



# **Update on the Integration of Neutron Multiplicity Analysis into GADRAS**

**John Mattingly, Dean Mitchell, and Eric Varley  
Sandia National Laboratories**

**Diagnostic Technical Exchange  
21 – 22 July 2008  
United Kingdom Atomic Weapons Establishment**

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,  
for the United States Department of Energy's National Nuclear Security Administration  
under contract DE-AC04-94AL85000.

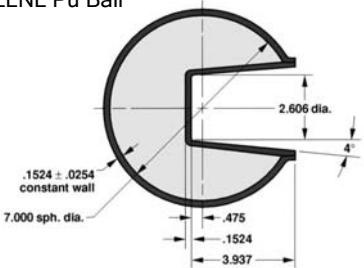


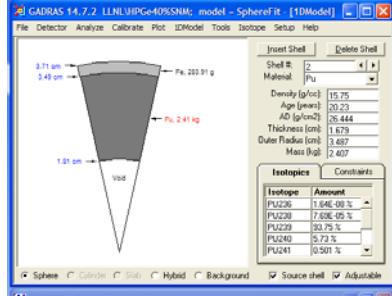


## Introduction

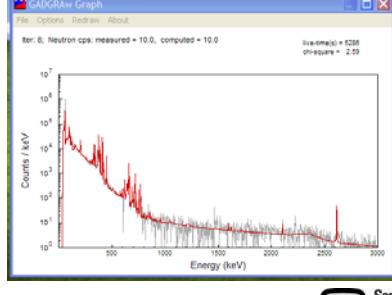
- GADRAS uses deterministic transport methods to synthesize gamma spectrum and neutron count rate from 1D transport models
- Transport modeling embedded in nonlinear optimization to find model parameters that match measured gamma spectrum & neutron count rate
- Simultaneous analysis of gamma spectrum & neutron count rate usually produces a better constrained solution
- Neutron count rate not a very rich metric of neutron field
- Developed method to synthesize Feynman-Y from time-dependent deterministic transport calculations







## GADRAS Transport Model Optimizer

---


- Example: estimate mass and inner void radius of LLNL Pu sphere
- GADRAS uses Levenberg–Marquardt nonlinear optimization to search for model dimensions that minimize error between calculation and measurement
- Converged solution represents best (in least-squared-error sense) estimate of source configuration

LLNL Pu Ball





| Isotope | Amount    |
|---------|-----------|
| PU236   | 1.64608 % |
| PU238   | 7.69605 % |
| PU239   | 93.75 %   |
| PU240   | 5.732 %   |
| PU241   | 0.001 %   |






- Example based on LLNL measurement of unclassified plutonium sphere
- 2.4 kg weapons-grade plutonium metal sphere with frustum removed
- Model at top-right shows best 1D estimate of source configuration
- Actual convergence time is less than 2 minutes on standard desktop computer

## Simultaneous Analysis of Gamma & Neutron Signatures

- Example: estimate mass and inner void radius of LLNL Pu sphere
- Chart at top-right shows convergence on model parameters when only gamma spectrum is analyzed
- Solution tends to underestimate Pu mass because innermost Pu has weak effect on gamma spectrum
- Chart at bottom-right shows convergence when gamma spectrum and neutron count rate are analyzed simultaneously
- Solution converges on correct Pu mass
- Uncertainties are smaller

National Nuclear Security Administration

Sandia National Laboratories



## Technical Approach

- Compute neutron multiplicity metrics using deterministic transport
  - Use transport models (instead of point models) to accurately model system dynamics
  - Use deterministic transport to keep calculations fast
  - Try to adapt existing transport solver(s) to this application
- Possible to compute moments of multiplicity distribution using standard Boltzmann transport solver
  - Moments require solution to forward and adjoint neutron transport problem
  - Moments vs. coincidence gate width require solution of forward time-dependent neutron transport problem
- Developed a method to compute Feynman-Y (variance-to-mean) vs. coincidence gate width that uses PARTISN time-dependent deterministic transport solver



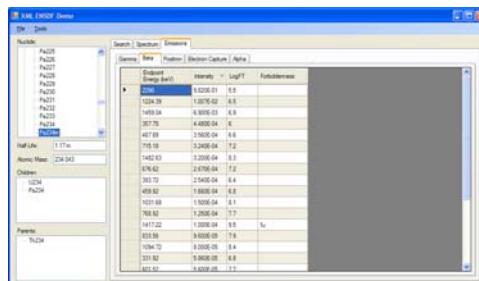
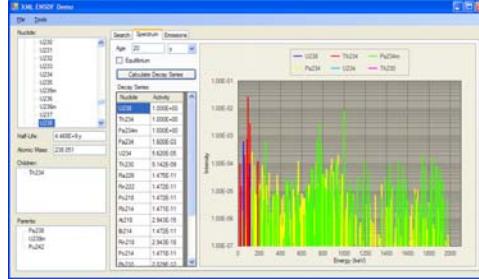


## Current Transport Framework

- Current framework solves coupled electron/neutron/photon transport problems
  - Uses ONEDANT for neutron transport
  - Uses ONELD for electron and photon transport
  - Uses ray-tracing to synthesize discrete photon lines
- Neutron solution coupled to photon source term by spontaneous & induced fission and (n, g) reactions
- Electron solution coupled to photon source term by Bremsstrahlung
- Photon and neutron leakage current folded with detector response models to synthesize gamma spectrum & neutron count rate
- Extending framework to compute Feynman-Y required a complete overhaul of current transport framework



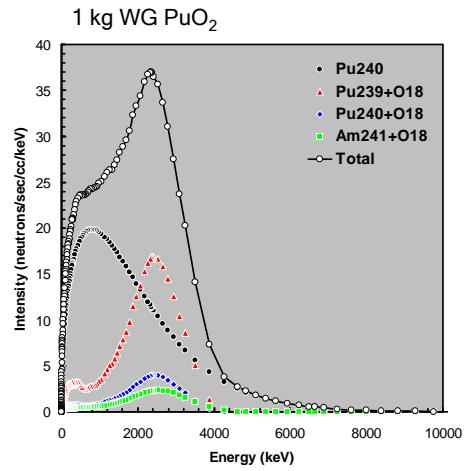




## Changes to Transport Framework

- Developed new nuclide/emission database based on Evaluated Nuclear Structure Data Files (ENSDF)
- Integrated SOURCES-4C for neutron source term generation
- Developed new neutron cross-section library that includes neutron upscatter
- Replaced ONEDANT transport engine with PARTISN
- Integrated models of induced fission neutron multiplicity distributions
- Developed new  $(n, \gamma)$  reaction database based on MCNP libraries
- Implemented time-dependent transport calculations of Feynman-Y vs. coincidence gate width

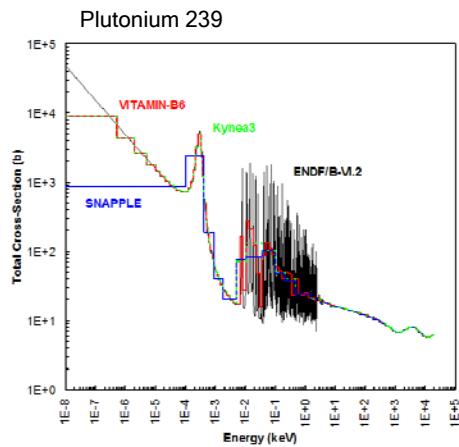


## Nuclide Database


- Developed new nuclide database from ENSDF
  - Tabulates branch ratios & emission probabilities for over 3700 nuclides
  - Translated to self-describing XML database
- About 1100 nuclides in new GADRAS database
  - Retained every nuclide with ancestor that has  $T_{1/2} \geq 60$  minutes
  - Tabulates alpha, beta, positron, EC, and gamma emissions
  - U235, U238, Pu239, Pu240, and Am241 gamma spectra corrected to match benchmarks
  - Solves branching Bateman decay equations to generate decay series






## Neutron Source Terms using SOURCES-4C

- Integrated SOURCES-4C neutron spectrum code into GADRAS
- Uses Watt fission neutron spectra for 30 nuclides
- Computes  $(\alpha, n)$  spectra from  $\alpha$ -transport
  - Homogeneous material regions
  - Interfaces between materials
  - 48 alpha emitters
  - 16 target nuclides
  - Over 750  $(\alpha, n)$  spectra
- Example at right shows prominent source terms for 1 kg of weapons-grade plutonium oxide



## Neutron Cross-Sections

- Current transport engine uses 47-group neutron cross-sections without upscatter (SNAPPLE)
- Found that k-effective and Feynman-Y calculations were inaccurate for highly thermalized problems
- Developed new cross-section library (Kynea3)
  - Merges fine-group VITAMIN-B6 library with coarse-group SNAPPLE library
  - Retains upscatter and group structure of VITAMIN-B6 at low energy, group structure of SNAPPLE at high energy



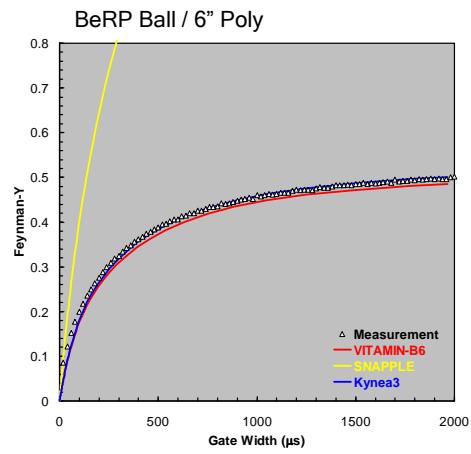


## Effect of Upscatter on Multiplication Calculations

- Neutron upscatter: at very low energies, a neutron can emerge from a scatter interaction with more kinetic energy than it had when it entered the interaction
- In thermally fissioning materials slower neutrons are more likely to sustain fission chain-reactions
- Downscatter tends to increase multiplication
- Upscatter tends to decrease multiplication
- Without upscatter, can't accurately estimate multiplication for highly moderated systems

BeRP Ball Multiplication

| Poly Thickness (in) | Subcrit Benchmark | MCNP      |        | PARTISN |         |            |
|---------------------|-------------------|-----------|--------|---------|---------|------------|
|                     |                   | Spherical | Actual | SNAPPLE | Kyneas3 | VITAMIN-B6 |
| 0                   | 4.6               | 4.4       | 4.4    | 4.0     | 4.0     | 4.0        |
| 0.5                 | 5.7               | 5.7       | 5.6    | 5.4     | 5.4     | 5.4        |
| 1                   | 7.4               | 7.7       | 7.3    | 7.3     | 7.4     | 7.4        |
| 1.5                 | 9.8               | 10.3      | 9.6    | 10.3    | 10.1    | 10.1       |
| 3                   | 15.5              | 16.5      | 15.1   | 24.0    | 16.5    | 16.5       |
| 6                   | N/A               | 17.5      | 15.7   | 36.6    | 18.3    | 18.2       |



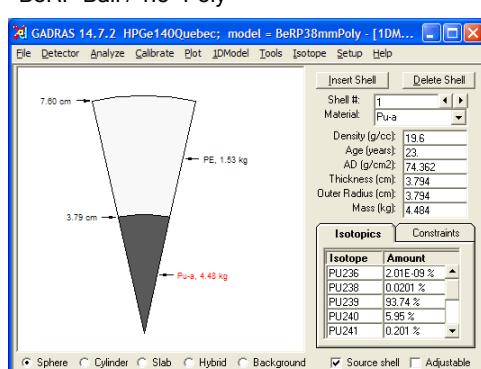

- Multiplication estimates for LANL BeRP ball
- Unclassified 4.5 kg solid sphere of alpha-phase weapons-grade plutonium metal
- Reflected by spherical shells of high-density polyethylene between 0" (no reflector) and 6" thick



## Effect of Upscatter on Feynman-Y Calculations

- Downscatter shifts neutron population toward lower energies
  - Increases multiplication → increases Feynman-Y amplitude
  - Increases neutron lifetime → slows Feynman-Y rise-time
- Upscatter shifts neutron population back toward higher energies
  - Decreases multiplication → decreases Feynman-Y amplitude
  - Decreases neutron lifetime → speeds Feynman-Y rise-time
- Can't accurately calculate Feynman-Y for highly moderated systems without upscatter






## PARTISN Transport Solver

---

- Replaced ONEDANT solver with its successor PARTISN (Parallel Time-Dependent S<sub>N</sub>)
- PARTISN is used to solve:
  - Static forward and adjoint neutron transport problem: used to compute neutron count rate and Feynman-Y asymptote
  - Dynamic forward neutron transport problem: used to compute Feynman-Y dependence on coincidence gate width
- Users won't notice a difference most of the time
  - Runtime for Feynman-Y calculations are longer
  - Can model spherical, cylindrical, and slab geometries

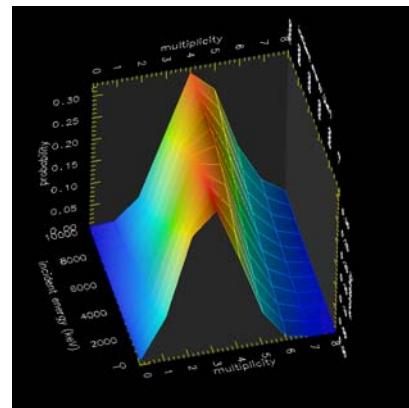
BeRP Ball / 1.5" Poly





National Nuclear Security Administration




Sandia National Laboratories



## Induced Fission Neutron Multiplicity Distributions

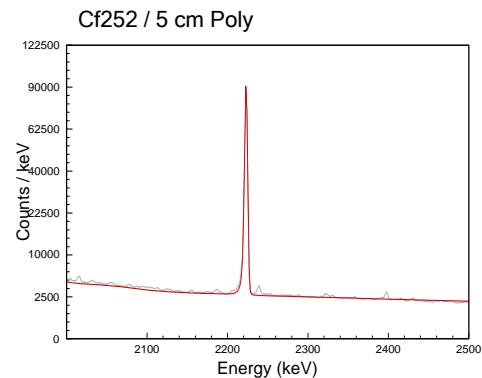
- Integrated Zucker & Hölden models for induced fission neutron multiplicity distribution
- Based on measurements of U235, U238, and Pu239
- Valentine (ORNL) developed prescription for adapting Z&H distributions to other nuclides
  - U235 → U233
  - U238 → U232, U234, U236
  - Pu239 → Pu241

Pu239 Induced Fission





## (n, $\gamma$ ) Reaction Cross-Sections


- Extracted (n,  $\gamma$ ) reaction cross-sections from MCNP ENDF66 and ACTI libraries

- New GADRAS (n,  $\gamma$ ) database contains:
  - 76 nuclides and elements
  - Over 10,000 gamma lines

- New (n,  $\gamma$ ) calculations also correctly distribute energy of primary photons

$$E_\gamma = E_\gamma^0 + \frac{A}{A+m} E_n$$

- New database generally improves accuracy of (n,  $\gamma$ ) calculations, still needs a lot of testing





## Computation of Feynman-Y from Deterministic Transport

- Feynman-Y exhibits two notional features
  - Asymptotic value
  - Shape dependent on coincidence gate width
- Asymptote
  - Computed from static forward and adjoint transport solution
  - Accounts for relative contribution of source and induced fission neutrons
  - Source term for adjoint problem is detection efficiency - adjoint flux  
“weighting function” represents importance to detection
- Shape
  - Computed from solution to dynamic step response problem
  - Forward source term is instantaneously stepped
  - Leakage current is folded with detector cross-section & impulse response
  - Detector response is integrated over gate width



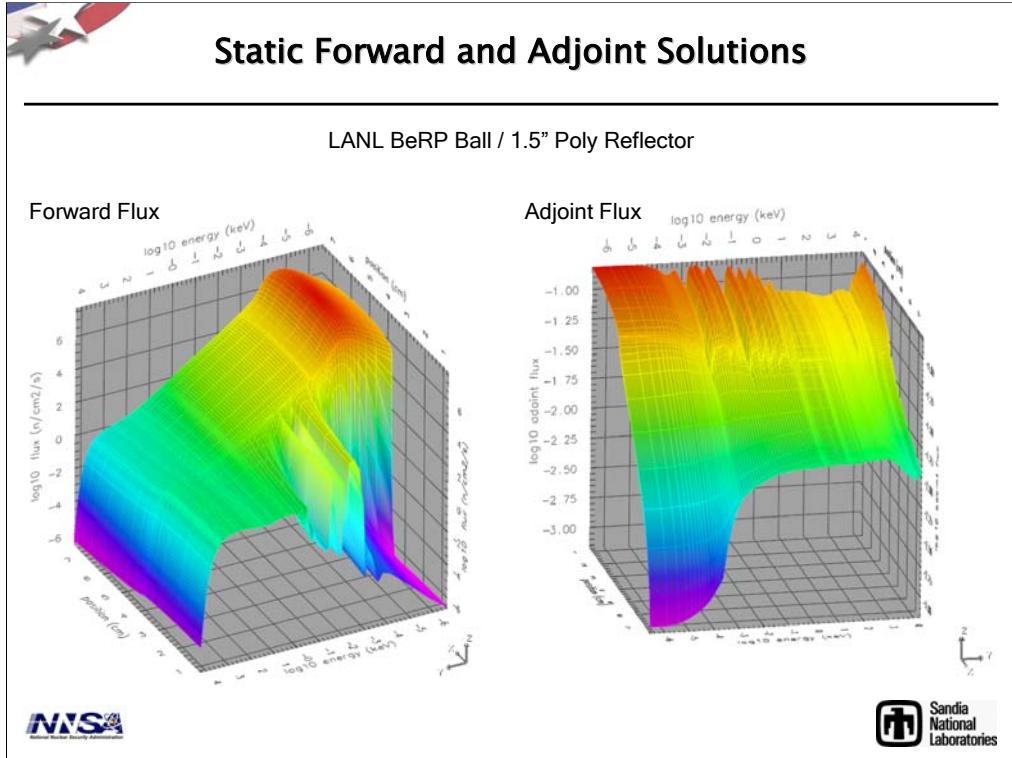


## Computation of Feynman-Y Asymptote

- Excess variance comes from **source** and induced **fission**

$$\frac{\sigma^2}{\mu} = 1 + Y \quad \sigma^2 = \mu + {}_2S_0 + {}_2S$$

- Variance of **source** neutron production  $Q$


$${}_2S_0 = \int d^3r \int dE \frac{\overline{v_0(v_0-1)}}{v_0} Q(\vec{r}, E) I_0^2(\vec{r}) \quad I_0(\vec{r}) = \int dE' \frac{\chi_0(\vec{r}, E')}{4\pi} \varphi^\dagger(\vec{r}, E')$$

- Variance of **fission** neutron production  $v\Sigma_f\varphi$

$${}_2S = \int d^3r \int dE \overline{v(v-1)} \Sigma_f(\vec{r}, E) \varphi(\vec{r}, E) I^2(\vec{r}) \quad I(\vec{r}) = \int dE' \frac{\chi(\vec{r}, E')}{4\pi} \varphi^\dagger(\vec{r}, E)$$

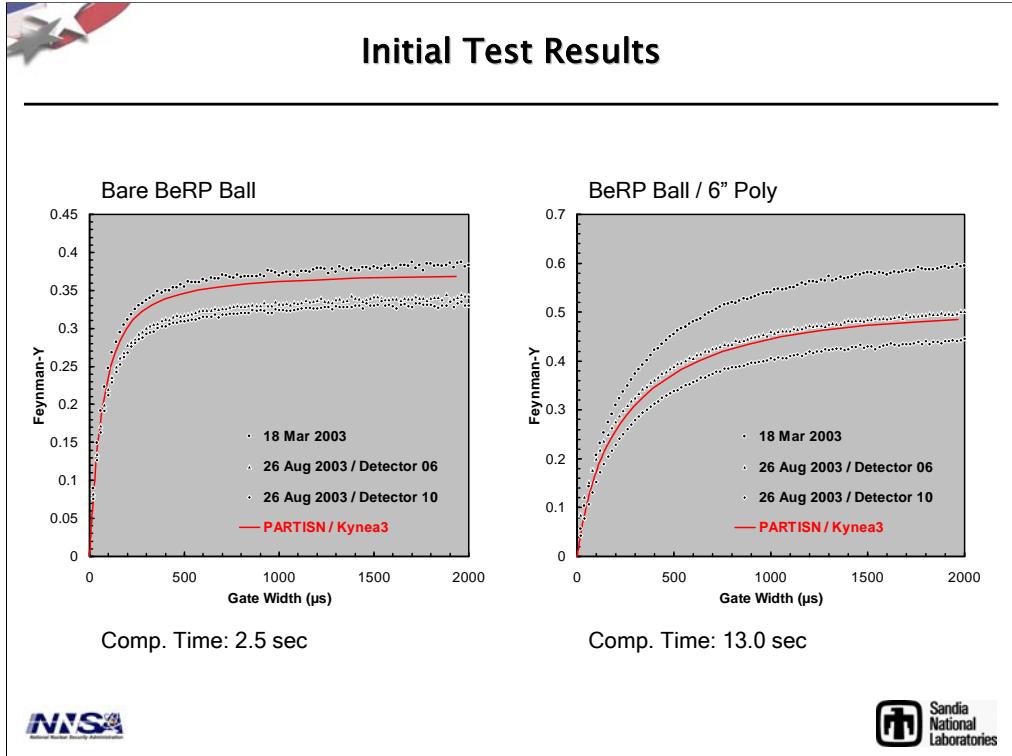
- Importances  $I_0$  and  $I$  weighted by adjoint flux  $\varphi^\dagger$







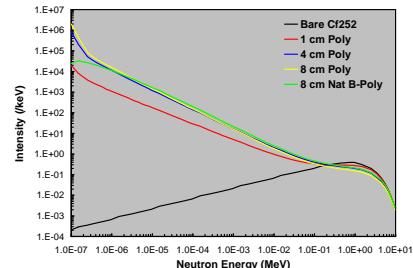
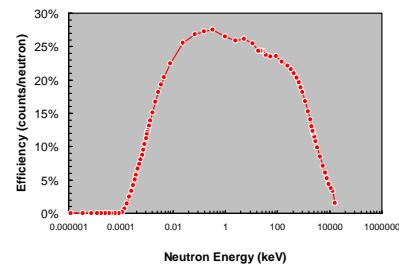
## Computation of Feynman-Y Shape


- Feynman-Y shape computed from solution to forward dynamic step response problem

$$Y(T) \propto \frac{1}{T} \int_0^T dt \int_0^t dt' \mathbf{h}(t-t') \Sigma_d(\vec{r}, E) \phi(\vec{r}, E, t')$$

- Uses LANL transport solver PARTISN to compute flux  $\phi$  in response to instantaneous step in forward source term  $Q$
- Time-dependent flux folded with detector cross-section  $\Sigma_d$  and impulse response  $\mathbf{h}$
- Integrated over coincidence gate width  $T$

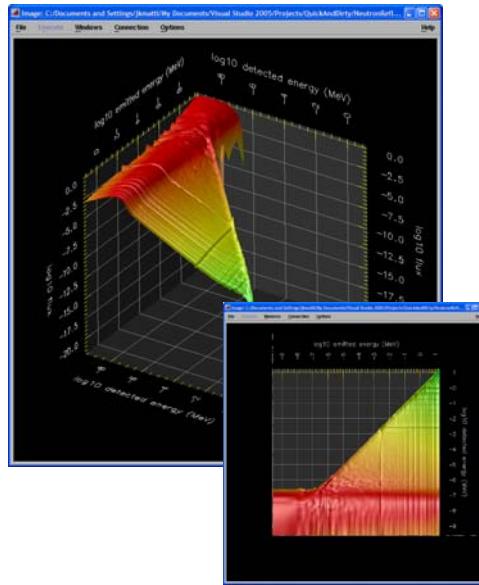







## Neutron Detector Calibration


- Neutron detector efficiency vs. energy unfolded from of measurements
  - Measure neutron count rate:
    - Bare Cf252
    - Cf252 in polyethylene spherical shells up to 4 cm thick
  - Count rates used to index into lookup table containing efficiency vs. energy pre-calculated by Monte Carlo
- We've observed some problems modeling very highly moderated sources
- Extending calibration set to use thicker moderators





## Neutron Environmental Scattering

- Neutron scattering off reflecting surfaces (floor, walls) creates an albedo source of neutrons in addition to direct source
- Augments neutron detector response
- Using MCNP to compute reflection "transform matrix"
- Matrix tabulates probability of detection versus:
  - Neutron energy emergent from source
  - Neutron energy incident on detector
- Matrix calculated for several source-detector and source-reflector distances
- Can fold neutron leakage spectrum with transform matrix and detection efficiency to estimate response to reflected neutrons





## Summary

- GADRAS transport framework has received a complete overhaul
- Changes to source term generation, cross-section libraries, transport solver, and reaction libraries improve accuracy of assessments
- Implemented method to compute Feynman-Y vs. gate width using deterministic transport
- Synthesized Feynman-Y without using point model approximation
- Calculations require 1 – 20 seconds
- Integrating analysis of Feynman-Y into GADRAS
- Source models will use simultaneous analysis of gamma spectrum and Feynman-Y
- Expect that simultaneous analysis will better constrain solution to some problems





## Upcoming Developments

- Working to integrate Feynman-Y into GADRAS interface and analysis procedures
- KEEP TESTING CHANGES! – working to acquire more and better measurements to test simultaneous gamma spectral / neutron multiplicity analysis
- Trying to identify transport solution options to decrease computational time further
- Interested in modeling neutron reflection feedback into fissile system

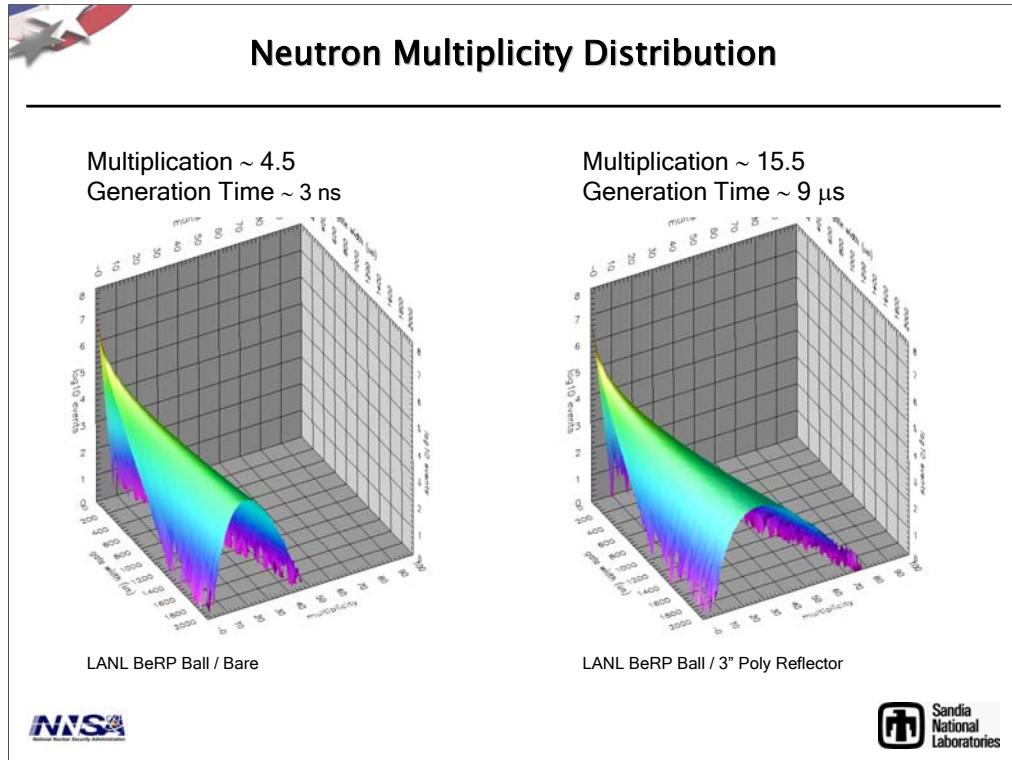




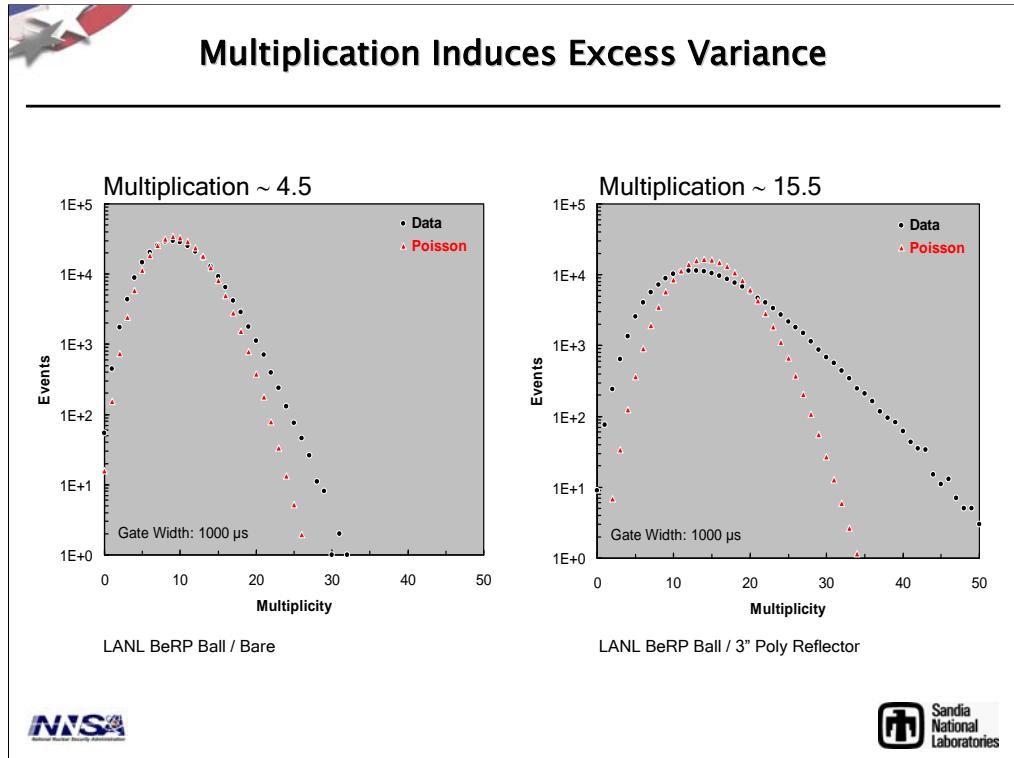
## Acknowledgments

- Work sponsored by NNSA Offices of Nonproliferation Research & Development (NA-22) and Nuclear Counterterrorism (NA-47)
- Erik Shores of LANL assisted with integration of SOURCES-4C
- Jeff Favorite and Randy Baker of LANL assisted with integration of PARTISN
- Ken Butterfield, Doug Mayo, John Bounds, and Mark Smith-Nelson of LANL provided measurements of BeRP ball






## Supplemental Information


---

This slide intentionally blank



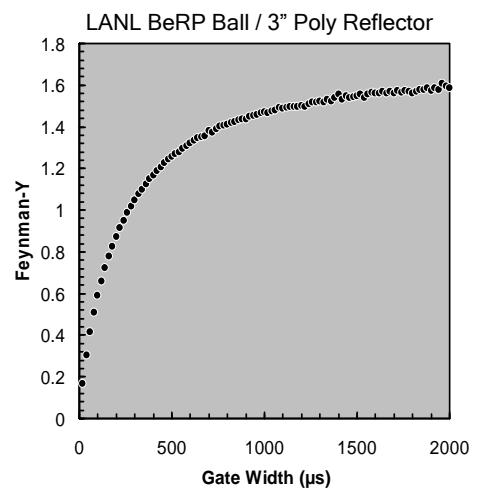


- Los Alamos BeRP ball is an unclassified 4.5 kg sphere of alpha-phase weapons-grade plutonium metal
- Constructed for critical and subcritical experiments using various reflecting materials
- All measurements shown in this presentation use polyethylene reflectors varying in thickness from 0 (bare) to 6"





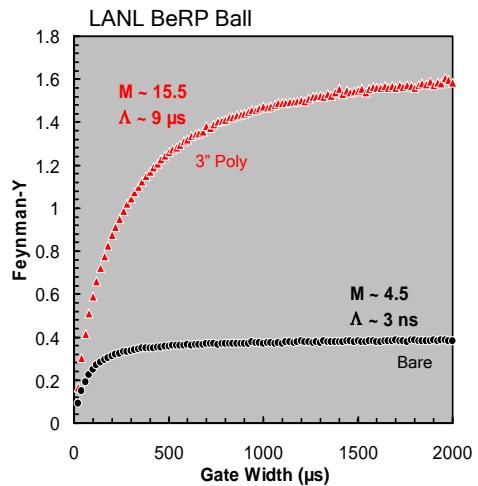
## Feynman-Y: Excess Relative Variance


- Feynman-Y measures excess variance relative to Poisson process

$$\frac{\sigma^2}{\mu} = 1 + Y$$

$\sigma^2$  : variance

$\mu$  : mean

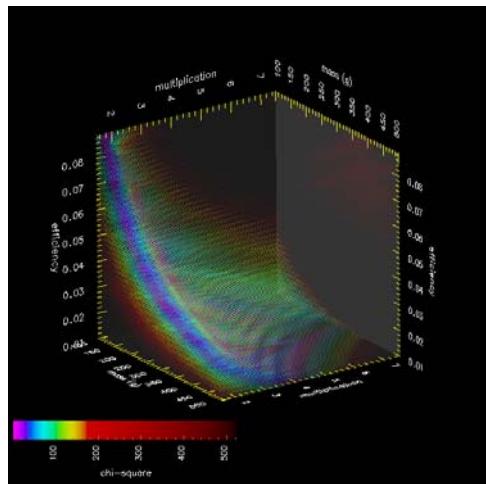

- Y vanishes if counting distribution is purely Poisson
- Y tends to increase with neutron multiplication
- Usually measured vs. coincidence gate width (counting time)





## Effect of Multiplication and Generation Time

- $Y$  is a measure of the second moment of the counting distribution
- Asymptotic value tends to increase with square of neutron multiplication
- $Y$  is a measure of the system's dynamic response
- Shape vs. gate width tends to evolve more slowly with increasing neutron generation time






## Degeneracy in Neutron Multiplicity

- Neutron multiplicity distribution is a complicated function of source strength (mass), multiplication, leakage and detection probability (efficiency)
- Systems w/ similar products of mass, multiplication, and efficiency exhibit similar multiplicity distributions
- Problem has more degrees of freedom than model
- Many possible models tend to fit measurement equally well
- Can't rely on neutron multiplicity alone to estimate system parameters

LLNL Pu Ball

