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History

1946: Atomic Energy Act est. Atomic Energy Commission
1950: WASH 3: Defined Exclusion Zone
R (miles) = 0.1 [P (kWt)]%
For a 3000 MWt plant, R =17.3 m (27.8 km)
1957: Shippingport Atomic Power Station, 20 miles from Pittsburgh

‘Defense in Depth’
— Accident prevention
— Redundancy of safety systems
— Containment
— Accident management
— Remote siting/emergency planning (sheltering and evacuation)

1962: 10CFR100 (Maximum Credible, Design Basis Accident)
1972: WASH-1250 (Definition of severe accidents, PRA)
1975: WASH-1400 (Containment capacity)

1979: Three-Mile Island accident

1981: SNL Background Study on Containment Capacity
1990: NUREG-1150 (PRA for 5 representative plants)




Containment

* The primary purposes of the containment system are:

— to contain any radioactive material that may be released from
the primary system in case of an accident.

— to protect the nuclear system from weather and other external
threats such as missiles produced by earthquakes, tornadoes,
wind, and in some cases aircraft impact.

— to act as a supporting structure for operational equipment such
as cranes.
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Containment Design

e 1971: General Design Criteria, Appendix A of 10 CFR 50:
Criterion 1, Quality standards and records, requires, in part, that:

“Structures, systems, and components important to safety shall be designed,
fabricated, erected, and tested to quality standards commensurate with the
importance of the safety functions to be performed. Where generally recognized
codes and standards are used, they shall be identified and evaluated to determine
their applicability, adequacy, and sufficiency and shall be supplemented or

modified as necessary to assure a quality product in keeping with the required
safety function.”

Criterion 16, Containment Design states:

“Reactor containment and associated systems shall be provided to establish an
essentially leak-tight barrier against the uncontrolled release of radioactivity to
the environment and to assure that the containment design conditions important
to safety are not exceeded for as long as postulated accident conditions require.”

Criteria 50 through 57 give specific requirements for reactor containment
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Containment Building

* One of the multiple barriers between the radioactive
fission products and the public.

* Designed to withstand high pressures (45-60 psig) and
temperatures (>300 F)

* Includes basic structure (steel, reinforced or prestressed
concrete) and operational components (equipment
hatch, personnel airlocks, piping and electrical
penetrations)




NUREG-1150

L 1\ ’ - - -
~ « Detailed assessment of the risks of severe accidents at five plants.

 CCFP, conditional containment failure probability,

CCFP =)’ i C,
i CDF
« CFF, containment failure frequency,

CFF = Z S.-C,
i=1

— CDF is the total core damage frequency,
— S, is the frequency of accident sequence i,

— C, is the conditional probability of containment failure given accident
sequence i, fragility

— n is the total number of accident sequences.
« Containment capacity estimates based on expert elicitation
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Failure Probability
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Containment Integrity Research @ Sandia

e Objective:

— Evaluate methods used to predict the performance of light water
reactor containment systems when subjected to loads beyond those
specified in the design codes.

— NOT to determine the pressure carrying capacity of actual
containments by testing scale models.
* Two types of loadings are being considered:
— Severe Accident Loadings (static pressurization and elevated
temperature)
— Earthquakes greater than the Safe Shutdown Earthquake (SSE) -
analysis only
* An integrated program of testing models of containment structures
and components (both scaled and full-size specimens) coupled with
detailed pre- and posttest analyses
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Containment Integrity Research @ Sandia

* Pneumatic pressure tests of large-scale models of representative
containment structures and full scale tests of components
(penetrations, etc.).

* Models of three types of containments used in current nuclear
construction:
— free-standing steel containments,
— steel lined reinforced concrete containments and steel lined,
— prestressed concrete containments.
* Guiding principles
— models would incorporate representative features of the prototypes,
— would not knowingly preclude a potential failure mode

— and would not incorporate details which were unique to the model and
not representative of the prototype.

L=
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Containment Integrity Research @ Sandia

e Scope:
— Scale-model Containment Overpressurization Tests
» Steel: four 1:32-scale, one 1:8-scale, one 1:10-scale

* Reinforced Concrete: one 1:6-scale
* Prestressed Concrete: one 1:4-scale

— Penetration Tests (hatches, electrical & piping penetrations,
seals & gaskets)

— Degraded Containment Analyses
— Seismic Analyses of scale model tests

* Related Efforts:
— Impact Tests (aircraft, turbine missiles)
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1:32-Scale SCV Models

65.8 in WALL
O o THICKNESS
= 0.048 in
o
)
«—46.2 in—»
CLEAN SHELL RING REINFORCED SHELL WITH
SHELL PENETRATIONS
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1:32-Scale SCV Models
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1:8-Scale SCV Model
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1:8-Scale SCV Model
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1:8-Scale SCV Model - Summary
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Steel Model Experiments - Summary

Four out of five of the 1:32-scale models failed catastrophically.

Failure was initiated at strain concentrations caused by
penetrations or stiffeners.

The 1:8-scale model failed catastrophically at 195 psig (1.34 MPa), -
5P,. Failure initiated at a eccentric junction of stiffeners
surrounding the Equipment Hatch.

‘Free-field’ strain was 2.5 to 3% at failure

Pretest analyses provided good agreement with the observed global
behavior.

However, posttest analyses were required to ‘predict’ the strain
concentration at a stiffener that caused the failure.
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1:6-Scale RCCV Model
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1:6-Scale RCCV Model
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1:6-Scale RCCV Model - Results

Failure caused by excessive leakage through tears in the steel liner
associated with studs and discontinuities.

Failure Pressure was 145 psig (1.00 MPa) - 3Pq.
‘Free-field strain was 1.5 to 2.0% at failure

As for steel models, pretest analyses provided good agreement with
global test results, however, no one predicted the mechanism that
caused the main liner tear.

Posttest Analyses and additional 'Separate Effects’ Tests were
required to fully understand the primary liner tearing mechanism.
At 145 psig (1.0 MPa), strain concentrations of 10-15 times the free
field strain were calculated at the base of the studs adjacent to the
insert plate.

Test results are not necessarily representative of actual
containments and each case should be examined independently.
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1:6-Scale RCCV Model - Pretest Analyses

‘Round-Robin’ Pretest Analyses - Organizations from the U.S.,
United Kingdom, France, Italy, Germany and Japan.

* Predicted ‘Best Estimate’ capacities for the model varied form 130
to 190 psig (0.90 to 1.31 MPa).

* Range in failure predictions mainly due to differences in
Interpretation of failure rather than differences in the analysis
results.

» Generally good agreement between predicted global strains and
displacements and test results.
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Steel Containment Vessel Model

'« Japanese Improved BWR Mark 11 supplied by NUPEC i
i
 Scale: 1:10 on geometry; 1:4 on thickness $\

387.4

* Diameter: 2900 mm (9.5); Overall Height: 5900 mm (19.5’); Internal
Volume: 21 m3 (740 ft)
* Weight: 13,000 kg (28,634 Ib)
* Design Pressure P4,=0.31 MPa (45 psig)-actual
P4=0.78 MPa (112.5 psig)-scaled
* Materials:  SGV480 (F,= 265 MPa, 38 ksi) ~ SA-516 Grade 70;
SPV490 (F,= 490 MPa,71ksi) ~ SA-537 Class 2
Contact Structure
— Weight - 9 metric tons (20,000 Ibs) 3 2500
— Material: SA-516-70 (F, =38 ksi)
— Nominal thickness = 38.1 mm (1.5 in.)
Low Pressure Test: 1.50 Py, =1.17 MPa (169 psig)
High Pressure Test Date: Dec. 9 - 13, 1996
* Instrumentation:
— SCV External: 113 Strain Gages, 6 Displacement Transducers

— SCV Internal: 151 Strain Gages, 57 Displacement Transducers |
_ CS: 15 Strain Gages, 10 Gap LVDT’s, 59 Contact Probes i e

Failure Pressure~Mode:

- 6 Py 4.7 MPa (676 psig)~tearing and leakage in HAZ of SPV 490 adjacent to
E/H insert plate.

18mm gap
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SCV Model Pre- and Posttest

Interior View of SCV Equipment Hatch Area

Thinned Area
(~85mm long)
+ 1/10th Scale
* Failure Pressure: 676 psig (6xDesign)

* Tested: Dec. 9-13, 1996 Sandia
(@)
Laboratories
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SCV Round Robin Analysis

» Agenzia Nazionale per la Protezione del Ambienti
(ANPA) (ltaly)

e Argonne National Laboratory

e Bhabha Atomic Research Centre (India)

« General Dynamics, Electric Boat Division

« Japan Atomic Energy Research Institute (JAERI)

 Staatliche Material Prufungsanstalt (MPA), Universitat
Stuttgart (Germany)

* Nuclear Power Engineering Corporation (NUPEC)
e Sandia National Laboratory
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Summary of SCV RR Pretest Results

Organization

Failure Pressure

Failure Location

Failure Mode

Test (4.5?)-4.7 MPa (‘Rat-hole™) Material Failure
E/H Insert Plate
ANL 4.9-55MPa Knuckle Material failure
ANPA 10.9 MPa Drywell Head Buckling
BARC 11.5-12.0 MPa Drywell Head Material failure or buckling
GD/EB 4.7 MPa Thinned Liner @ Equipment Material failure
Hatch
JAERI >4 MPa Drywell Head Buckling
MPA
NUPEC 4 -7.3 MPa Thinned Liner @ E/H Material failure
7.3-11.8 MPa Knuckle
SNL 4.5 MPa Thinned Liner @ Equipment Material failure

Hatch
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SCV Posttest Analysis

» Generally the other participants in the Round Robin analyses predicted
lower strains than the mgdskexpeEerceshs

—e— HCP-I-UCS-36 (270°)
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r | —e—RSG-0-UCS-15a SGVA4K0. ~ | m—=—mm Usednominal gap=18mm.
2 00v | o RSG--UCS-16c \;_-.H
. 0 ’:};
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1.50% — —°*— NUPEC (HZO.Z)

—a— Electric Boat (1=0.4)
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o -’ Used nominalgap =18 mm

Note: The data from gage
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Usedtest data for converted from a radial
SGV480, .
Fy=420MPa displacement to a hoop
strain by dividing the
displacement by the radius
at the gage elevation.
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SCV Posttest Analysis

e Conclusions:

— Global behavior of complex structures such as the SCV is
dominated by the response of the material at low strains
(below 2%).

— Residual strains and coupon testing techniques can influence
the stress-strain relationships used in pretest analyses.

— Local behavior predictions need to include the effects of
material property changes due to welding in areas where high
strains can occur, such as around the equipment hatch.
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Prestressed Concrete Containment Vessel Model

viodel of OHI1-3 in Japan, PWR, 2-buttress, supplied by NUPEC 90 meridional hairpn tendons
: 1:4 overall (except free-field liner anchor spacing) (@S E ASNS)

Design Pressure, P,: 0.39MPa (56.9 psig)

Materials:
—  Liner: SGV410, F, =225 MPa (33 ksi), F; =410 MPa (59 ksi)
—  Anchor: SS400, F, = 235 MPa (34 ksi), F, = 392 MPa (57 ksi)
- Tendons: JIS G3536 (custom), P>630kN (142Kips), P, >190kN (128Kips)

~  Rebar: JIS G3112: SD490, F,=490MPa (71ksi); SD390, F,=390MPa (56ksi); SD345, F,=345MPa
(50Ksi)

. Basemat: Main Bars-SD490, Shear Bars-SD390 325 cm——po 1075 cm (353 /"
e Shell: Main Bars-SD390, Ties-SD345 (12.87) (1140 cm) (374 7/g"
Concrete: Basemat 29.42MPa (F.’ = 4.2ksi); Wall 44.13MPa (F_’ = 6.4ksi)

* Prestressing Levels: (before/after anchoring) ‘}

45°

p— p— p— -+

suopua} dooy 3ﬂ
(.97, 9-8T) wo 595

4

22.5cm (8 7lg”

ol

(.85 6-.€S) WO OY9T

—  Meridional: 113.1/105.8 kips; Hoop: 101.9/78.7 kips
« ILRT: 0.9P,=0.36MPa (51psig); SIT: 1.125P,=0.45MPa (64psig)

e Limit State Test Date: September 26-29, 2000

—  First Leak detected at 2.5 P4 = 0.98 MPa (142 psig)
—  Terminated at 3.3 P4 = 1.29 MPa (187.9 psig)

e Structural Failure Mode Test: November 14, 2001

| 1.6 mm liner

suopua} dooy 06
(.7t €-.SE)Wd G201

—  Catastrophic Rupture @ 3.6 P4 = 1.42 MPa (206.4 psig)
* Instrumentation: Total 1560 channels ] | []

—  Strain Gages: 559 Liner, 391 Rebar, 37/156 Tendons, 94 Concrete
— Load Cells: 68

(.77 - TT) wo 0Ge

—  Displacements: 101

—  Acoustic: 54

—  Temperature & Pressure: 100
* Predicted Failure (based on Final pretest analysis): PCCV Model Tendon (Actual Size)

- ~3.25P, (1.28 MPa [185 psi]) - liner tearing @ E/H ’ T

L=

| J

) 720 cm (237 7y")
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PCCV Model Construction
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PCCV Pretest Round Robin Participants

* Argonne National Laboratory (ANL) (U.S.)
* Atomic Energy of Canada Limited (AECL) (Canada)

e Commisariat A L’Energie Atomique/Saclay/DRN
(France)

» Electricite de France (EDF) (France)

» Institute of Nuclear Energy Research (INER) (Repub.
of China)*

* Institut de Protection et de Sareté Nucléaire (IPSN)
(France)

» Japan Atomic Energy Research Institute (JAERI)
(Japan)*

* Japan Atomic Power Company / PWR Utility
Research Group (Japan)

* Korea Institute of Nuclear Safety (KINS) (Repub. of
Korea)

» Korea Power Engineering Company (KOPEC)
* Nuclear Installations Inspectorate (U.K.)

* Nuclear Power Engineering Corporation (NUPEC)
(Japan)

* Nuclear Safety Institute (IBRAE) (Russia)*
*  PRINCIPIA-EQE SA (Spain)

* Research and Development Institute of Power
Engineering (Russia)

Santiia
« Sandia National Laboratories (SNL)/ANAT@{m"=5

* University of Glasgow (U.K.)
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NUCL{%ﬂEERD?ﬁﬁ%ﬂ LSECURITY
o7 N\ Summary of PCCV RR Pretest Results
Pressure (MPa) Failure Mode
1.51-1.62 local liner tear/hoop tendon failure @ El. 6.4 m
0.94-1.24 complete cracking/axisymmetric yield
1.60-1.70 numerically unstable
1.95
0 3
 JAERI buckling @ dome or local fracture by bending in cylinder
« JAPC 1.45-1.55 hoop tendon/rebar/liner rupture @ EI. 7 m
* KINS 1.25-1.44 tendon rupture
» KOPEC 1“1 tendon rupture (@3.55% strain)
e HSE/NNC - liner tear w/ extensive concrete cracking @ buttress
* NUPEC 1.49-1.57 tendon rupture
 IBRAE 1.26 tendon rupture
* Principia 1.30 tendon yielding
« RINSC 1.50 hoop failure of vessel
« ANATECH/SNL 1.25 liner tearing (16%) @ E/H
1.40 tendon rupture
® Test 0.98 1.5% mass/day leak through liner tear @ E/H
1.30 limit of pressurization capacity during LST
1.42 hoop tendon and rebar rupture during SEFMT m

Laboratories
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Global Axi-Symmetric Model
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M/S Penetration Model

e Strain concentration at
Insert plate
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Leak Rate (% mass/day)
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PCCV LST - Calculated Leak Rate PCCV LST - Calculated Leak Rate
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PCCV LST Acoustic Response
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PCCV SFMT

e Structural Failure Mechanism Test:

— Justification: LST did not completely satisfy pre-test objective
of providing data to validate response predictions ‘well into the
In-elastic regime’.

Diffuser

Venting Air and Pressurizing Line

Filing and Draining Water Line

@&
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PCCV Model Structural Failure Mode Test
November 14, 2002, 10:46:12 AM
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PCCV Model after SFMT
November 14, 2002
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Overpressurization Tests - Conclusions

» L arge amounts of data on elastic and in-elastic response of representative
- models of containment vessels were obtained for comparison with analyses.

Significant plastic ‘free-field’ strains were developed before failure, with
considerable margin between design and failure pressures.

— ‘Free-field’ strains at failure were considerably less than material ultimate
strains

— In-situ material properties may vary significantly from sample or coupon tests
Model capacities were limited by local strain concentrations.

Existing non-linear analytical methods are generally adequate for
predicting global response, however prediction of local failure modes is
much more difficult.

Combined severe accident temperature and pressure loading needs to be
addressed (by analysis?)

Posttest analyses have reproduced the local mechanisms that caused the
failure.

Structural failure modes, representative of actual containment vessels were
demonstrated.
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Containment Bellows Tests
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PCCV Scaled Model

e 1:10 scale geometry
e 1:8 scale concrete wall thickness

1:4 scale liner thickness &
anchors

Dome truncated & 420 metric
tons lead weighs attached
Input accelerations scaled

— Magnitudes multiplied by 0.75

— Frequency increased by 2.56
(i.e., time scaled compressed by
factor of 2.56)

Lead weights

AU

)

. .
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B L RCCV Scaled Model
e 1:8 scale geometry

e 1:10 scale concrete wall Lead weights
thickness /\

e 1:4 scale liner thickness & "ANER
anchors \

e Dome truncated & lead weighs 'Y% TN\
attached at top S—

e Input accelerations scaled S\ \
similar to PCCV model scaling

Basemat
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Turbine Missile Impact Tests

Turbine Missile Concrete
Impact Test Series Test #3

Missile mass 147 kg, velocity 13.1 m/sec; Panel mass 153 tonnes, thickness 1.37m

@
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A ac 210 Containment Vulnerability Studies

LR ‘Water Slug’ Tests
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o 1 D/NEA/CSNI ISP 48 on Containment Capacity
- =l

"« Proposed to CSNI by NRC in 2002
* ODbjective:

— Extend the understanding of capacities of actual containment
structures based on results of the recent PCCV test and other previous
research. The PCCV results showed a leakage failure that began at
about 2.5 times the design pressure. The subsequent structural failure
mode test (SFMT) showed a global failure due to exceeding hoop
tendon capacity at about 3.6 times design pressure. Two questions
about actual structures are obvious:

* Would the onset of leakage be later and much closer to the burst
pressure?

* How would including the effect(s) of accident temperatures change the
outcome?

L=
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ISP 48 on Containment Capacity

* Phase 3: Combined Mechanical + Thermal Loading

— Case 1 (Steady State)
* Monotonically increasing static pressure and temperature (saturated
steam)
» Each participant performs heat transfer calculations or reads gradients
provided by SNL.
— Case 2 (Modified Station Blackout Scenario)
 NRC/SNL/DEA proposal plus hydrogen detonation defined by IRSN

* SNL will perform heat transfer calculation using full-scale axisymmetric
model w/ 12 nodes through the thickness.

* Apply resulting gradients to 1:4-scale model
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Case 1: Pressure-Temperature Time Histories

— Pseudo-time history based on SFMT pressurization rate (5 psi/min)
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LA TN Fragility Analysis of Degraded Containment
4 A
e
2
o Degraded
o Condition
d
7% Original
LL Condition
O]
=
i
£
3 o -

Pressure

» Use Latin Hypercube Sampling and nonlinear finite element
analysis to generate curves.

 Fragility curves provide interface between structural
analysis and risk analysis.
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Future Containment Research Issues

 Integration of Containment Integrity Research results
Into Risk-Informed Regulatory Framework.

— Containment Performance Model

« Support regulatory action for existing fleet of NPP’s and
next generation (NP2010, NGNP, GENIV)
— Maintenance/Inspection/License Extension
— Performance (vs. Compliance)-based codes
— Evolving demand on ‘containment’ function
» Confinement vs. Containment

* Long-term thermal loading
* External threats
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Containment Performance Model

* Provide a framework to tie together containment design
requirements, capacity tests and analysis.

— Containment performance typically defined in terms of leak
rate

— Containment response/capacity defined in terms of pressure

* Describe containment performance in a format useful
for probabilistic risk assessments.

* Demonstrate effects of degradation on performance.
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Containment Performance Model

Structural Capacity Limit\

Compliance-based Design

»
)

<
<

e.g. ASME B&PV Code

/ SIT@1.125P,

Leak Rate (Yomass/day)

0.9L ILRT @ 0.9 P,
? M | |
0 1P, 2 P, 3P,
Pressure
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Containment Performance Model

Structural Capacity Limit

Liner Tearing

Leak Rate (Yomass/day)

Concrete Cracking

Pressure
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Containment Performance Model

What we ‘know’ from Testing:

2 100.0
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Containment Performance Model

~ Effect of other components (tests):

Personnel Airlock Seal -l
= 100.0 - Composite Performance Model
©
S
wn
32 Equipment Hatch Seal
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5 Bellows
nd
%4
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g Containment Performance Model

v ffects of Temperature, Degradation:
Degradation _
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Containment Performance Model

e Are current analytical methods/results and test results
adequate to develop a ‘continuous’ containment
performance model?

 How can we illustrate the demand (e.g. ‘pressurization

rate’) for comparison with the performance model and
can we determine an equilibrium condition?

* What research/analyses/experiments are required to fill
the gaps in our knowledge?

— Can we relate strains or displacements to leak rates?

Sandia
"1 National
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