposition	Stepwise regression		Storlie

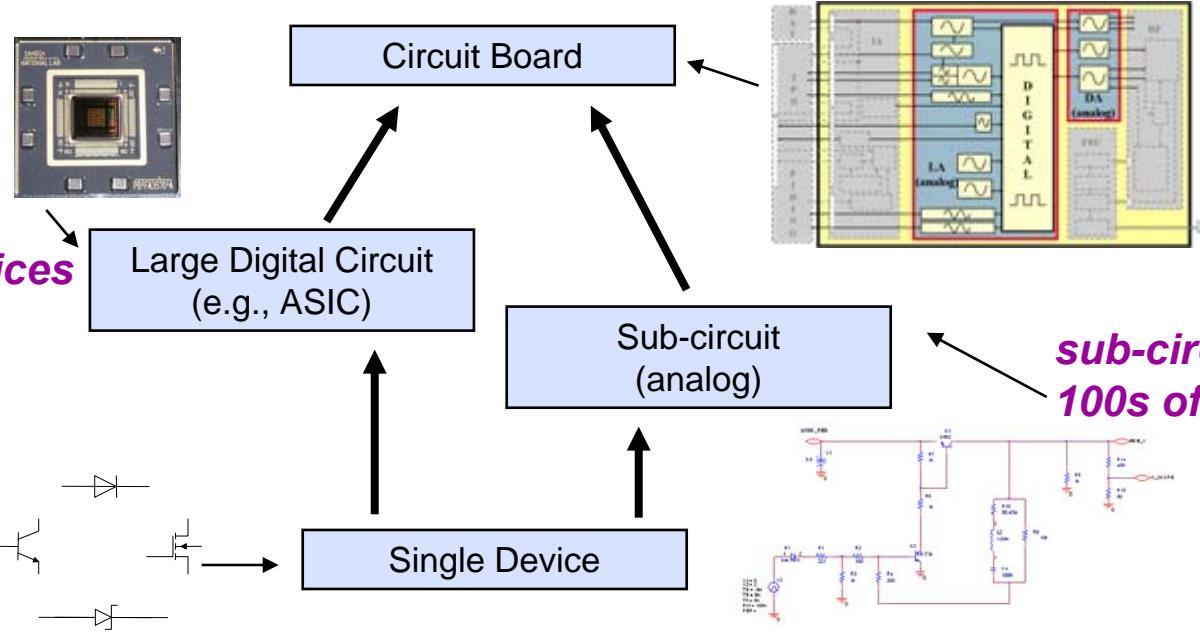
Outline

To be credible, simulations must deliver not only a best estimate of performance, but also its degree of variability or uncertainty.

- Ubiquitous computational simulation
- Why consider uncertainty quantification (UQ)
- Propagating uncertainty through models
 - Intro to UQ methods
 - Advanced UQ methods in DAKOTA
- Reliability-based MEMS design (OPT+UQ)
- **Research challenges in electrical circuit UQ**

Electrical Modeling Complexity

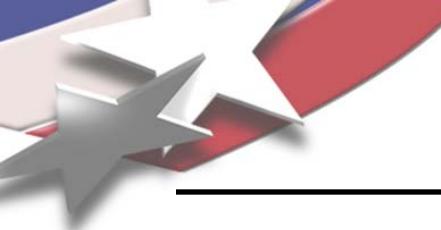
ASIC: 1000s to millions of devices



(G. Gray, M. M-C)

- **simple devices:** 1 parameter, typically physical and measurable
- e.g., resistor @ 100Ω +/- 1%
- resistors, capacitors, inductors, voltage sources

- **complex devices:** many parameters, some physical, others “extracted” (calibrated)
- multiple modes of operation
- e.g., zener diode: 30 parameters, 3 bias states; many transistor models (forward, reverse, breakdown modes)



Electrical Circuit UQ

- **Circuit analysis challenges**

- network of nonlinearly coupled components, feedback loops, staged behavior, or discrete digital logic, mandating all-at-once circuit solution techniques
- long simulation time involving iterative solvers (often hours to simulate microseconds, particularly in oscillating electronics);
- combination of analog and digital circuits: consider separately or together
 - analog circuits typically < 100 devices, including replicates, less predictable topology across designs
 - digital circuits 1,000 to 1,000,000 transistors (identical or similar), small number of well-defined connection types.

- **Typical parametric uncertainties:**

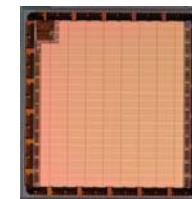
- process parameters (e.g., diffusion times, oven temperatures)
- physical parameters (e.g., line widths, channel doping)
- model parameters (e.g., BSIM3 transistor compact model)
- electrical parameters (e.g., line resistance, saturation current, threshold voltage)

- Mapping reality to compact model parameters not always easy; compact model may be more behavioral than physics-based

UQ: Explosion of Factors!

complex device models + replicates in circuits

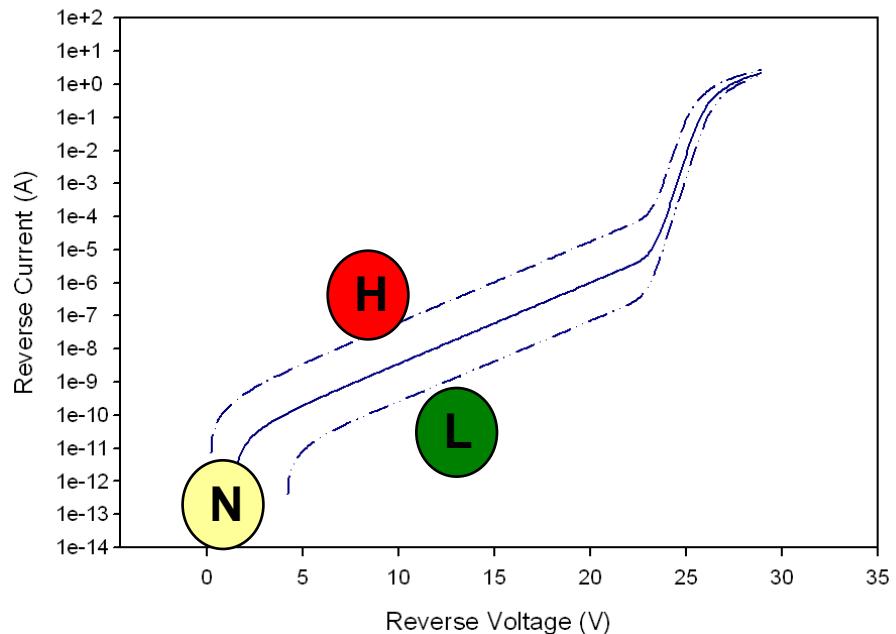
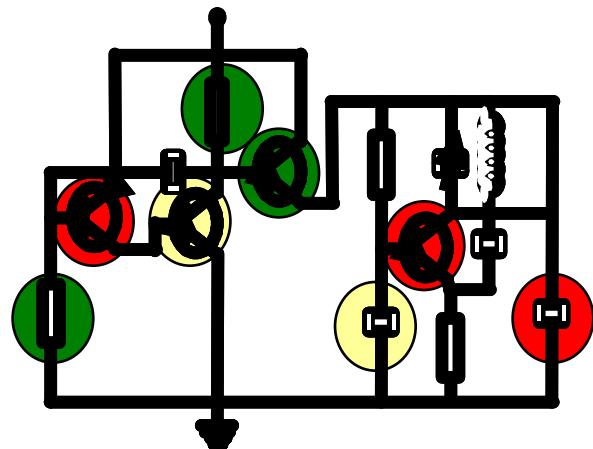
- **Tor Fjeldy radiation photocurrent models for transistors**
 - 20 model parameters, three levels for each (low, nominal, high) ~ 3 billion combinations
 - not practical via factorial brute force, but LHS might miss extreme “corner” behaviors
 - 6 devices in circuit of interest; **mitigated via OAs**
- **Simple voltage regulator circuit**
 - 4 BJTs, 1 MOSFET, 17 resistors, 1 capacitor, 1 zener diode
 - over 100 parameters if considered naively
 - **mitigate by determining parameter sets giving rise to low, nominal, high response for each device**
- **CMOS 7 ViArray: generic ASIC implementation platform**
 - Approx 1 million transistors
 - adding parasitics yields a simulation with millions of resistors, capacitors, inductors
 - **mitigated by grouping within process layers**

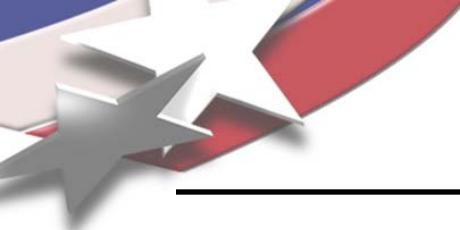


Approaches curbing the curse of dimensionality crucial in analyzing these kinds of systems!

Zener Low-Nominal-High Models

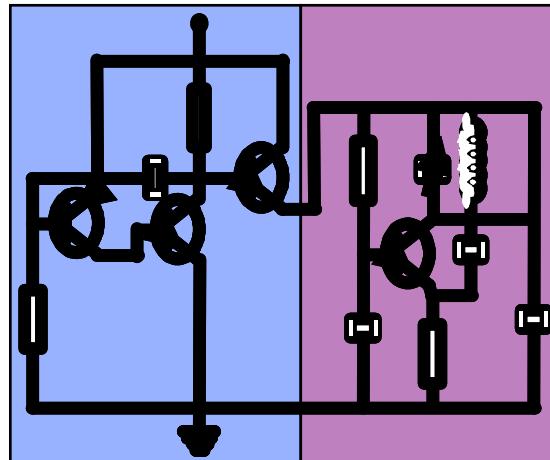
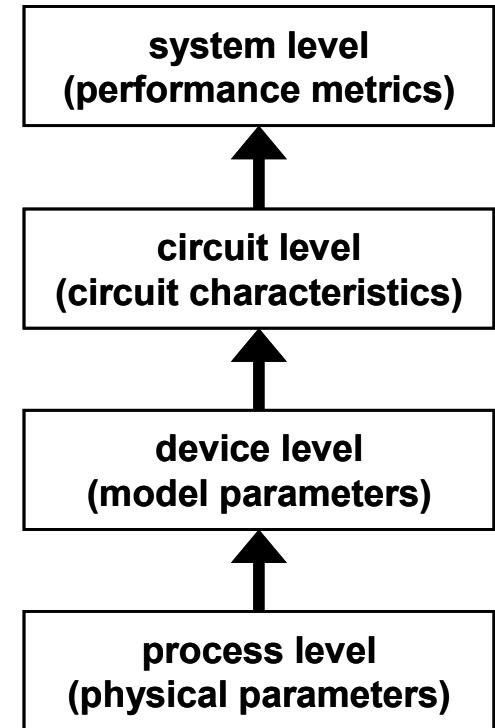
- For single device, perform LHS samples of 20 parameters
- Determine 3 sets of parameters giving rise to nominal and extreme device response
- When performing circuit UQ, sample uniformly from L,N,H and set all 20 parameters accordingly in the full simulation

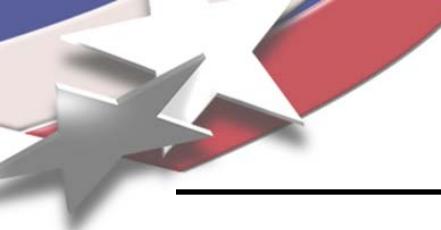




Hierarchical/Network Structure

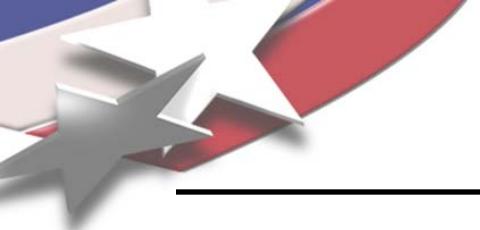
- How can we exploit electrical systems' natural hierarchy or network structure?
- How does uncertainty propagate? Sufficient to propagate variance?
- Use surrogate/macro-models as glue between levels?
- Can approaches be implemented generically to apply to any circuit implemented in Xyce?





Other Relevant Technologies

- **Apply existing reliability and polynomial chaos methods; benefit of embedded techniques?**
- **Principal components analysis (PCA, SVD, POD), reduced-order modeling techniques: only vary uncorrelated parameters**
- **Surrogate/macro modeling, insert current/voltage sources representative of the effect of uncertainty**
- **Leverage structure of network, DAE system under the hood; automatic structure analysis, macro-model creation?**



Summary

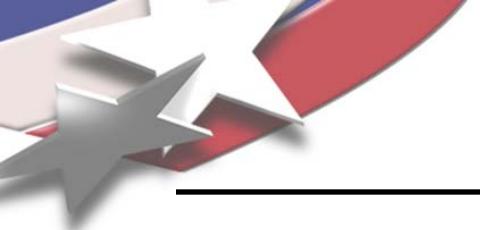
To be credible, simulations must deliver not only a best estimate of performance, but also its degree of variability or uncertainty.

- Uncertainty quantification algorithms are essential in credible simulation
- Complex, large-scale simulations demand research in advanced efficient UQ methods

Thank you for your attention!

briadam@sandia.gov

<http://www.sandia.gov/~briadam>



Abstract

- **2008 CSRI Summer Lecture Series**
- **Title: "From uncertainty to credibility: UQ algorithms and research challenges"**
- **Speaker: Brian Adams (Org. 1411)**
- **Date/Time: Wednesday, July 2, 3-4pm (MST)**
- **Location:**
 - NM: CSRI/90
 - CA: 915/S145
- **Abstract:**
 - Computational simulations are routinely used to assess the performance, reliability, and safety of existing and proposed systems, and are increasingly used for risk-informed decision making in the presence of uncertainties. To be credible, simulations must deliver not only a best estimate of performance, but also its degree of variability or uncertainty.
 - Uncertainty quantification (UQ) algorithms compute the effect of uncertain input variables on response metrics of interest, enabling risk assessment, model calibration, and model validation. In this talk, I will motivate simulation-based UQ with examples from electrical circuit and MEMS design. I will survey methods from ubiquitous Monte Carlo sampling through more advanced reliability analysis and polynomial chaos expansions available in Sandia's DAKOTA toolkit. In particular, DAKOTA's reliability analysis methods employ a mix of probability, optimization, and surrogate (meta-) modeling to efficiently perform UQ.
 - Challenges in large-scale electrical circuit UQ will motivate unmet algorithm research needs.

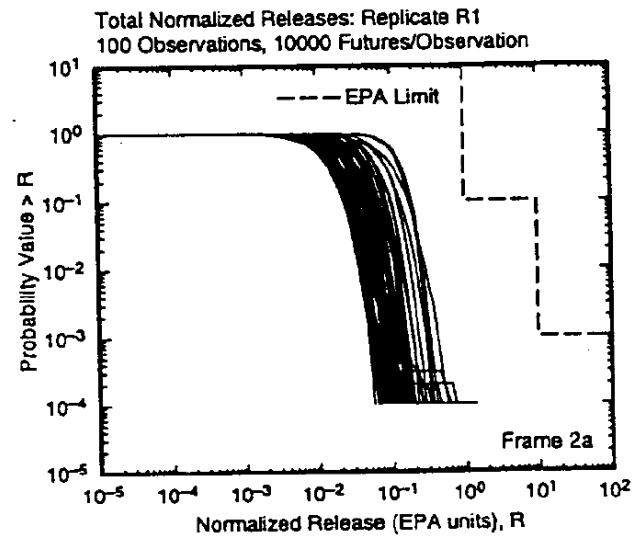
Extra Slides

Epistemic UQ

Second-order probability

- Two levels: distributions/intervals on distribution parameters
- Outer level can be epistemic (e.g., interval)
- Inner level can be aleatory (probability distrs)
- Strong regulatory history (NRC, WIPP).

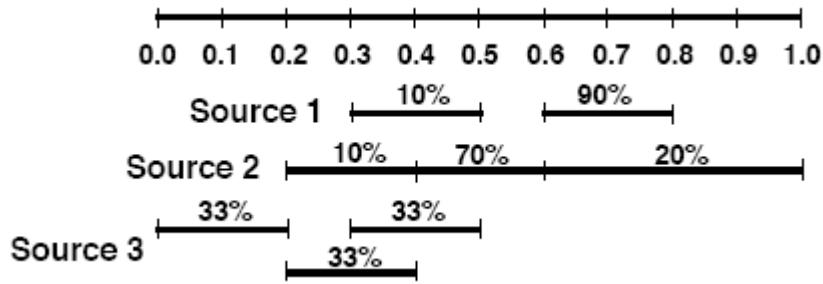
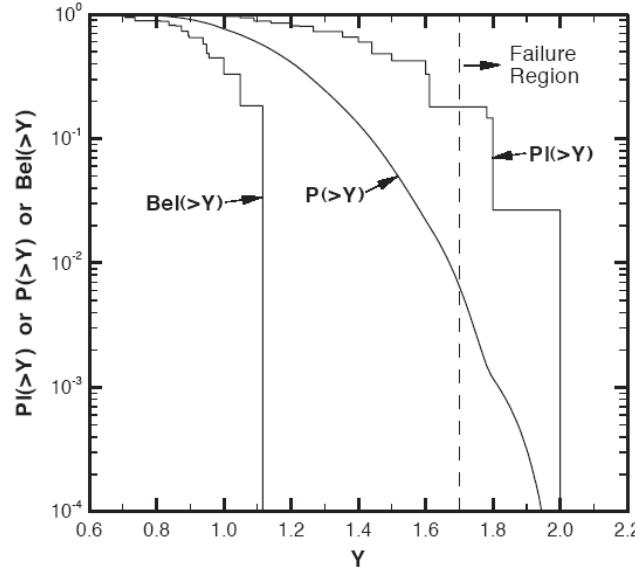
New

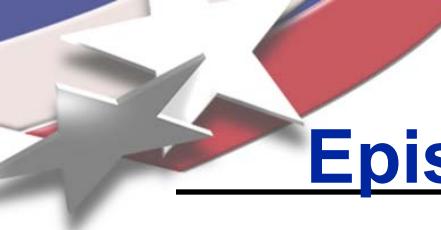


Dempster-Shafer theory of evidence

- Basic probability assignment (interval-based)
- Solve opt. problems (currently sampling-based) to compute belief/plausibility for output intervals

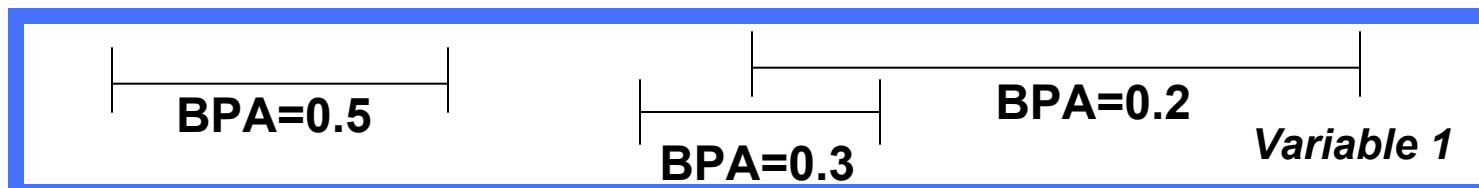
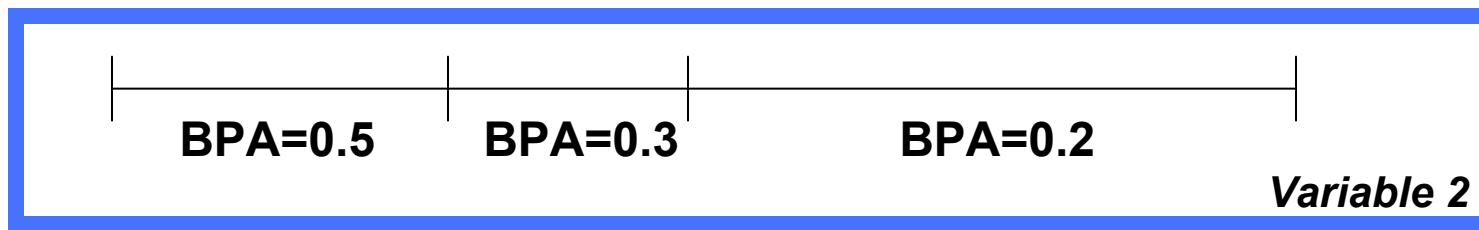
New





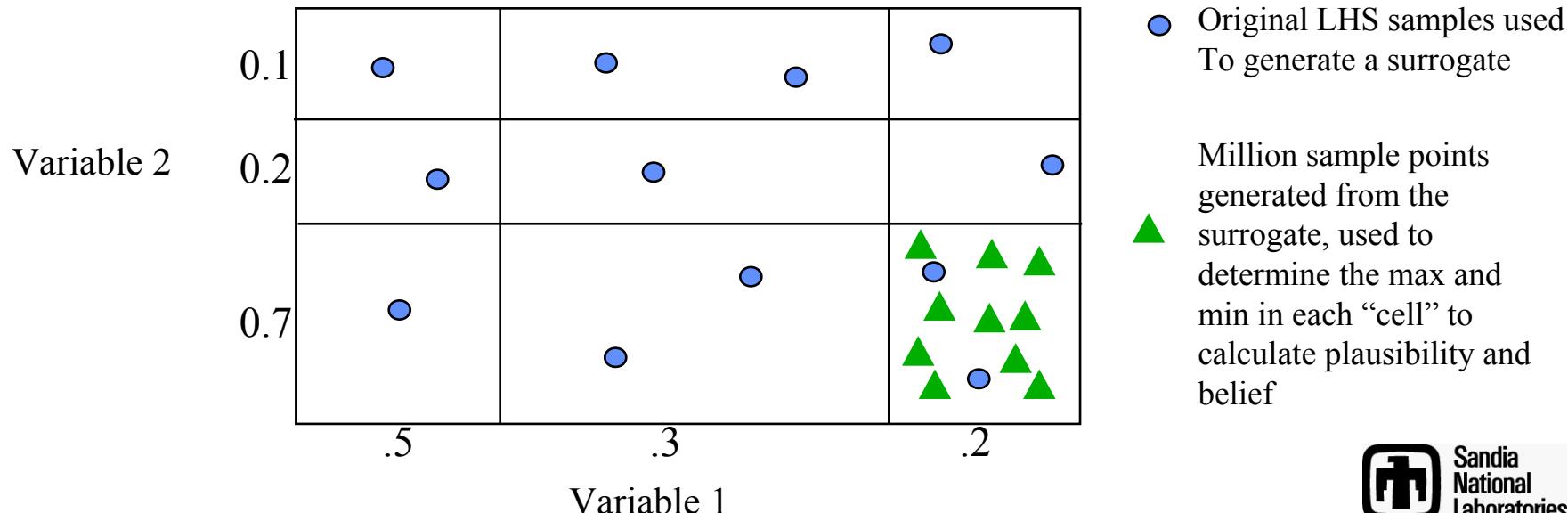
Epistemic Uncertainty Quantification

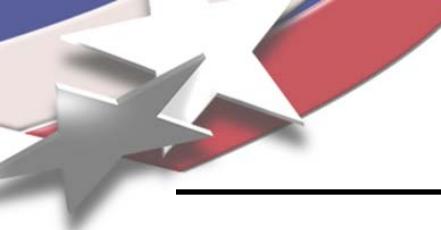
- Epistemic uncertainty refers to the situation where one does not know enough to specify a probability distribution on a variable
- Sometimes it is referred to as subjective, reducible, or lack of knowledge uncertainty
- The implication is that if you had more time and resources to gather more information, you could reduce the uncertainty
- Initial implementation in DAKOTA uses Dempster-Shafer belief structures. For each uncertain input variable, one specifies “basic probability assignment” for each potential interval where this variable may exist.
- Intervals may be contiguous, overlapping, or have “gaps”



Epistemic Uncertainty Quantification

- Look at various combinations of intervals. In each joint interval “box”, one needs to find the maximum and minimum value in that box (by sampling or optimization)
- Belief is a lower bound on the probability that is consistent with the evidence
- Plausibility is the upper bound on the probability that is consistent with the evidence
- Order these beliefs and plausibility to get CDFs
- Draws on the strengths of DAKOTA
 - Requires surrogates
 - Requires sampling and/or optimization for calculation of plausibility and belief within each interval “cell”
 - Easily parallelized

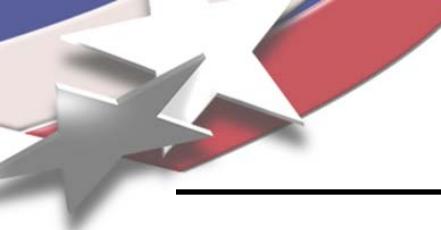




Bayesian Analysis

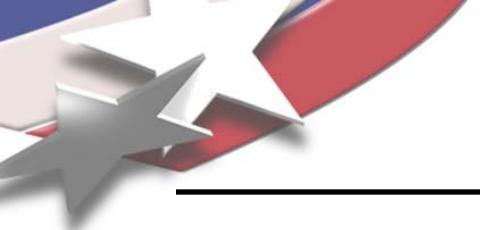
- Construct a **prior** distribution on a parameter (which might be a parameter of a distribution)
- The prior distribution should be based on previous experience, engineering judgment
- The distribution on the prior is updated with actual data. The resulting updated distribution is called the **posterior**.

Frequentist	Bayesian
Assumes there is an unknown but fixed parameter θ	Assumes a distribution on unknown parameter θ
Estimates θ with some confidence interval	Uses probability theory, treats θ as a random variable



Bayesian Analysis

- Why would we use it for CS&E problems?
- Nice feature of incorporating additional data as it becomes available
- We often don't have good estimates: Bayes provides a framework for starting with what we do know, and refining our estimates in a statistically consistent manner
- Examples:
 - Reliability problems: Update probability of failure
 - Response surfaces: Update parameters in a surrogate model for a trust region
 - Calibration under Uncertainty (CUU): Update our parameter estimates based on experimental data AND uncertainty in a model



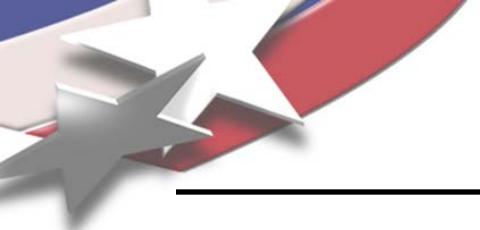
Bayesian Methods

Discrete Case

$$p(\theta | \mathbf{x}) = \frac{p(\mathbf{x}, \theta)}{p(\mathbf{x})} = \frac{p(\mathbf{x} | \theta)p(\theta)}{p(\mathbf{x})} = \frac{p(\mathbf{x} | \theta)p(\theta)}{\sum_{\theta} p(\mathbf{x} | \theta)p(\theta)}$$

where θ is a parameter(s), \mathbf{x} is a data vector, and p is a probability mass function.

$$p(\theta | \mathbf{x}) = \text{posterior} \propto p(\mathbf{x} | \theta)p(\theta) = \text{likelihood} * \text{prior}$$



Examples

- Use Binomial distribution to model the number of failures, x , in n trials.

$$f(x | \theta) = \binom{n}{x} \theta^x (1 - \theta)^{n-x}$$

- We obtain data that shows 2 failures in 5 trials

Prior Probability	Posterior Probability
$P\{\theta=0.3\}=0.1$	$P\{\theta=0.3\}=0.13$
$P\{\theta=0.6\}=0.9$	$P\{\theta=0.6\}=0.87$

- The posterior distribution reflects the fact that in this set of data, $\theta = 0.4$ which is closer to 0.3 than 0.6 and so the probability of $\theta=0.3$ has risen slightly.