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Reactor Safety Testing
(NRC tests of Oxide and Irradiated Mixed Oxide Fuels)

Transition phase studies in 
LMFBR pin arrays (TRAN 
Program - JNC, NRC)

Severe 
fuel 
damage 
and FP 
release 
tests on 
LWR fuel 
bundle 
(SFD 
Program)

Pin heatup, clad melt and FP release, and fuel disruption sequence in 
LMFBR high burnup fuel pin (FD Program - JNC, UKAEA, KFK, NRC)

Axial clad and 
fuel relocation in 
LMFBR pin array 
(STAR Program 
- JNC, NRC)

ACRR has been used to simulate a wide 
range of transient fuel test conditions



3

ACRR Description

• 236 UO2-BeO fueled elements (1.5 in dia. x 20 in)  
(3.8 cm dia. x 51 cm)                                                
– 100 g U-235 per element – 35% enriched

• Operating Power level                                              
- 4 MWth Steady State Mode                                            
- 250 MJ Pulse Mode (6 ms FWHM)                                                 
- 300 MJ Transient Mode (Programmable)

• Dry cavity 9 in  (23 cm) diameter – extends full 
length of pool through core - Flux 4E13 n/cm2-s 
at 2 MW,  56% > 10 keV, 45% > 100 keV

• Epithermal Spectrum – Flux in cavity can be 
tailored for desired energy spectrum – Poly, B4C

• Open-pool type reactor - Fuel elements cooled 
by natural convection – Pool cooled by HX and 
cooling tower

• FREC-II uses previous ACPR fuel – TRIGA type 
(UZrH) – 20 in (51 cm) dia. dry cavity

• Fuel burnup is minimal.  Reactor used for short 
duration power runs, pulses, and transients
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Reactor Simulation of Postulated Accident Scenario
Sandia Annular Core Research Reactor (ACRR)

Acrr.wmv

Single Pulse Mode Double Pulse ModeProgrammed Transient Mode

Single Pulse Mode Programmed Transient Mode
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Experiment Configuration
Metal Rodlet from ATR

AFC-1f 

End Cap

Plenum

Na Fill

Fuel
0.158”dia
1.5” height
0.48 cc

End Cap

Fuel Samples at Same Flux

Fuel Sample at Different Flux

Full Length Fuel Pin (80cm)

~6” Height



7

Neutron Flux in ACRR Central Cavity
Unmoderated

54 cm 1.9 x 1013 n/cm2 /MJ total
> 100 keV = 45%
> 10 keV = 56%

1.0 x 1013 n/cm2 /MJ total

300 MJ shot = 6 x 1015 n/cm2 total

Coupling Factor for U-235
~18 J/gU-235-MJACRR Unmoderated
~90 J/gU-235-MJACRR Moderated
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Sample Fuel Rodlet Tests
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Full Length Fuel Pin Test
With Sodium Cooling

Axial Power Shaping Options
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Possible Transient

Coupling factor (typical fast reactor fuel samples) 

10 J/g/MJACRR = ~11 kW/m-MWACRR (with moderation => 5x)

Fast reactor peak linear power density ~40 kW/m

36 MWACRR would result in 40 kW/m linear power density

7 MWACRR with moderation
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Supercritical CO2 Brayton Cycle Experiments
Overview
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Advanced Brayton Cycles 

• Advanced Brayton Cycles can improve efficiencies to nearly 50%

• Supercritical CO2 Brayton Cycles

– Very Good Efficiency 43-50% (500C & 800C)

– Less Corrosive than Steam

– Stainless Steels and Inconels (Allows for Intermediate HX with Current 
Technology)

– Inherent Safety Capabilities (for decay heat removal)

– Very High Power Density (Small)

• Fewer Components

• Less Material Mass

• Lower Costs

• Modular

• Transportable

– Works with LWR, SFR, and Gas Cooled Reactor + Fossil Fuels
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Sandia’s Leading Role

• Sandia is leading the development of the S-CO2 Brayton 
cycle through DOE Gen IV and other DOE programs

– Phased Development approach

– Low Pressure/ ~ 10kWe closed Brayton Cycle developed 
and demonstrated

– S-CO2 test loop fabricated at Barber Nichols

– MW system operating in the 2010 timeframe at Sandia

– Scaled up ~10 MWe Demonstration through 
partnerships
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Supercritical CO2 Brayton Cycle

He Turbine
(300 MWe)

1 m

Steam Turbine (250 MWe) 

S-CO2 (300 MWe)
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High Temp Gas (He) 
Cooled Reactor (GCR)

Sodium Fast
Reactor (SFR)

Light Water Reactor
(LWR)

Brayton He

SCO2 Brayton
Electrical Conversion 

TechnologiesWater Rankine

Reactor Output 
Temperature Ranges

With Superheat

Compactness 43% 50%
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High Temp Gas (He) 
Cooled Reactor (GCR)

Sodium Fast
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Light Water Reactor
(LWR)

Brayton He
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Reactor Output 
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Compactness 43% 50%

Supercritical CO2 Compressor 

(50kWe = 70 hp)
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Sandia Closed Brayton Cycle Test Loop
60 kWth/10kWe

Controller

80 kW Heater
60 kW Gas Cooler

Turbo-Alt-Comp
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• Compression near the critical point

• System control

• Design Tool Development and Validation for supercritical 
fluids

• Turbo-Alternator-Compressor Design Details

– High speed/high power density motor/alternator

– Bearing and Seals

– Single versus dual shaft

• Control

• Model Validation

Key Technology Development Focus


