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IntroductionIntroduction

∙GADRAS uses deterministic transport methods to synthesize gamma 
spectrum and neutron count rate from 1D transport models

∙Transport modeling embedded in nonlinear optimization to find 
model parameters that match measured gamma spectrum & neutron 
count rate

∙Simultaneous analysis of gamma spectrum & neutron count rate 
usually produces a better constrained solution

∙Neutron count rate not a very rich metric of neutron field

∙Developed method to synthesize Feynman-Y from time-dependent 
deterministic transport calculations



GADRAS Transport Model OptimizerGADRAS Transport Model Optimizer

∙ Example: estimate mass and inner void 
radius of LLNL Pu sphere

∙ GADRAS uses Levenberg-Marquardt 
nonlinear optimization to search for 
model dimensions that minimize error 
between calculation and measurement

∙ Converged solution represents best (in 
least-squared-error sense) estimate of 
source configuration

LLNL Pu Ball

•Example based on LLNL measurement of unclassified plutonium sphere
•2.4 kg weapons-grade plutonium metal sphere with frustum removed
•Model at top-right shows best 1D estimate of source configuration
•Actual convergence time is less than 2 minutes on standard desktop computer



Simultaneous Analysis of Gamma & Neutron SignaturesSimultaneous Analysis of Gamma & Neutron Signatures

∙ Example: estimate mass and inner 
void radius of LLNL Pu sphere

∙Chart at top-right shows 
convergence on model parameters 
when only gamma spectrum is 
analyzed
∙ Solution tends to underestimate Pu 

mass because innermost Pu has 
weak effect on gamma spectrum

∙Chart at bottom-right shows 
convergence when gamma 
spectrum and neutron count rate 
are analyzed simultaneously
∙ Solution converges on correct Pu 

mass
∙Uncertainties are smaller
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Technical ApproachTechnical Approach

∙Compute neutron multiplicity metrics using deterministic transport
∙Use transport models (instead of point models) to accurately model 

system dynamics
∙Use deterministic transport to keep calculations fast
∙Try to adapt existing transport solver(s) to this application

∙Possible to compute moments of multiplicity distribution using 
standard Boltzmann transport solver
∙Moments require solution to forward and adjoint neutron transport 

problem
∙Moments vs. coincidence gate width require solution of forward time-

dependent neutron transport problem

∙Developed a method to compute Feynman-Y (variance-to-mean) vs. 
coincidence gate width that uses PARTISN time-dependent 
deterministic transport solver



Current Transport FrameworkCurrent Transport Framework

∙Current framework solves coupled electron/neutron/photon 
transport problems
∙Uses ONEDANT for neutron transport
∙Uses ONELD for electron and photon transport
∙Uses ray-tracing to synthesize discrete photon lines

∙Neutron solution coupled to photon source term by spontaneous & 
induced fission and (n, g) reactions
∙Electron solution coupled to photon source term by Bremsstrahlung

∙Photon and neutron leakage current folded with detector response
models to synthesize gamma spectrum & neutron count rate

∙Extending framework to compute Feynman-Y required a complete 
overhaul of current transport framework



Changes to Transport FrameworkChanges to Transport Framework

∙Developed new nuclide/emission database based on Evaluated Nuclear 
Structure Data Files (ENSDF)

∙ Integrated SOURCES-4C for neutron source term generation

∙Developed new neutron cross-section library that includes neutron 
upscatter

∙ Replaced ONEDANT transport engine with PARTISN

∙ Integrated models of induced fission neutron multiplicity distributions

∙Developed new (n, γ) reaction database based on MCNP libraries

∙ Implemented time-dependent transport calculations of Feynman-Y vs. 
coincidence gate width



Nuclide DatabaseNuclide Database

∙Developed new nuclide database 
from ENSDF
∙ Tabulates branch ratios & emission 

probabilities for over 3700 nuclides
∙ Translated to self-describing XML 

database

∙About 1100 nuclides in new 
GADRAS database
∙ Retained every nuclide with  ancestor 

that has T½ ≥ 60 minutes 
∙ Tabulates alpha, beta, positron, EC, 

and gamma emissions
∙ U235, U238, Pu239, Pu240, and 

Am241 gamma spectra corrected to 
match benchmarks

∙ Solves branching Bateman decay 
equations to generate decay series



Neutron Source Terms using SOURCESNeutron Source Terms using SOURCES--4C4C

∙ Integrated SOURCES-4C neutron 
spectrum code into GADRAS

∙Uses Watt fission neutron spectra 
for 30 nuclides

∙Computes (α, n) spectra from α-
transport
∙ Homogeneous material regions
∙ Interfaces between materials
∙ 48 alpha emitters
∙ 16 target nuclides
∙ Over 750 (α, n) spectra

∙ Example at right shows prominent 
source terms for 1 kg of weapons-
grade plutonium oxide
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Neutron CrossNeutron Cross--SectionsSections

∙Current transport engine uses 47-
group neutron cross-sections 
without upscatter (SNAPPLE)

∙ Found that k-effective and 
Feynman-Y calculations were 
inaccurate for highly thermalized 
problems

∙Developed new cross-section 
library (Kynea3)
∙ Merges fine-group VITAMIN-B6 

library with coarse-group SNAPPLE 
library

∙ Retains upscatter and group 
structure of VITAMIN-B6 at low 
energy, group structure of SNAPPLE 
at high energy

Plutonium 239



Effect of Upscatter on Multiplication CalculationsEffect of Upscatter on Multiplication Calculations

∙Neutron upscatter: at very low 
energies, a neutron can emerge 
from a scatter interaction with 
more kinetic energy than it had 
when it entered the interaction

∙ In thermally fissioning materials 
slower neutrons are more likely to 
sustain fission chain-reactions

∙Downscatter tends to increase 
multiplication
∙Upscatter tends to decrease 

multiplication
∙Without upscatter, can’t accurately 

estimate multiplication for highly 
moderated systems 
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BeRP Ball Multiplication

•Multiplication estimates for LANL BeRP ball
•Unclassified 4.5 kg solid sphere of alpha-phase weapons-grade plutonium metal
•Reflected by spherical shells of high-density polyethylene between 0” (no reflector) 
and 6” thick



Effect of Upscatter on FeynmanEffect of Upscatter on Feynman--Y CalculationsY Calculations

∙Downscatter shifts neutron 
population toward lower energies
∙ Increases multiplication → increases 

Feynman-Y amplitude
∙ Increases neutron lifetime → slows 

Feynman-Y rise-time

∙Upscatter shifts neutron population 
back toward higher energies
∙ Decreases multiplication →

decreases Feynman-Y amplitude
∙ Decreases neutron lifetime → speeds 

Feynman-Y rise-time

∙Can’t accurately calculate 
Feynman-Y for highly moderated 
systems without upscatter
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PARTISN Transport SolverPARTISN Transport Solver

∙ Replaced ONEDANT solver with its 
successor PARTISN (Parallel Time-
Dependent SN)

∙ PARTISN is used to solve:
∙ Static forward and adjoint neutron 

transport problem: used to compute 
neutron count rate and Feynman-Y 
asymptote

∙ Dynamic forward neutron transport 
problem: used to compute Feynman-
Y dependence on coincidence gate 
width

∙Users won’t notice a difference 
most of the time
∙ Runtime for Feynman-Y calculations 

are longer
∙ Can model spherical, cylindrical, and 

slab geometries

BeRP Ball / 1.5” Poly



Induced Fission Neutron Multiplicity DistributionsInduced Fission Neutron Multiplicity Distributions

∙ Integrated Zucker & Hölden models 
for induced fission neutron 
multiplicity distribution

∙ Based on measurements of U235, 
U238, and Pu239

∙ Valentine (ORNL) developed 
prescription for adapting Z&H 
distributions to other nuclides
∙ U235 → U233
∙ U238 → U232, U234, U236
∙ Pu239 → Pu241

Pu239 Induced Fission



(n, (n, γγ) Reaction Cross) Reaction Cross--SectionsSections

∙ Extracted (n, γ) reaction cross-
sections from MCNP ENDF66 and 
ACTI libraries

∙New GADRAS (n, γ) database 
contains:
∙ 76 nuclides and elements
∙ Over 10,000 gamma lines

∙New (n, γ) calculations also 
correctly distribute energy of 
primary photons

∙New database generally improves 
accuracy of (n, γ) calculations, still 
needs a lot of testing
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Computation of FeynmanComputation of Feynman--Y from Deterministic TransportY from Deterministic Transport

∙Feynman-Y exhibits two notional features
∙Asymptotic value
∙ Shape dependent on coincidence gate width

∙Asymptote
∙Computed from static forward and adjoint transport solution
∙Accounts for relative contribution of source and induced fission neutrons
∙ Source term for adjoint problem is detection efficiency – adjoint flux 

“weighting function” represents importance to detection

∙Shape
∙Computed from solution to dynamic step response problem
∙ Forward source term is instantaneously stepped
∙ Leakage current is folded with detector cross-section & impulse response
∙Detector response is integrated over gate width



Computation of FeynmanComputation of Feynman--Y AsymptoteY Asymptote

∙Excess variance comes from sourcesource and induced fissionfission

∙Variance of sourcesource neutron production QQ

∙Variance of fissionfission neutron production νΣνΣffϕϕ

∙ Importances II00 and II weighted by adjoint flux ϕϕ††
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Static Forward and Adjoint SolutionsStatic Forward and Adjoint Solutions

LANL BeRP Ball / 1.5” Poly Reflector

Forward Flux Adjoint Flux



Computation of FeynmanComputation of Feynman--Y ShapeY Shape

∙Feynman-Y shape computed from solution to forward dynamic step 
response problem

∙Uses LANL transport solver PARTISN to compute flux ϕϕ in response 
to instantaneous step in forward source term Q

∙Time-dependent flux folded with detector cross-section ΣΣdd and 
impulse response hh

∙ Integrated over coincidence gate width T
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Computation of Dynamic ResponseComputation of Dynamic Response



Initial Test ResultsInitial Test Results
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Neutron Detector CalibrationNeutron Detector Calibration

∙Neutron detector efficiency vs. 
energy unfolded from of 
measurements
∙ Measure neutron count rate:

∙ Bare Cf252
∙ Cf252 in polyethylene spherical shells 

up to 4 cm thick
∙ Count rates used to index into 

lookup table containing efficiency vs. 
energy pre-calculated by Monte 
Carlo

∙We’ve observed some problems 
modeling very highly moderated 
sources

∙ Extending calibration set to use 
thicker moderators
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Neutron Environmental ScatteringNeutron Environmental Scattering

∙ Neutron scattering off reflecting 
surfaces (floor, walls) creates an albedo 
source of neutrons in addition to direct 
source

∙ Augments neutron detector response

∙ Using MCNP to compute reflection 
“transform matrix”

∙ Matrix tabulates probability of detection 
versus:
∙ Neutron energy emergent from source
∙ Neutron energy incident on detector

∙ Matrix calculated for several source-
detector and source-reflector distances

∙ Can fold neutron leakage spectrum with 
transform matrix and detection 
efficiency to estimate response to 
reflected neutrons



SummarySummary

∙GADRAS transport framework has received a complete overhaul
∙Changes to source term generation, cross-section libraries, 

transport solver, and reaction libraries improve accuracy of 
assessments

∙ Implemented method to compute Feynman-Y vs. gate width using 
deterministic transport
∙Synthesized Feynman-Y without using point model approximation
∙Calculations require 1 – 20 seconds

∙ Integrating analysis of Feynman-Y into GADRAS
∙Source models will use simultaneous analysis of gamma spectrum 

and Feynman-Y
∙Expect that simultaneous analysis will better constrain solution to 

some problems



Upcoming DevelopmentsUpcoming Developments

∙Working to integrate Feynman-Y into GADRAS interface and analysis 
procedures

∙KEEP TESTING CHANGES! - working to acquire more and better 
measurements to test simultaneous gamma spectral / neutron 
multiplicity analysis

∙Trying to identify transport solution options to decrease 
computational time further

∙ Interested in modeling neutron reflection feedback into fissile 
system
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Neutron Multiplicity DistributionNeutron Multiplicity Distribution

Multiplication ∼ 4.5
Generation Time ∼ 3 ns

Multiplication ∼ 15.5
Generation Time ∼ 9 μs

LANL BeRP Ball / 3” Poly ReflectorLANL BeRP Ball / Bare

•Los Alamos BeRP ball is an unclassified 4.5 kg sphere of alpha-phase weapons-
grade plutonium metal
•Constructed for critical and subcritical experiments using various reflecting 
materials
•All measurements shown in this presentation use polyethylene reflectors varying in 
thickness from 0 (bare) to 6”



Multiplication Induces Excess VarianceMultiplication Induces Excess Variance

Multiplication ∼ 4.5 Multiplication ∼ 15.5

LANL BeRP Ball / 3” Poly ReflectorLANL BeRP Ball / Bare
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FeynmanFeynman--Y: Excess Relative VarianceY: Excess Relative Variance

∙ Feynman-Y measures excess 
variance relative to Poisson process

∙ Y vanishes if counting distribution 
is purely Poisson
∙ Y tends to increase with neutron 

multiplication

∙Usually measured vs. coincidence 
gate width (counting time)

LANL BeRP Ball / 3” Poly Reflector
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Effect of Multiplication and Generation TimeEffect of Multiplication and Generation Time

∙ Y is a measure of the second 
moment of the counting 
distribution
∙Asymptotic value tends to increase 

with square of neutron 
multiplication

∙ Y is a measure of the system’s 
dynamic response
∙ Shape vs. gate width tends to 

evolve more slowly with increasing 
neutron generation time
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Degeneracy in Neutron MultiplicityDegeneracy in Neutron Multiplicity

∙Neutron multiplicity distribution is 
a complicated function of source 
strength (mass), multiplication, 
leakage and detection probability 
(efficiency)
∙ Systems w/ similar products of 

mass, multiplication, and efficiency 
exhibit similar multiplicity 
distributions

∙ Problem has more degrees of 
freedom than model
∙Many possible models tend to fit 

measurement equally well
∙Can’t rely on neutron multiplicity 

alone to estimate system 
parameters

LLNL Pu Ball


