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Ph.D., Computational and Applied Mathematics, NC State
– mathematics, statistics, computer science, immunology
– nondeterministic model calibration (HIV)
– internship at Fred Hutchinson Cancer Research Center

SNL since 2005 to fulfill goals:
– optimization focus (surprise: uncertainty quantification) 
– develop algorithms; production software implementation 

in DAKOTA
– work with science/engineering application customers;

 
let their unmet needs drive research and software

Route to Sandia



Outline

• Ubiquitous computational simulation

• Why consider uncertainty quantification (UQ)

• Propagating uncertainty through models

– Intro to UQ methods

– Advanced UQ methods in DAKOTA

• Reliability-based MEMS design (OPT+UQ)

• Research challenges in electrical circuit UQ 

To be credible, simulations must deliver not only a best estimate 
of performance, but also its degree of variability or uncertainty.

Slide credits:  Mike Eldred, Laura Swiler, Barron Bichon, Genetha

 

Gray,

 
Bill Oberkampf, Matt Kerschen, others
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Computational Simulation 

d
Hurricane Katrina: weather, 

logistics, economics, 
human behavior

Electrical circuits: networks, 
PDEs, differential algebraic 

equations (DAEs), E&M

Earth penetrator: nonlinear 
PDEs

 

with contact, transient 
analysis, material modeling

Micro-electro-mechanical 
systems (MEMS): quasi-

 
static nonlinear elasticity, 

process modeling

Joint mechanics: system-

 
level FEA for component 

assessment

Systems of systems 
analysis: multi-scale, 
multi-phenomenon



Credible Simulation

• Ultimate purpose of modeling and simulation is 
(arguably) insight, prediction, and decision-making 
need credibility for intended application

• Historically: primary focus on

 

modeling fidelity

Graphic credit: Bill Oberkampf



Credible Simulation: Beyond Nominal

Slide credit: Bill Oberkampf



Verification & Validation

• Verification:

 

“Are we solving the equations correctly?”
– mathematics/computer science issue:  Is our mathematical formulation 

and software implementation of the physics model correct?
– code verification

 

(software correctness); 
solution verification

 

(e.g., exhibits proper order of convergence)

• Validation –

 

“Are we solving the right equations?”
– a disciplinary science issue:  is the science (physics, biology,

 

etc.) model 
sufficient for the intended application?

 

Involves data and metrics.

Related concepts:
• Sensitivity Analysis (SA): both local and global

– How do code outputs vary with respect to changes in code inputs?

• Uncertainty Quantification (UQ):
– What are the probability distributions on code outputs, given the probability 

distributions on my code inputs?  Unknown input distributions?

• Quantification of margins and uncertainties (QMU):
– How “close”

 

are my code output predictions (incl. UQ) to the system’s 
required performance level?



Algorithms for Computational
 Modeling & Simulation

System Design

Geometric Modeling

Meshing

Physics

Model Equations

Discretization

Partitioning and Mapping

Nonlinear solve

Linear solve

Time integration

Information Analysis & Validation

Adapt
Optimization

and UQ

Improved design and understanding

Are you sure you don’t need verification?!



• A single optimal design or nominal performance 
prediction is often insufficient for 
– decision making / trade-off assessment
– validation with experimental data ensembles

• Need to make risk-informed decisions, based 
on an assessment of uncertainty

Uncertainty Quantification



Uncertainties to Quantify

• physics/science parameters
• statistical variation, inherent randomness
• model form / accuracy
• operating environment, interference
• initial, boundary conditions; forcing
• geometry / structure / connectivity
• material properties
• manufacturing quality
• experimental error (measurement error, measurement bias)
• numerical accuracy (mesh, solvers); approximation error
• human reliability, subjective judgment, linguistic imprecision

A partial list of uncertainties affecting computational model results



Categories of Uncertainty

• Aleatory
– Inherent variability (e.g., in a population)
– Irreducible uncertainty –

 

can’t reduce it by further knowledge

• Epistemic (not in this talk, though a crucial research area)
– Subjective uncertainty
– Related to what we don’t know
– Reducible:  If you had more data or more information, you 

could make your uncertainty estimation more precise

• In practice, people try to transform or translate 
uncertainties to the aleatory

 

type and perform sampling 
and/or parametric analysis

(Often useful distinctions, but not always a clear line between them)



Outline

• Ubiquitous computational simulation

• Why consider uncertainty quantification (UQ)

• Propagating uncertainty through models

– Intro to UQ methods

– Advanced UQ methods in DAKOTA

• Reliability-based MEMS design (OPT+UQ)

• Research challenges in electrical circuit UQ 

To be credible, simulations must deliver not only a best estimate 
of performance, but also its degree of variability or uncertainty.



Uncertainty Quantification Example

• Device subject to heating

 

(experiment or 
computational simulation)

• Uncertainty in composition/ 
environment (thermal conductivity, 
density, boundary), parameterized by 
u1

 

, …, uN
• Response temperature f(u)=T(u1

 

, …, uN

 

)

 
calculated by heat transfer code

Given distributions of u1

 

,…,uN

 

, 
UQ methods calculate 
statistical info on outputs:
• Probability distribution of 
temperatures
• Correlations (trends) and 
sensitivity of temperature
• Mean(T), StdDev(T), 
Probability(T

 

≥

 

Tcritical

 

)
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• based on uncertain inputs, determine 
variance of outputs and probabilities 
of failure (reliability metrics)

• identify parameter correlations/local 
sensitivities, robust optima

• identify inputs whose variances 
contribute most to output variance 
(global sensitivity analysis)

• quantify uncertainty when using 
calibrated model to predict

Uncertainty Quantification
Forward propagation: quantify the effect that uncertain 
(nondeterministic) input variables have on model output

Potential Goals:

Input Variables u

 
(physics parameters, 
geometry,  initial and 
boundary conditions)

Computational

 
Model

Variable 
Performance

 
Measures f(u)

(possibly given distributions)

Output 
Distributions

N samples

measure 1

measure 2

Model

Typical method: Monte Carlo Sampling

u1

u2

u3
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Challenges to This Process

• Engineering application: propagate variability through a computer model.
• Need statistics of response function “f”, e.g., µf

 

, σf

 

, Prob[ f > fcritical

 

]
• Characteristics of response function: • input parameters specified by 

probability density functions
• no explicit function for f(x1

 

,x2

 

)
• expensive to evaluate f(x1

 

,x2

 

) 
and may fail to calculate

• limited number of samples
• noisy / non-smooth

Research Question: 
Which is more accurate?

• compute statistics from the f(x1

 

,x2

 

) 
sample values, or

• construct an approximation model 
based on the f(x1

 

,x2

 

) values and then 
compute statistics from the model?



DAKOTA Motivation

Goal: perform iterative analysis on (potentially 
massively parallel) simulations to answer 
fundamental engineering questions:

• What is the best performing design?  
• How safe/reliable/robust is it?
• How much confidence do I have in my answer?

Nominal Optimized

DAKOTA 
optimization, sensitivity analysis, 

parameter estimation, 
uncertainty quantification

Computational Model (simulation)
•

 

Black box: any code: mechanics, circuits, 
high energy physics, biology, chemistry

•

 

Semi-intrusive: Matlab, ModelCenter, Python 
SIERRA multi-physics, SALINAS, Xyce

response 
metrics

parameters 
(design, UC, 

state)



LHS/MC

Iterator 

Optimizer

ParamStudy

COLINYNPSOLDOT OPT++

LeastSqDoE

GN

Vector

MultiD

List

DDACE CCD/BB

UQ

Reliability

DSTE

JEGACONMIN

NLSSOL

NL2SOLQMC/CVT

NLPQL

Center SFEM/PCE

DAKOTA C++/OO Framework Goals
• Unified software infrastructure:

 

reuse tools and common interfaces; integrate 
commercial, open-source, and research algorithms

• Enable algorithm R&D, e.g., for non-smooth/discontinuous/multimodal 
responses, probabilistic analysis and design, mixed variables, unreliable 
gradients, costly simulation failures

• Facilitate scalable parallelism:

 

ASCI-scale applications and architectures; 
4 nested levels of parallelism possible

• Impact:

 

tool for DOE labs and external partners; broad application deployment; 
free via GNU GPL

 

(>3000 download registrations)

EGO DIRECT

algorithms

 
hierarchy

TMF

PSUADE

EGRA



responsesvariables/parameters

Flexibility with Models & Strategies

• functions: objectives, 
constraints, LSQ 
residuals, generic

• gradients: numerical, 
analytic

• Hessians: numerical, 
analytic, quasi

user application 
(simulation)

system, fork, direct, grid

optional approximation

 

(surrogate)
• global (polynomial 1/2/3, neural net,  
kriging, MARS, RBF)

• local (Taylor); multipoint (TANA/3)
• hierarchical, multi-fidelity

• design: continuous, 
discrete

• uncertain: (log)normal, 
(log)uniform, interval, 
triangular, histogram, 
beta/gamma, EV I, II, III

• state: continuous, 
discrete

DAKOTA strategies

 

enable 
flexible combination of multiple 
models and algorithms.  

• nested
• layered
• cascaded
• concurrent
• adaptive / interactive

Hybrid

Surrogate Based

OptUnderUnc

Branch&Bound/PICO

Strategy

Optimization Uncertainty

2nd Order ProbabilityUncOfOptima

Pareto/Multi-Start

DAKOTA models

 

map inputs to response metrics of interest:



DAKOTA Sensitivity Analysis Methods 

• Parameter Studies
– Alter variables one at a time or on grid
– Impractical in high dimension d

 

~ (partitions)d

• Design of Computer Experiments (DACE)
vs. Design of Experiments (DOE)

– Box-Behnken
– Central Composite
– Factorial and fractional designs
– Orthogonal Arrays

• Correlation Analysis
– Linear correlation
– Variance-based decomposition

• Morris One at a Time Sampling

Sensitivity analysis techniques help determine which input variables 
are most important (perhaps for which to refine uncertainty estimates)



SA: Orthogonal Arrays

• For each level of one factor, all levels of 
other factors occur equal number of 
times.  

• Orthogonality:

 

statistical independence 
between columns of the experimental 
design matrix (confounding factors 
cancel)

• Good for main effects, 
terrible for variable interactions

• Large OA databases available

Exp. No Var. 1 Var. 2 Var. 3 Var. 4 Var. 5 Var. 6 Var. 7
1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2
4 1 2 2 2 2 1 1
5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2
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Main Effects Plot (data means) for DispMax

Main effects of 
7 variables, each 
with 2 levels, 
in 8 samples!



UQ: Sampling Methods

Given distributions

 

of u1

 

,…,uN

 

, UQ 
methods…
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Output 
Distributions

N samples

measure 1

measure 2

Model
…calculate statistical info 
on outputs T(u1

 

,…,uN

 

)
u1

u2

u3



Quasi-Monte Carlo Sequences

• Deterministic sequences 
from a series of prime bases  

• Designed to produce 
uniform random numbers on 
the interval [0,1]

• Low discrepancy 
• Example: Halton

 

sequences 

Sample Number Base 2 Base 3 Base 5 Base 7
1 0.5000 0.3333 0.2000 0.1429
2 0.2500 0.6667 0.4000 0.2857
3 0.7500 0.1111 0.6000 0.4286
4 0.1250 0.4444 0.8000 0.5714
5 0.6250 0.7778 0.0400 0.7143
6 0.3750 0.2222 0.2400 0.8571
7 0.8750 0.5556 0.4400 0.0204
8 0.0625 0.8889 0.6400 0.1633
9 0.5625 0.0370 0.8400 0.3061
10 0.3125 0.3704 0.0800 0.4490

Base 2 and Base 3
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Centroidal
 

Voroni
 

Tessalation
 

(CVT)

• Generates nearly uniform spacing over arbitrarily shaped 
parameter spaces (can also be used for non-uniform 
distributions)

• Origin: unstructured meshing for irregular domains 
• Ideal for high dimensional volumetric sampling

Gunzburger, et al.: comparison of random sampling and CVT
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Latin Hypercube Sampling (LHS)

• Specialized Monte Carlo (MC) sampling technique: 
workhorse method in DAKOTA / at Sandia

• Stratified random sampling among equal probability bins

 

for 
all 1-D projections of an n-dimensional set of samples.

• McKay and Conover (early), restricted pairing by Iman

A B C D

G

H

I

J

K

L
−∞ ∞

Intervals Used with a LHS of Size n = 5 in 
Terms of the pdf

 

and CDF for a Normal 
Random Variable

A Two-Dimensional Representation of One 
Possible LHS of size 5 Utilizing X1 (normal)  

and X2 (uniform)



Approximate response stochasticity

 

with Galerkin

 

projection using

 
multivariate orthogonal polynomial basis functions defined over standard

 
random variables

e.g. using

• Intrusive
• Nonintrusive: estimate response coefficients using sampling (expectation),

 
quadrature/cubature (num integration),

 

point collocation (regression)

Wiener-Askey

 

Generalized PCE with adaptivity
• Tailor basis: optimal basis selection leads to exponential convergence rates

• Tailor expansion order/integration order: adaptivity based on PC error estimates
– Isotropic/anisotropic tensor-product quadrature & 

sparse grid Smolyak cubature

Generalized Polynomial Chaos Expansions

R(ξ) ≈

 

f(u)



CDF

PCE: Fast Convergence

Hermite basis, lognormal distributions



UQ Not Addressed Here

• Efficient epistemic UQ (big research area)
• Fuzzy sets (Zadeh)
• Imprecise Probability (Walley)
• Dempster-Shafer Theory of Evidence (Klir, Oberkampf, Ferson)
• Possibility theory (Joslyn)
• Probability bounds analysis (p-boxes)
• Info-gap analysis (Ben-Haim)

• Production Bayesian analysis capability
• Bayesian approaches:  Bayesian belief networks, Bayesian 

updating, Robust Bayes, etc.
• Scenario evaluation



Calculating Probability of Failure

• Given uncertainty in materials, geometry, and 
environment, determine likelihood of failure 
Probability(T

 

≥

 

Tcritical

 

)

•
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• Could perform 10,000 
Monte Carlo samples and 
count how many exceed the 
threshold…

• Or directly determine input 
variables which give rise to 
failure behaviors by solving 
an optimization problem.

By combining optimization, uncertainty analysis methods, and surrogate 
(meta-) modeling in a single framework, DAKOTA enables more efficient UQ.



Analytic Reliability: MPP Search

Perform optimization in uncertain variable space to determine Most 
Probable Point (of response or failure occurring) for G(u) = T(u).

Reliability Index Approach (RIA)

G(u)

Region of u 
values where 
T ≥

 

Tcritical
map Tcritical

 

to a 
probability



• Limit state linearizations:  use a local surrogate for the limit state G(u)

 

during 
optimization in u-space (or x-space):

Reliability: Algorithmic Variations
Many variations possible to improve efficiency, including in DAKOTA…

• Integrations (in u-space to determine probabilities): may need higher order 
for nonlinear limit states

1st-order:

• MPP search algorithm: Sequential Quadratic Prog. (SQP) vs. Nonlinear Interior Point (NIP)
• Warm starting (for linearizations, initial iterate for MPP searches):

 

speeds 
convergence when increments made in: approximation, statistics requested, design 
variables

curvature correction

2nd-order:

(could use analytic, finite difference, or quasi-Newton (BFGS, SR1) Hessians in 
approximation/optimization –

 

results here mostly use SR1 quasi-Hessians.)



Efficient Global Reliability Analysis
• EGRA

 

(B.J. Bichon) performs reliability analysis with EGO (Gaussian 
Process surrogate and NCSU DIRECT optimizer) coupled with Multimodal 
adaptive importance sampling for probability calculation.

• Created to address nonlinear and/or multi-modal limit states in MPP 
searches.

True fn

GP surrogate

Expected

 

Improvement

From Jones, Schonlau, Welch, 1998



Efficient Global Reliability Analysis
• EGRA

 

(B.J. Bichon) performs reliability analysis with EGO (Gaussian 
Process surrogate and NCSU DIRECT optimizer) coupled with Multimodal 
adaptive importance sampling for probability calculation.

• Created to address nonlinear and/or multi-modal limit states in MPP 
searches.

Gaussian process model of reliability limit state with

 
10 samples

 

28 samples

explore

exploit



Outline

• Ubiquitous computational simulation

• Why consider uncertainty quantification (UQ)

• Propagating uncertainty through models

– Intro to UQ methods

– Advanced UQ methods in DAKOTA

• Reliability-based MEMS design (OPT+UQ)

• Research challenges in electrical circuit UQ 

To be credible, simulations must deliver not only a best estimate 
of performance, but also its degree of variability or uncertainty.



Shape Optimization of Compliant MEMS
• Micro-electromechanical system (MEMS):

 

typically made from silicon, 
polymers, or metals; used as micro-scale sensors, actuators, switches, 
and machines

• MEMS designs are subject to substantial variability

 

and lack historical 
knowledge base.  Materials and micromachining, photo lithography, 
etching processes all yield uncertainty.

• Resulting part yields can be low or have poor cycle durability
• Goal: shape optimize finite element model of bistable

 

switch to…
– Achieve prescribed reliability

 

in actuation force
– Minimize sensitivity to uncertainties (robustness)

bistable

 
MEMS 
switch

uncertainties to be considered 
(edge bias and residual stress)



Tapered Beam Bistable
 

Switch: 
Performance Metrics

13 design vars d: 
Wi , Li , θi

σ
σ

key relationship: force

 
vs. displacement

new tapered beam design

Typical design specifications:
• actuation force Fmin

 

reliably 5 μN
• bistable

 

(Fmax

 

> 0, Fmin

 

< 0)
• maximum force: 50 < Fmax

 

< 150
• equilibrium E2 < 8 μm
• maximum stress < 1200 MPa



Optimization Under Uncertainty

Opt 

UQ 

Sim 

{d} {Su}

{u} {Ru}

min

 
s.t.

(nested paradigm)

Rather than design and then post-process to evaluate uncertainty…

 
actively design optimize while accounting for uncertainty/reliability metrics 
su

 

(d), e.g., mean, variance, reliability, probability:

13 design vars d:  Wi

 

, Li

 

, qi

 

2 random variables x: ΔW, Sr

σσ
-5.0

simultaneously reliable and robust designs

Bistable

 

switch problem formulation (Reliability-Based Design Optimization):

min

 
s.t.



RBDO Finds Optimal & Robust Design

Close-coupled results:

 

DIRECT / CONMIN + reliability method yield optimal

 
and reliable/robust

 

design:



DAKOTA UQ Algorithms Summary 
Goal: bridge robustness/efficiency gap

Production New Under 
dev.

Planned Collabs.

Sampling LHS/MC, 
QMC/CVT

IS/AIS/MMAIS, 
Incremental LHS

Bootstrap, 
Jackknife

Gunzburger

Reliability 1st/2nd-order local: 
MVFOSM/SOSM, 
x/u

 

AMV/AMV2/ 
AMV+/AMV2+, x/u

 
TANA, FORM/SORM

Global: EGRA Renaud, 
Mahadevan

Polynomial 
chaos/ 
Stochastic 
collocation

Wiener-Askey

 
gPC: sampling, 
quad/cubature, 
pt collocation

 
SC: quadrature

SC: 
cubature
gPC/SC: 
arbitrary 
input PDFs

Adaptivity, 
Wiener-Haar

Ghanem

Other 
probabilistic

Dimension 
reduction

Youn

Epistemic Second-order 
probability

Dempster-Shafer 
evidence theory

Bayesian, 
Imprecise 
probability

Higdon, 
Williams, 
Ferson

Metrics Importance factors, 
Partial correlations

Main effects, 
Variance-based 
decomposition

Stepwise 
regression

Storlie
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of performance, but also its degree of variability or uncertainty.



Electrical Modeling Complexity

• simple devices:

 

1 parameter, 
typically physical and 
measurable

• e.g., resistor @ 100Ω

 

+/-

 

1%
• resistors, capacitors, inductors, 

voltage sources

Circuit Board

Large Digital Circuit
(e.g., ASIC)

Sub-circuit 
(analog)

Single Device

device: 1 to 100s of params

sub-circuit: 10s to 
100s of devices

ASIC: 1000s to 
millions of devices

• complex devices:

 

many parameters, some 
physical, others “extracted”

 

(calibrated)
• multiple modes of operation
• e.g., zener

 

diode: 30 parameters, 3 bias 
states; many transistor models (forward, 
reverse, breakdown modes) 

sim
ulation tim

e grow
s exponentially

(G. Gray, M. M-C)



Electrical Circuit UQ

• Circuit analysis challenges
– network of nonlinearly coupled components, feedback loops, staged behavior, 

or discrete digital logic, mandating all-at-once circuit solution techniques
– long simulation time involving iterative solvers (often hours to

 

simulate 
microseconds, particularly in oscillating electronics);

– combination of analog and digital circuits: consider separately or together
• analog circuits typically < 100 devices, including replicates, less predictable topology 

across designs
• digital circuits 1,000 to 1,000,000 transistors (identical or similar), small number of 

well-defined connection types.

• Typical parametric uncertainties:
– process parameters (e.g., diffusion times, oven temperatures)
– physical parameters (e.g., line widths, channel doping)
– model parameters (e.g., BSIM3 transistor compact model)
– electrical parameters (e.g., line resistance, saturation current, threshold 

voltage)
• Mapping reality to compact model parameters not always easy; compact model 

may be more behavioral than physics-based



UQ: Explosion of Factors!

• Tor Fjeldy

 

radiation photocurrent models for transistors
– 20 model parameters, three levels for each (low, nominal, high) ~ 3 billion combinations
– not practical via factorial brute force, but LHS might miss extreme “corner”

 

behaviors
– 6 devices in circuit of interest; mitigated via OAs

• Simple voltage regulator circuit
– 4 BJTs, 1 MOSFET, 17 resistors, 1 capacitor, 1 zener

 

diode
– over 100 parameters if considered naively
– mitigate by determining parameter sets giving rise to low, nominal, 

high response for each device

• CMOS 7 ViArray: generic ASIC implementation platform
– Approx 1 million transistors
– adding parasitics

 

yields a simulation with millions of resistors, 
capacitors, inductors

– mitigated by grouping within process layers

complex device models + replicates in circuits

Approaches curbing the curse of dimensionality crucial in 
analyzing these kinds of systems!



Zener
 

Low-Nominal-High Models
• For single device, perform LHS 

samples of 20 parameters

• Determine 3 sets of parameters 
giving rise to nominal and extreme 
device response

• When performing circuit UQ, 
sample uniformly from L,N,H  and 
set all 20 parameters accordingly 
in the full simulation

L

H

N



Hierarchical/Network Structure

• How can we exploit electrical systems’

 

natural 
hierarchy or network structure?

• How does uncertainty propagate?  Sufficient to 
propagate variance?

• Use surrogate/macro-models as glue between 
levels?

• Can approaches be implemented generically to 
apply to any circuit implemented in Xyce?

process level
(physical parameters)

device level
(model parameters)

circuit level
(circuit characteristics)

system level
(performance metrics)

process level
(physical parameters)

device level
(model parameters)

circuit level
(circuit characteristics)

system level
(performance metrics)



Other Relevant Technologies

• Apply existing reliability and polynomial chaos methods; 
benefit of embedded techniques?

• Principal components analysis (PCA, SVD, POD), reduced-

 order modeling techniques: only vary uncorrelated 
parameters

• Surrogate/macro modeling, insert current/voltage sources 
representative of the effect of uncertainty

• Leverage structure of network, DAE system under the hood; 
automatic structure analysis, macro-model creation?



Summary

• Uncertainty quantification algorithms are essential in 
credible simulation

• Complex, large-scale simulations demand research in 
advanced efficient UQ methods

To be credible, simulations must deliver not only a best estimate 
of performance, but also its degree of variability or uncertainty.

Thank you for your attention!
briadam@sandia.gov 

http://www.sandia.gov/~briadam



Abstract

• 2008 CSRI Summer Lecture Series

• Title: "From uncertainty to credibility: UQ algorithms and research challenges"

• Speaker: Brian Adams (Org. 1411)

• Date/Time: Wednesday, July 2, 3-4pm (MST)

• Location:
• NM: CSRI/90
• CA: 915/S145

• Abstract:

• Computational simulations are routinely used to assess the performance, reliability, and safety of existing and 
proposed systems, and are increasingly used for risk-informed decision making in the presence of uncertainties.  
To be credible, simulations must deliver not only a best estimate of performance, but also its degree of variability 
or uncertainty.

• Uncertainty quantification (UQ) algorithms compute the effect of

 

uncertain input variables on response metrics of 
interest, enabling risk assessment, model calibration, and model

 

validation.  In this talk, I will motivate simulation-

 

based UQ with examples from electrical circuit and MEMS design. I will survey methods from ubiquitous Monte 
Carlo sampling through more advanced reliability analysis and polynomial chaos expansions available in Sandia's

 

DAKOTA toolkit.  In particular, DAKOTA’s

 

reliability analysis methods employ a mix of probability, optimization, 
and surrogate (meta-) modeling to efficiently perform UQ.

• Challenges in large-scale electrical circuit UQ will motivate unmet algorithm research needs.



Extra Slides



Epistemic UQ

Second-order probability
– Two levels: distributions/intervals on 

distribution parameters
– Outer level can be epistemic (e.g., interval)
– Inner level can be aleatory (probability distrs)
– Strong regulatory history (NRC, WIPP).

Dempster-Shafer theory of evidence
– Basic probability assignment (interval-based)
– Solve opt. problems (currently sampling-based) 

to compute belief/plausibility for output intervals

New

New



Epistemic Uncertainty Quantification

• Epistemic uncertainty refers to the situation where one does not

 

know 
enough to specify a probability distribution on a variable

• Sometimes it is referred to as subjective, reducible, or lack of

 

knowledge 
uncertainty

• The implication is that if you had more time and resources to gather more 
information, you could reduce the uncertainty

• Initial implementation in DAKOTA uses Dempster-Shafer belief structures. 
For each uncertain input variable, one specifies “basic probability 
assignment”

 

for each potential interval where this variable may exist.
• Intervals may be contiguous, overlapping, or have “gaps”

BPA=0.5 BPA=0.2
BPA=0.3 Variable 1

BPA=0.5 BPA=0.2BPA=0.3
Variable 2



Epistemic Uncertainty Quantification

• Look at various combinations of intervals.  In each joint interval “box”, one needs to 
find the maximum and minimum value in that box (by sampling or optimization)

• Belief is a lower bound on the probability that is consistent with the evidence
• Plausibility is the upper bound on the probability that is consistent with the evidence
• Order these beliefs and plausibility to get CDFs
• Draws on the strengths of DAKOTA

– Requires surrogates
– Requires sampling and/or optimization for calculation of plausibility and belief 

within each interval “cell”
– Easily parallelized

Variable 1

Variable 2

.5

 

.3

 

.2

0.1

0.2

0.7

Original LHS samples used 
To generate a surrogate

Million sample points 
generated from the 
surrogate, used to 
determine the max and 
min in each “cell”

 

to 
calculate plausibility and 
belief



Bayesian Analysis

• Construct a prior distribution on a parameter (which 
might be a parameter of a distribution)

• The prior distribution should be based on previous 
experience, engineering judgment

• The distribution on the prior is updated with actual 
data.  The resulting updated distribution is called the 
posterior. 
Frequentist Bayesian

Assumes there is an unknown 
but fixed parameter θ

Assumes a distribution on 
unknown parameter θ

Estimates θ

 

with some 
confidence interval

Uses probability theory, treats θ

 
as a random variable



Bayesian Analysis

• Why would we use it for CS&E problems? 
• Nice feature of incorporating additional data as it becomes 

available
• We often don’t have good estimates:  Bayes provides a 

framework for starting with what we do know, and refining our 
estimates in a statistically consistent manner

• Examples:
– Reliability problems: Update probability of failure
– Response surfaces:  Update parameters in a surrogate 

model for a trust region
– Calibration under Uncertainty (CUU):  Update our parameter 

estimates based on experimental data AND uncertainty in a 
model



Bayesian Methods

Discrete Case

where θ
 

is a parameter(s), x is a data vector, and p 
is a probability mass function. 
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Examples

• Use Binomial distribution to model the number of failures, x, in

 

n 
trials. 

• We obtain data that shows 2 failures in 5 trials

• The posterior distribution reflects the fact that in this set of

 
data, θ

 

= 0.4 which is closer to 0.3 than 0.6 and so the 
probability of θ=0.3 has risen slightly.
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Prior Probability Posterior Probability
P{θ=0.3}=0.1 P{θ=0.3}=0.13

P{θ=0.6}=0.9 P{θ=0.6}=0.87
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