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Example #1: Pose Estimation Problem

Problem description

Given: a set of images {Z;} and identifications between
feature points {x;} and their corresponding image
points {P;{z;}}
Task: find the projections {P;} determining the pose of
each camera
Bonus: find the 3-D location of the feature points {z;} a0

I

Applications

> recover motion of camera

» recover structure of 3-D scene
from 2-D images

» allow augmentation of scene
with virtual objects
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Problem Setting

Camera Parameters
Determining the orientation of the camera amounts to
finding

» the center of the camera in 3-D space

» the direction it is pointing

This amounts to finding ,
> a translation vector t € R3 \
> a rotation matrix R € SO(3) .
> R is orthogonal R
> det(R) = +1
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Problem Setting

Camera Parameters
Determining the orientation of the camera amounts to
finding
» the center of the camera in 3-D space
» the direction it is pointing

This amounts to finding

> a translation vector t € R3 \

> a rotation matrix R € SO(3)
> R is orthogonal \R‘
> det(R) = +1
Difficulties

It is not possible to find an analytic/exact solution to this problem:
> errors in the point correspondence algorithm

» problem matching discrete pixels against points in continuous space
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Optimization Characterization

One approach to solving the problem is to apply an optimization
algorithm:
minimize f(cg,c1,...,¢n-1)
where
» f is a measure of the error in the point correspondences
> ¢; € SE(3) are the coordinates for the i-th camera

» SE(3) is the special Euclidean group:

SE(3) = SO(3) x R®
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Optimization Characterization

One approach to solving the problem is to apply an optimization
algorithm:
minimize f(cg,c1,...,¢n-1)
where
» f is a measure of the error in the point correspondences
> ¢; € SE(3) are the coordinates for the i-th camera

» SE(3) is the special Euclidean group:
SE(3) = SO(3) x R?
Riemannian Optimization Characterization
Our goal is the Riemannian optimization f:

fiM—=R
M =SE(3) x -+ x SE(3)
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Example #2: Face/Object Recognition

Problem description

Given an image I, identify the object/person in the image as a member
of a set of known objects/people.
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Example #2: Face/Object Recognition

Problem description
Given an image I, identify the object/person in the image as a member
of a set of known objects/people.
Difficulties
» Problem: images are often high-dimensional

» Solution: reduce the dimensionality of the images
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Example #2: Face/Object Recognition

Problem description

Problems Ri

Optimization Riemannian Optimization Methods

Given an image I, identify the object/person in the image as a member
of a set of known objects/people.

Difficulties

» Problem: images are often high-dimensional

» Solution: reduce the dimensionality of the images

Popular methods involve
projecting the images onto a
linear subspace:

C. G. Baker

image 1
image 2

image 3
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PCA
» PCA chooses a basis U from
the SVD of
A= [fo L - fn_l]

» U is optimal in terms of

» Approach is motivated by the

» U is computed via the SVD of

minimizing the error

|A = UUT Al

ability of U to capture the
components of highest variance.

A or the EVD of AAT or AT A.

Christopher DeCoro @ Princeton
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LDA
» LDA chooses basis U as the
vectors maximizing Fisher's °
linear discriminant. o

» These vector maximize the
distance between classes (e.g.,
people) while minimizing the
distance inside classes.

» This basis is computed via a
generalized eigenvalue or
generalized SVD problem.

C. G. Baker Optimization on Manifolds
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Optimal Basis Choice

What is Optimal?

Both PCA and LDA choose bases that are optimal in some respect.

>
» However, neither is optimal with respect to recognition accuracy.
> Result: linear projection methods have a bad reputation.

>

Before dismissing the entire class of methods, consider finding the
optimal linear subspace with respect to recognition accuracy.
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Optimal Basis Choice

What is Optimal?

Both PCA and LDA choose bases that are optimal in some respect.

>
» However, neither is optimal with respect to recognition accuracy.
> Result: linear projection methods have a bad reputation.

>

Before dismissing the entire class of methods, consider finding the
optimal linear subspace with respect to recognition accuracy.

Riemannian Optimization Characterization

> Let f(U) denote the recognition accuracy of the basis U.
» If f employs a nearest-neighbor classifier, then f(U) = f(U - M).

» Then f is a function over the Grassmann manifold:
Grass(p,n) = {all p-dimensional subspaces of R"}

» Optimizing f over Grass(p,n) gives the optimal p-dimensional basis.
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Significant Manifolds

Orthogonal Group

The manifold of orthogonal matrices:

O(n) = {U e R"*n . UTU = UUT = I}

Compact Stiefel Manifold

The manifold of orthonormal bases:
St(p,n) ={Q e R™?: QTQ = I,,}
Grassmann manifold

Manifold of linear subspaces:

Grass(p,n) = {p-dimensional subspaces of R"}
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Stiefel /Grassmann Applications

» dominant singular vectors of a matrix (Stiefel)
f(U,V) = trace (UTAVN)
> optimal-rank tensor factorization (Grassmann)
FUVW)=[|Ae; UT o VT 03 W72

» ICA, blind-source separation ( “cocktail party problem™”) (Grassmann)

> eigenspaces of a generalized symmetric matrix pencil (Grassmann)
J(V) = trace (V7 BY) " (VT AV)))
» computing H2-optimal reduced order models (Grassmann)

FUH) = |[H(s) = H(s)3
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What is Riemannian Optimization?

Definition
Riemannian Optimization refers to the optimization of an objective
function over a Riemannian manifold.

Objective
Given a Riemannian manifold M and a smooth function

f*M—=R,
the goal is to find an extreme point:

min f(z) o max f(z)
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Isn’t this just constrained Euclidean optimization?

Euclidean vs. Riemannian

Euclidean | minimize f : R™ — R
Constrained Euclidean | minimize f:C C R® - R
Riemannian | minimize f : M — R
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Isn’t this just constrained Euclidean optimization?

Euclidean vs. Riemannian

Euclidean

minimize f: R" — R

Constrained Euclidean

minimize f :C CR” - R

Riemannian

Why bother with manifolds?

» You have no choice.

minimize f: M — R

» There may be no efficient embedding M C R".

» You don't like constrained optimization.

» Riemannian optimization methods are feasible.
> Riemannian optimization methods have “simpler” theory.
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Isn’t this just constrained Euclidean optimization?

Euclidean vs. Riemannian

Euclidean | minimize f: R" — R
Constrained Euclidean | minimize f: C C R™ — R
Riemannian | minimize f : M — R

Why bother with manifolds?

» You have no choice.
» There may be no efficient embedding M C R".
» You don't like constrained optimization.

» Riemannian optimization methods are feasible.
> Riemannian optimization methods have “simpler” theory.

The difference

Riemannian optimization can be thought of as an unconstrained
optimization in a constrained search space.
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RA

What is a Manifold?
A manifold is a set that is
locally Euclidean.

Diff. Man.

Manifold
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RY

What is a Manifold?
A manifold is a set that is
locally Euclidean.

Why Riemannian Manifolds?

Riemannian manifold is a differentiable
manifold with a Riemannian metric:

» The manifold gives us topology. Diff. Man

» Differentiability gives us calculus. Manifold

» The Riemannian metric gives us geometry.

Riemannian manifolds strike a balance between power and practicality.
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Iterative Methods

Goal
Given an objective function f: M — R and an initial iterate 2y € M,
construct a sequence {z;} € M which converges to a minimizer of f.

M
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Iterations on the Manifold

Consider the following generic update for an iterative Euclidean
optimization algorithm:

Tht1 = Tk + Sk -

This iteration is implemented in numerous ways, e.g.:
» Newton's method: w11 =z — ay [V2f(z)] - Vf(zg)

> Steepest descent: xgy1 = xp — 'V f(xg)
Tk Tk + Sk
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Iterations on the Manifold

Consider the following generic update for an iterative Euclidean
optimization algorithm:

Th41 = Tk + Sk -

This iteration is implemented in numerous ways, e.g.:
» Newton's method: zpy1 =z — oy [sz(xk,)]fl Vf(xr)
> Steepest descent: Tx11 =z — arVf(x)

Tk T+ Sk

We Need

» Riemannian concepts describing
directions and movement on the
manifold

» Riemannian analogues for gradient
and Hessian
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Tangent Vectors

» The concept of direction is provided by
tangent vectors.

» Intuitively, tangent vectors are tangent to
curves on the manifold.

» Tangent vectors are an intrinsic property
of a differentiable manifold.
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Tangent Vectors

» The concept of direction is provided by
tangent vectors.

» Intuitively, tangent vectors are tangent to
curves on the manifold.

» Tangent vectors are an intrinsic property
of a differentiable manifold.

Definition

The tangent space T, M is the vector space comprised of the tangent
vectors at x € M. The Riemannian metric is an inner product on each
tangent space.
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Riemannian gradient and Riemannian Hessian

Definition
The Riemannian gradient of f at z is the tangent vector in T, M
satisfying
D f(z)[n] = (grad f(z),n)
Definition

The Riemannian Hessian of f at x is a symmetric linear operator from
T. M to T, M defined as

Hess f(x)[n] = D grad f(z)[n]
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Retractions

Definition n
A retraction is a mapping R from TM to M
satisfying the following: T
» R is continuously differentiable T b \RCC(tn)
» R, (0)=x N

> DR.(0)[n] =n

What is it good for?
I
> maps tangent vectors back to the manifold Q

» lifts objective function f from M to T, M,
via the pullback

fw:foRz
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Retraction-based Riemannian optimization

A novel optimization paradigm

Q: How do we conduct optimization on a manifold?
A: We do it in the tangent spaces.
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Retraction-based Riemannian optimization

A novel optimization paradigm

Q: How do we conduct optimization on a manifold?
A: We do it in the tangent spaces.

M
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Retraction-based Riemannian optimization

A novel optimization paradigm

Q: How do we conduct optimization on a manifold?
A: We do it in the tangent spaces.

Benefits

» Can easily employ classical

optimization techniques _—

» Less expensive than previous approaches

> Increased generality does not compromise
the important theory
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Retraction-based Riemannian optimization

A novel optimization paradigm

Q: How do we conduct optimization on a manifold?
A: We do it in the tangent spaces.

Benefits

» Can easily employ classical

optimization techniques _—

» Less expensive than previous approaches

» Increased generality does not compromise
the important theory

Sufficient Optimality Conditions

If grad /,(0) = 0 and Hess f,(0) > 0,
then grad f(z) = 0 and Hess f(z) >0
so that z is a local minimizer of f.
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Generic Riemannian Optimization Algorithm
1. At iterate x € M, define fm = foR,.
2. Find minimizer 7 of fm
3. Choose new iterate 2 = Ry (n).
4. Goto step 1.

A suitable setting
This paradigm is sufficient for describing numerous optimization methods.
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Riemannian Newton Method

1. Find solution 7 of
V2 f(x) n= -V f(z)
2. Choose step size a.

3. Compute new iterate:
Ty =x+an
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Riemannian Newton Method

la. At iterate z, define pullback fz =foR,
1b. Find solution n € T, M of

Hess fAI(O) n= —gI“dd fl(o)

2. Choose step size a.

3. Compute new iterate:
24 = Ry(an)
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Riemannian Newton Method

la. At iterate z, define pullback fw =foR,
1b. Find solution n € T, M of

Hess fx(o) n = —grad fx(o)

2. Choose step size a.
3. Compute new iterate:
24 = Ry(am)

Convergence Properties
Retains convergence of Euclidean counterparts:

» Riemannian Newton: fast local convergence
[Lue72, Gab82, Udr94, EAS98, MMO02, ADM+02, DPM03, HT04]

» Riemannian Steepest Descent: robust global convergence [HM94,Udro4]
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Riemannian Trust-Region Method

[y

. Construct quadratic model m,, of f around x

N

. Find (approximate) solution to

7 = argmin mg(n)
Inll<a

w

. Compute py(n):
f(x) = f(@+n)
4. Use p,(n) to adjust A and accept/reject new iterate:

pz(n) =

Ty =x 47
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Riemannian Trust-Region Method

la. At iterate z, define pullback fz =foR,
1b. Construct quadratic model m,, of ﬂ
2. Find (approximate) solution to

7= argmin  mg(n)
n€T, M, [Inl|<A

3. Compute pz(n):

_ fx(o) — .fw(n)
pe) = ) ()

4. Use pz(n) to adjust A and accept/reject new iterate:

ry = Ry(n)
T VAL =30
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Riemannian Trust-Region Method

la. At iterate z, define pullback f, = fo R,
1b. Construct quadratic model m,, of fx
2. Find (approximate) solution to

7= argmin  mg(n)
nETM, |In<A

3. Compute pz(n):
0) —
mz(0) — my(n)
4. Use pz(n) to adjust A and accept/reject new iterate:

ry = Ry(n)

Convergence Properties
Retains convergence of Euclidean trust-region methods:

> robust global and fast local [ABG2007,BAG2008]

l VAL a3
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Riemannian Direct Search Methods

1. At iterate z, define pullback fw =foR,
2. Apply your favorite direct search technique to

n = argmin £, (n)
ne€Ty M

3. Compute new iterate:
z4 = Ry(n)
Useful for problems where we have no higher-order information about f:
» face recognition problems
» design optimization problems
See also:
» Dreisigmeyer (LANL)
» Liu, Srivastava, Gallivan (FSU)
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In Summary...

Riemannian Optimization methods enjoy numerous benefits:
» The ability to tackle problems in natural setting
> favors optimality over heuristic approaches
» The ability to handle constraints in an optimal way
» coming from a recognition of the geometry of the problem
» Approaches for solving problems that aren’t easily posed as
constrained Euclidean problems

» Techniques from Euclidean optimization are easily moved to
Riemannian setting, with convergence theory intact
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Software Efforts

> Stiefel/Grassmann Optimization (SG_MIN) package
http://www-math.mit.edu/~lippert/sgmin.html

» Generic RTR (GenRTR) package
http://www.scs.fsu.edu/~cbaker/GenRTR
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