

SAND2008-5009P

Optimization on Manifolds: Problems and Solutions

Christopher G. Baker

Scalable Algorithms Department
Sandia National Laboratories

June 10, 2008
CSRI Summer Lecture Series

Acknowledgments

Thanks

- ▶ Denis Ridzal
- ▶ CSRI

Collaborators

- ▶ Pierre-Antoine Absil, Université catholique de Louvain
- ▶ Kyle Gallivan, Florida State University

Funding

- ▶ NSF Grants OCI0324944 and CCR9912415
- ▶ School of Computational Science, FSU
- ▶ Sandia National Laboratories

Outline

Motivating Problems

- Pose Estimation

- Face/Object Recognition

- Other Problems

Riemannian Optimization

- Euclidean versus Riemannian Optimization

- Components of Riemannian Manifolds

- Retraction-based Riemannian Optimization

Riemannian Optimization Methods

- Riemannian Newton Method

- Riemannian Trust-Region Method

- Riemannian Direct Search

Example #1: Pose Estimation Problem

Problem description

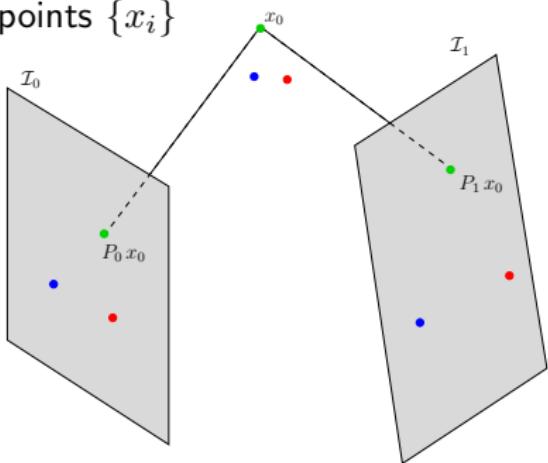
Given: a set of images $\{\mathcal{I}_j\}$ and identifications between
feature points $\{x_i\}$ and their corresponding **image points** $\{P_j\{x_i\}\}$

Task: find the projections $\{P_j\}$ determining the pose of each camera

Bonus: find the 3-D location of the feature points $\{x_i\}$

Applications

- ▶ recover **motion** of camera
- ▶ recover **structure** of 3-D scene from 2-D images
- ▶ allow augmentation of scene with virtual objects



Problem Setting

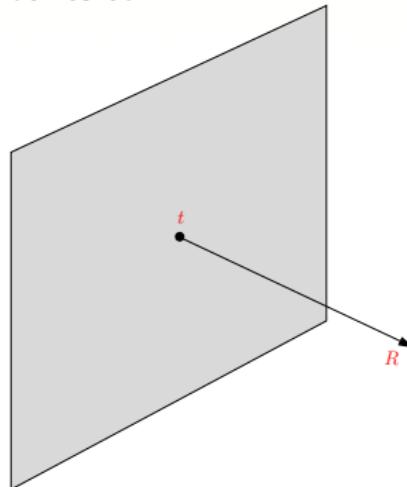
Camera Parameters

Determining the orientation of the camera amounts to finding

- ▶ the **center** of the camera in 3-D space
- ▶ the **direction** it is pointing

This amounts to finding

- ▶ a translation vector $t \in \mathbb{R}^3$
- ▶ a rotation matrix $R \in \text{SO}(3)$
 - ▶ R is orthogonal
 - ▶ $\det(R) = +1$



Difficulties

It is not possible to find an analytic/exact solution to this problem:

- ▶ errors in the point correspondence algorithm
- ▶ problem matching discrete pixels against points in continuous space

Problem Setting

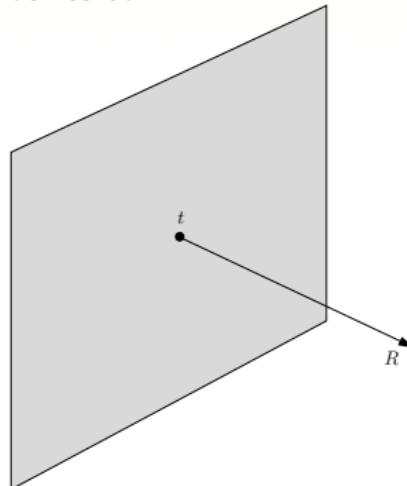
Camera Parameters

Determining the orientation of the camera amounts to finding

- ▶ the center of the camera in 3-D space
- ▶ the direction it is pointing

This amounts to finding

- ▶ a translation vector $t \in \mathbb{R}^3$
- ▶ a rotation matrix $R \in \text{SO}(3)$
 - ▶ R is orthogonal
 - ▶ $\det(R) = +1$



Difficulties

It is not possible to find an analytic/exact solution to this problem:

- ▶ **errors** in the point correspondence algorithm
- ▶ problem matching **discrete** pixels against points in continuous space

Optimization Characterization

One approach to solving the problem is to apply an optimization algorithm:

$$\text{minimize } f(c_0, c_1, \dots, c_{n-1})$$

where

- ▶ f is a measure of the error in the point correspondences
- ▶ $c_i \in \text{SE}(3)$ are the coordinates for the i -th camera
- ▶ $\text{SE}(3)$ is the **special Euclidean group**:

$$\text{SE}(3) = \text{SO}(3) \times \mathbb{R}^3$$

Riemannian Optimization Characterization

Our goal is the Riemannian optimization f :

$$f : \mathcal{M} \rightarrow \mathbb{R}$$

$$\mathcal{M} = \text{SE}(3) \times \dots \times \text{SE}(3)$$

Optimization Characterization

One approach to solving the problem is to apply an optimization algorithm:

$$\text{minimize } f(c_0, c_1, \dots, c_{n-1})$$

where

- ▶ f is a measure of the error in the point correspondences
- ▶ $c_i \in \text{SE}(3)$ are the coordinates for the i -th camera
- ▶ $\text{SE}(3)$ is the special Euclidean group:

$$\text{SE}(3) = \text{SO}(3) \times \mathbb{R}^3$$

Riemannian Optimization Characterization

Our goal is the **Riemannian optimization** f :

$$f : \mathcal{M} \rightarrow \mathbb{R}$$

$$\mathcal{M} = \text{SE}(3) \times \dots \times \text{SE}(3)$$

Example #2: Face/Object Recognition

Problem description

Given an **image I** , **identify** the object/person in the image as a member of a set of known objects/people.

Difficulties

- ▶ Problem: images are often high-dimensional
- ▶ Solution: reduce the dimensionality of the images

Popular methods involve
projecting the images onto a
linear subspace:

Example #2: Face/Object Recognition

Problem description

Given an image I , identify the object/person in the image as a member of a set of known objects/people.

Difficulties

- ▶ Problem: images are often **high-dimensional**
- ▶ Solution: **reduce** the dimensionality of the images

Popular methods involve
projecting the images onto a
linear subspace:

Example #2: Face/Object Recognition

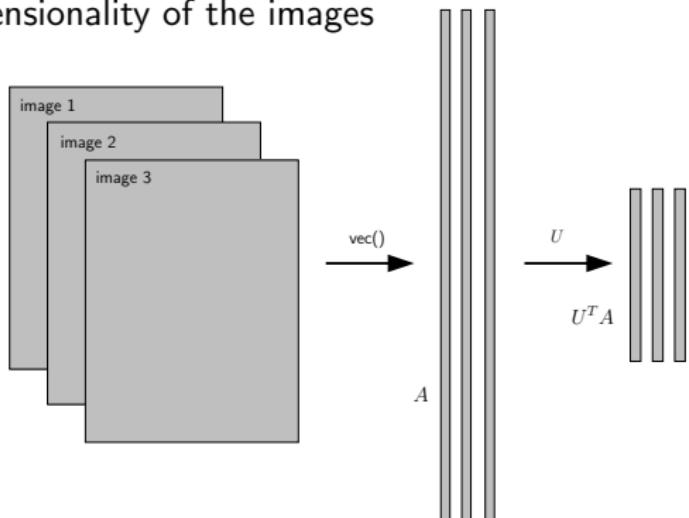
Problem description

Given an image I , identify the object/person in the image as a member of a set of known objects/people.

Difficulties

- ▶ Problem: images are often high-dimensional
- ▶ Solution: reduce the dimensionality of the images

Popular methods involve
projecting the images onto a
linear subspace:



PCA

- ▶ PCA chooses a basis U from the SVD of

$$A = [\tilde{I}_0 \quad \tilde{I}_1 \quad \cdots \quad \tilde{I}_{n-1}]$$

- ▶ U is optimal in terms of minimizing the error

$$\|A - UU^T A\|_2$$

- ▶ Approach is motivated by the ability of U to capture the components of **highest variance**.
- ▶ U is computed via the **SVD** of A or the EVD of AA^T or $A^T A$.

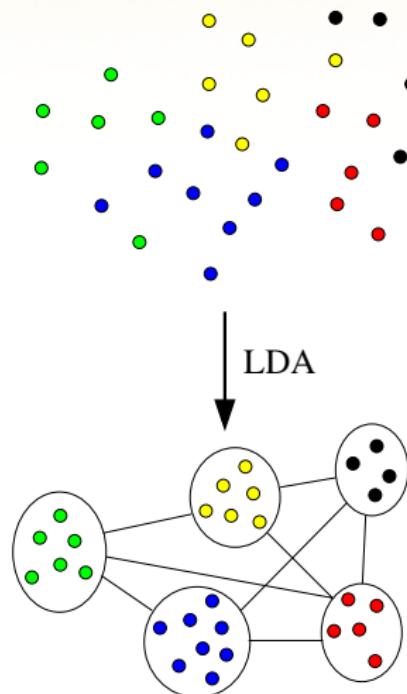


Eigenfaces courtesy of

Christopher DeCoro @ Princeton

LDA

- ▶ LDA chooses basis U as the vectors maximizing Fisher's linear discriminant.
- ▶ These vectors maximize the distance between classes (e.g., people) while minimizing the distance inside classes.
- ▶ This basis is computed via a generalized eigenvalue or generalized SVD problem.



Optimal Basis Choice

What is Optimal?

- ▶ Both PCA and LDA choose bases that are optimal **in some respect**.
- ▶ However, neither is optimal with respect to **recognition accuracy**.
- ▶ Result: linear projection methods have a bad reputation.
- ▶ Before dismissing the entire class of methods, consider finding the **optimal** linear subspace with respect to recognition accuracy.

Riemannian Optimization Characterization

- ▶ Let $f(U)$ denote the recognition accuracy of the basis U .
- ▶ If f employs a nearest-neighbor classifier, then $f(U) = f(U \cdot M)$.
- ▶ Then f is a function over the Grassmann manifold:

$$\text{Grass}(p, n) = \{\text{all } p\text{-dimensional subspaces of } \mathbb{R}^n\}$$

- ▶ Optimizing f over $\text{Grass}(p, n)$ gives the optimal p -dimensional basis.

Optimal Basis Choice

What is Optimal?

- ▶ Both PCA and LDA choose bases that are optimal in some respect.
- ▶ However, neither is optimal with respect to recognition accuracy.
- ▶ Result: linear projection methods have a bad reputation.
- ▶ Before dismissing the entire class of methods, consider finding the optimal linear subspace with respect to recognition accuracy.

Riemannian Optimization Characterization

- ▶ Let $f(U)$ denote the recognition accuracy of the basis U .
- ▶ If f employs a nearest-neighbor classifier, then $f(U) = f(U \cdot M)$.
- ▶ Then f is a function over the **Grassmann** manifold:

$$\text{Grass}(p, n) = \{\text{all } p\text{-dimensional subspaces of } \mathbb{R}^n\}$$

- ▶ Optimizing f over $\text{Grass}(p, n)$ gives the **optimal** p -dimensional basis.

Significant Manifolds

Orthogonal Group

The manifold of orthogonal matrices:

$$\mathrm{O}(n) = \{U \in \mathbb{R}^{n \times n} : U^T U = U U^T = I\}$$

Compact Stiefel Manifold

The manifold of orthonormal bases:

$$\mathrm{St}(p, n) = \{Q \in \mathbb{R}^{n \times p} : Q^T Q = I_p\}$$

Grassmann manifold

Manifold of linear subspaces:

$$\mathrm{Grass}(p, n) = \{p\text{-dimensional subspaces of } \mathbb{R}^n\}$$

Stiefel/Grassmann Applications

- ▶ dominant singular vectors of a matrix (Stiefel)

$$f(U, V) = \text{trace} (U^T A V N)$$

- ▶ optimal-rank tensor factorization (Grassmann)

$$f(U, V, W) = \|A \bullet_1 U^T \bullet_2 V^T \bullet_3 W^T\|^2$$

- ▶ ICA, blind-source separation (“cocktail party problem”) (Grassmann)
- ▶ eigenspaces of a generalized symmetric matrix pencil (Grassmann)

$$f(V) = \text{trace} \left((V^T B V)^{-1} (V^T A V) \right)$$

- ▶ computing H2-optimal reduced order models (Grassmann)

$$f(\hat{H}) = \|\hat{H}(s) - H(s)\|_{\mathcal{H}2}^2$$

Outline

Motivating Problems

Pose Estimation

Face/Object Recognition

Other Problems

Riemannian Optimization

Euclidean versus Riemannian Optimization

Components of Riemannian Manifolds

Retraction-based Riemannian Optimization

Riemannian Optimization Methods

Riemannian Newton Method

Riemannian Trust-Region Method

Riemannian Direct Search

What is Riemannian Optimization?

Definition

Riemannian Optimization refers to the optimization of an objective function over a Riemannian manifold.

Objective

Given a Riemannian manifold \mathcal{M} and a smooth function

$$f : \mathcal{M} \rightarrow \mathbb{R} ,$$

the goal is to find an extreme point:

$$\min_{x \in \mathcal{M}} f(x)$$

or

$$\max_{x \in \mathcal{M}} f(x)$$

Isn't this just constrained Euclidean optimization?

Euclidean vs. Riemannian

Euclidean	$\text{minimize } f : \mathbb{R}^n \rightarrow \mathbb{R}$
Constrained Euclidean	$\text{minimize } f : \mathcal{C} \subset \mathbb{R}^n \rightarrow \mathbb{R}$
Riemannian	$\text{minimize } f : \mathcal{M} \rightarrow \mathbb{R}$

Why bother with manifolds?

- ▶ You have no choice.
 - ▶ There may be no efficient embedding $\mathcal{M} \subset \mathbb{R}^n$.
- ▶ You don't like constrained optimization.
 - ▶ Riemannian optimization methods are feasible.
 - ▶ Riemannian optimization methods have "simpler" theory.

The difference

Riemannian optimization can be thought of as an unconstrained optimization in a constrained search space.

Isn't this just constrained Euclidean optimization?

Euclidean vs. Riemannian

Euclidean	$\text{minimize } f : \mathbb{R}^n \rightarrow \mathbb{R}$
Constrained Euclidean	$\text{minimize } f : \mathcal{C} \subset \mathbb{R}^n \rightarrow \mathbb{R}$
Riemannian	$\text{minimize } f : \mathcal{M} \rightarrow \mathbb{R}$

Why bother with manifolds?

- ▶ You have no choice.
 - ▶ There may be no **efficient** embedding $\mathcal{M} \subset \mathbb{R}^n$.
- ▶ You don't like constrained optimization.
 - ▶ Riemannian optimization methods are feasible.
 - ▶ Riemannian optimization methods have “simpler” theory.

The difference

Riemannian optimization can be thought of as an unconstrained optimization in a constrained search space.

Isn't this just constrained Euclidean optimization?

Euclidean vs. Riemannian

Euclidean	$\text{minimize } f : \mathbb{R}^n \rightarrow \mathbb{R}$
Constrained Euclidean	$\text{minimize } f : \mathcal{C} \subset \mathbb{R}^n \rightarrow \mathbb{R}$
Riemannian	$\text{minimize } f : \mathcal{M} \rightarrow \mathbb{R}$

Why bother with manifolds?

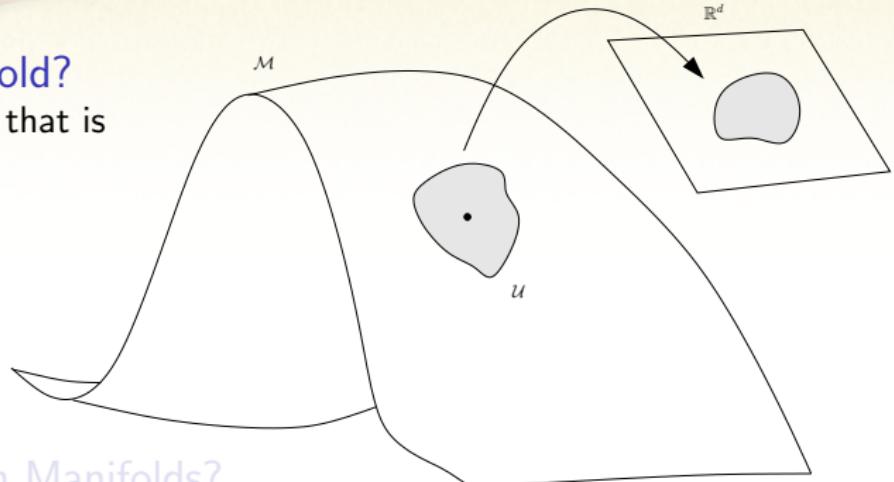
- ▶ You have no choice.
 - ▶ There may be no efficient embedding $\mathcal{M} \subset \mathbb{R}^n$.
- ▶ You don't like constrained optimization.
 - ▶ Riemannian optimization methods are feasible.
 - ▶ Riemannian optimization methods have "simpler" theory.

The difference

Riemannian optimization can be thought of as an **unconstrained** optimization in a constrained search space.

What is a Manifold?

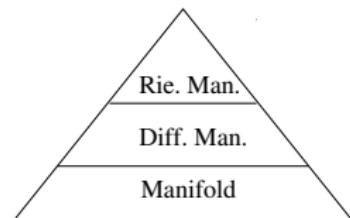
A manifold is a **set** that is locally **Euclidean**.



Why Riemannian Manifolds?

Riemannian manifold is a differentiable manifold with a Riemannian metric:

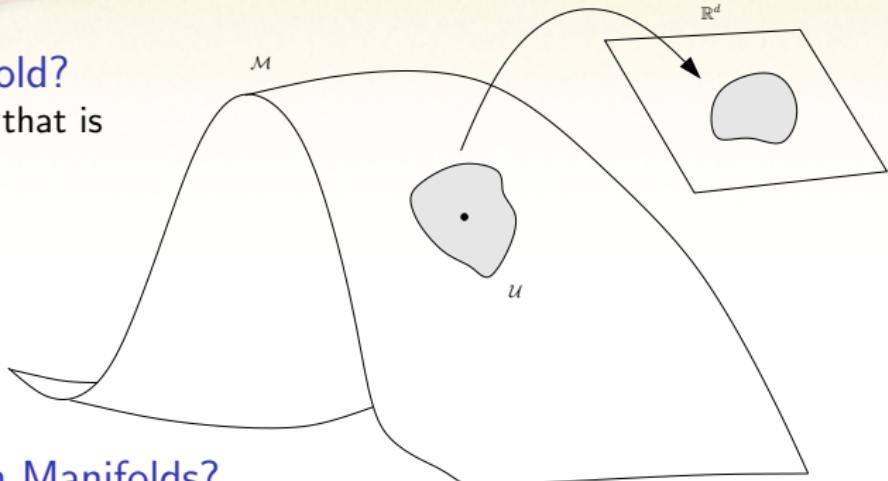
- ▶ The manifold gives us topology.
- ▶ Differentiability gives us calculus.
- ▶ The Riemannian metric gives us geometry.



Riemannian manifolds strike a balance between power and practicality.

What is a Manifold?

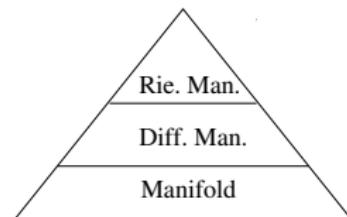
A manifold is a set that is locally Euclidean.



Why Riemannian Manifolds?

Riemannian manifold is a **differentiable manifold** with a **Riemannian metric**:

- ▶ The manifold gives us topology.
- ▶ Differentiability gives us calculus.
- ▶ The Riemannian metric gives us geometry.

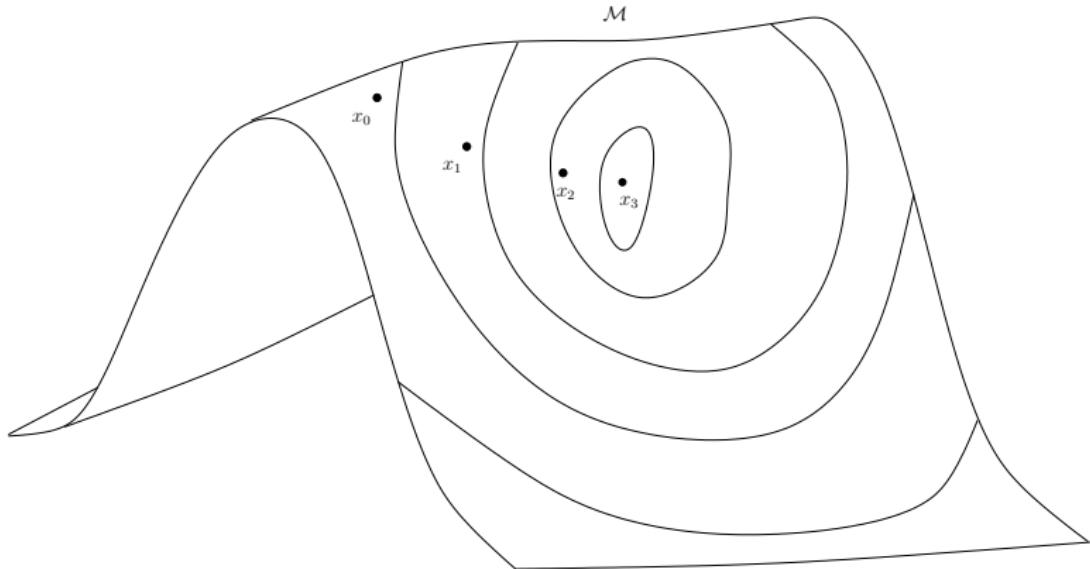


Riemannian manifolds strike a balance between **power** and **practicality**.

Iterative Methods

Goal

Given an objective function $f : \mathcal{M} \rightarrow \mathbb{R}$ and an initial iterate $x_0 \in \mathcal{M}$, construct a **sequence** $\{x_i\} \in \mathcal{M}$ which converges to a minimizer of f .



Iterations on the Manifold

Consider the following generic update for an iterative Euclidean optimization algorithm:

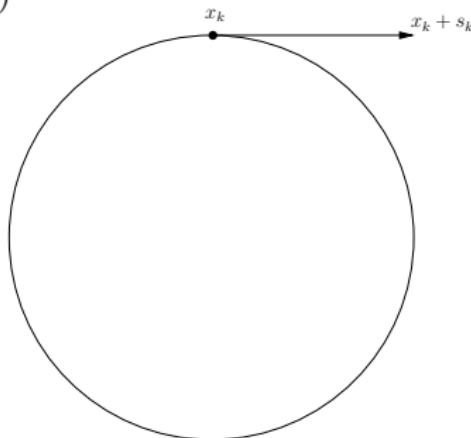
$$x_{k+1} = x_k + s_k .$$

This iteration is implemented in numerous ways, e.g.:

- ▶ Newton's method: $x_{k+1} = x_k - \alpha_k [\nabla^2 f(x_k)]^{-1} \nabla f(x_k)$
- ▶ Steepest descent: $x_{k+1} = x_k - \alpha_k \nabla f(x_k)$

We Need

- ▶ Riemannian concepts describing directions and movement on the manifold
- ▶ Riemannian analogues for gradient and Hessian



Iterations on the Manifold

Consider the following generic update for an iterative Euclidean optimization algorithm:

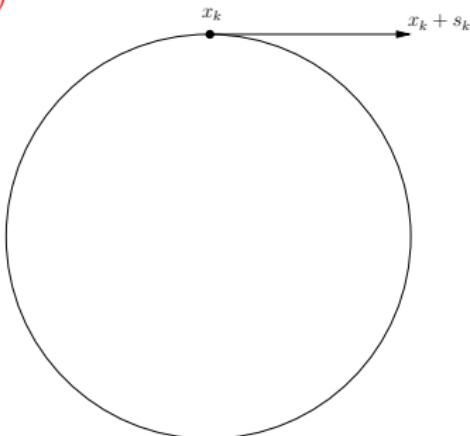
$$x_{k+1} = x_k + s_k .$$

This iteration is implemented in numerous ways, e.g.:

- ▶ Newton's method: $x_{k+1} = x_k - \alpha_k [\nabla^2 f(x_k)]^{-1} \nabla f(x_k)$
- ▶ Steepest descent: $x_{k+1} = x_k - \alpha_k \nabla f(x_k)$

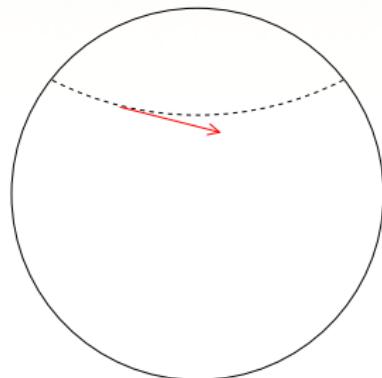
We Need

- ▶ Riemannian concepts describing **directions** and **movement** on the manifold
- ▶ Riemannian analogues for **gradient** and **Hessian**



Tangent Vectors

- ▶ The concept of direction is provided by tangent vectors.
- ▶ **Intuitively**, tangent vectors are tangent to curves on the manifold.
- ▶ Tangent vectors are an **intrinsic** property of a differentiable manifold.

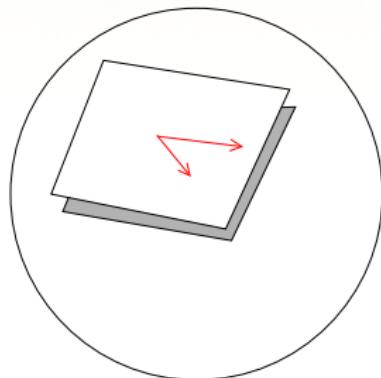


Definition

The tangent space $T_x \mathcal{M}$ is the vector space comprised of the tangent vectors at $x \in \mathcal{M}$. The Riemannian metric is an inner product on each tangent space.

Tangent Vectors

- ▶ The concept of direction is provided by tangent vectors.
- ▶ Intuitively, tangent vectors are tangent to curves on the manifold.
- ▶ Tangent vectors are an intrinsic property of a differentiable manifold.



Definition

The **tangent space** $T_x \mathcal{M}$ is the vector space comprised of the tangent vectors at $x \in \mathcal{M}$. The **Riemannian metric** is an inner product on each tangent space.

Riemannian gradient and Riemannian Hessian

Definition

The **Riemannian gradient** of f at x is the tangent vector in $T_x\mathcal{M}$ satisfying

$$Df(x)[\eta] = \langle \text{grad } f(x), \eta \rangle$$

Definition

The **Riemannian Hessian** of f at x is a symmetric linear operator from $T_x\mathcal{M}$ to $T_x\mathcal{M}$ defined as

$$\text{Hess } f(x)[\eta] = D \text{grad } f(x)[\eta]$$

Retractions

Definition

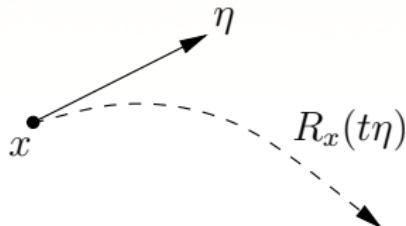
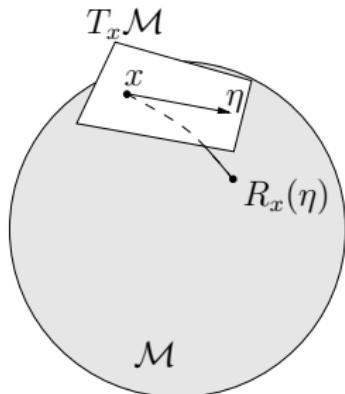
A **retraction** is a mapping R from $T\mathcal{M}$ to \mathcal{M} satisfying the following:

- ▶ R is continuously differentiable
- ▶ $R_x(0) = x$
- ▶ $D R_x(0)[\eta] = \eta$

What is it good for?

- ▶ maps tangent vectors back to the manifold
- ▶ lifts objective function f from \mathcal{M} to $T_x\mathcal{M}$, via the **pullback**

$$\hat{f}_x = f \circ R_x$$



Retraction-based Riemannian optimization

A novel optimization paradigm

Q: How do we conduct optimization on a **manifold**?

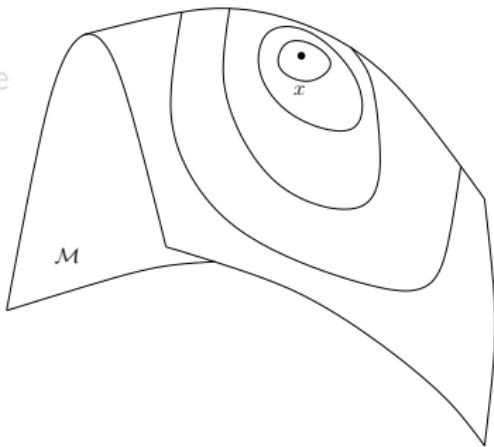
A: We do it in the tangent spaces.

Benefits

- ▶ Can easily employ classical optimization techniques
- ▶ Less expensive than previous approaches
- ▶ Increased generality does not compromise the important theory

Sufficient Optimality Conditions

If $\text{grad } \hat{f}_x(0) = 0$ and $\text{Hess } \hat{f}_x(0) > 0$,
then $\text{grad } f(x) = 0$ and $\text{Hess } f(x) > 0$,
so that x is a local minimizer of f .



Retraction-based Riemannian optimization

A novel optimization paradigm

Q: How do we conduct optimization on a manifold?

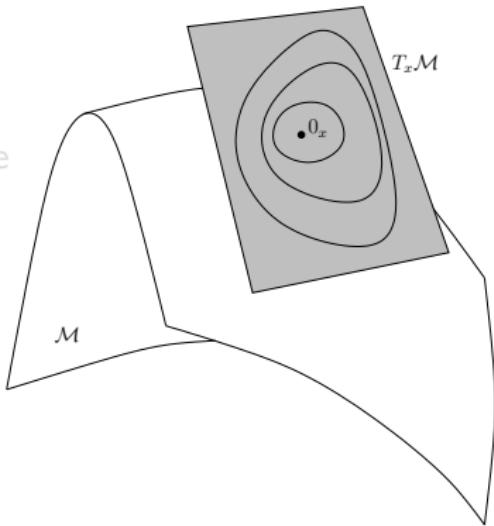
A: We do it in the **tangent spaces**.

Benefits

- ▶ Can easily employ classical optimization techniques
- ▶ Less expensive than previous approaches
- ▶ Increased generality does not compromise the important theory

Sufficient Optimality Conditions

If $\text{grad } \hat{f}_x(0) = 0$ and $\text{Hess } \hat{f}_x(0) > 0$,
then $\text{grad } f(x) = 0$ and $\text{Hess } f(x) > 0$,
so that x is a local minimizer of f .



Retraction-based Riemannian optimization

A novel optimization paradigm

Q: How do we conduct optimization on a manifold?

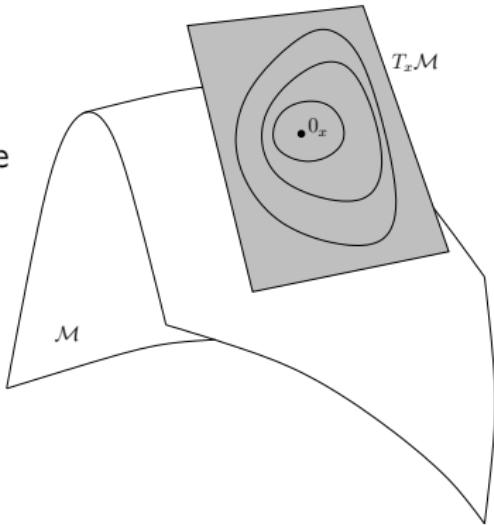
A: We do it in the tangent spaces.

Benefits

- ▶ Can easily employ classical optimization techniques
- ▶ Less expensive than previous approaches
- ▶ Increased generality does not compromise the **important theory**

Sufficient Optimality Conditions

If $\text{grad } \hat{f}_x(0) = 0$ and $\text{Hess } \hat{f}_x(0) > 0$,
 then $\text{grad } f(x) = 0$ and $\text{Hess } f(x) > 0$,
 so that x is a local minimizer of f .



Retraction-based Riemannian optimization

A novel optimization paradigm

Q: How do we conduct optimization on a manifold?

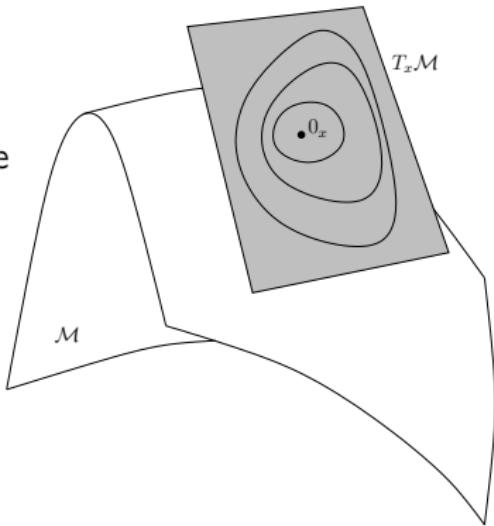
A: We do it in the tangent spaces.

Benefits

- ▶ Can easily employ classical optimization techniques
- ▶ Less expensive than previous approaches
- ▶ Increased generality does not compromise the important theory

Sufficient Optimality Conditions

If $\text{grad } \hat{f}_x(0) = 0$ and $\text{Hess } \hat{f}_x(0) > 0$,
 then $\text{grad } f(x) = 0$ and $\text{Hess } f(x) > 0$,
 so that x is a **local minimizer** of f .

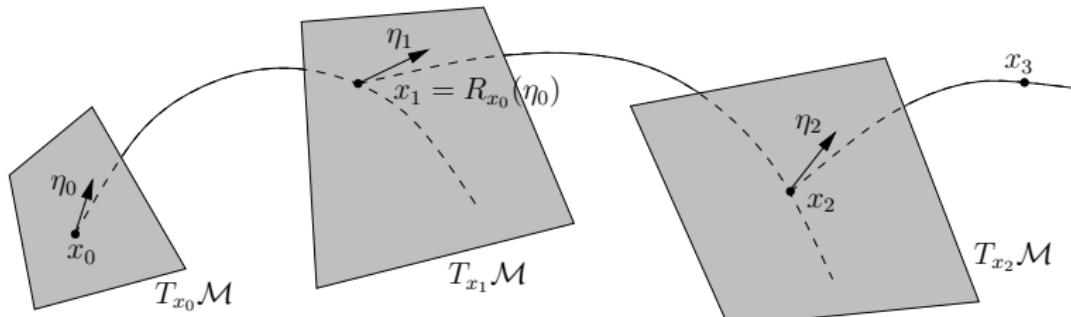


Generic Riemannian Optimization Algorithm

1. At iterate $x \in \mathcal{M}$, define $\hat{f}_x = f \circ R_x$.
2. Find minimizer η of \hat{f}_x .
3. Choose new iterate $x_+ = R_x(\eta)$.
4. Goto step 1.

A suitable setting

This paradigm is sufficient for describing numerous optimization methods.



Riemannian Newton Method

1a. At iterate x , define pullback $\hat{f}_x = f \circ R_x$

1. Find solution η of

$$\nabla^2 f(x) \eta = -\nabla f(x)$$

2. Choose step size α .

3. Compute new iterate:

$$x_+ = x + \alpha \eta$$

Convergence Properties

Retains convergence of Euclidean counterparts:

- ▶ Riemannian Newton: fast local convergence
[Lue72, Gab82, Udr94, EAS98, MM02, ADM+02, DPM03, HT04]
- ▶ Riemannian Steepest Descent: robust global convergence [HM94, Udr94]

Riemannian Newton Method

1a. At iterate x , define pullback $\hat{f}_x = f \circ R_x$

1b. Find solution $\eta \in T_x \mathcal{M}$ of

$$\text{Hess } \hat{f}_x(0) \eta = -\text{grad } \hat{f}_x(0)$$

2. Choose step size α .

3. Compute new iterate:

$$x_+ = R_x(\alpha\eta)$$

Convergence Properties

Retains convergence of Euclidean counterparts:

- ▶ Riemannian Newton: fast local convergence
[Lue72, Gab82, Udr94, EAS98, MM02, ADM+02, DPM03, HT04]
- ▶ Riemannian Steepest Descent: robust global convergence [HM94, Udr94]

Riemannian Newton Method

- 1a. At iterate x , define pullback $\hat{f}_x = f \circ R_x$
- 1b. Find solution $\eta \in T_x \mathcal{M}$ of

$$\text{Hess } \hat{f}_x(0) \ \eta = -\text{grad } \hat{f}_x(0)$$

2. Choose step size α .
3. Compute new iterate:

$$x_+ = R_x(\alpha\eta)$$

Convergence Properties

Retains convergence of Euclidean counterparts:

- ▶ Riemannian Newton: **fast local convergence**
[Lue72, Gab82, Udr94, EAS98, MM02, ADM+02, DPM03, HT04]
- ▶ Riemannian Steepest Descent: **robust global convergence** [HM94, Udr94]

Riemannian Trust-Region Method

- 1a. At iterate x , define pullback $\hat{f}_x = f \circ R_x$
1. Construct quadratic model m_x of f around x
2. Find (approximate) solution to

$$\eta = \underset{\|\eta\| \leq \Delta}{\operatorname{argmin}} m_x(\eta)$$

3. Compute $\rho_x(\eta)$:

$$\rho_x(\eta) = \frac{f(x) - f(x + \eta)}{m_x(0) - m_x(\eta)}$$

4. Use $\rho_x(\eta)$ to adjust Δ and accept/reject new iterate:

$$x_+ = x + \eta$$

Convergence Properties

Retains convergence of Euclidean trust-region methods:

- ▶ robust global and fast local [ABG2007, BAG2008]

Riemannian Trust-Region Method

- 1a. At iterate x , define pullback $\hat{f}_x = f \circ R_x$
- 1b. Construct quadratic model m_x of \hat{f}_x
2. Find (approximate) solution to

$$\eta = \operatorname{argmin}_{\eta \in T_x \mathcal{M}, \|\eta\| \leq \Delta} m_x(\eta)$$

3. Compute $\rho_x(\eta)$:

$$\rho_x(\eta) = \frac{\hat{f}_x(0) - \hat{f}_x(\eta)}{m_x(0) - m_x(\eta)}$$

4. Use $\rho_x(\eta)$ to adjust Δ and accept/reject new iterate:

$$x_+ = R_x(\eta)$$

Convergence Properties

Retains convergence of Euclidean trust-region methods:

- ▶ robust global and fast local [ABG2007, BAG2008]

Riemannian Trust-Region Method

- 1a. At iterate x , define pullback $\hat{f}_x = f \circ R_x$
- 1b. Construct quadratic model m_x of \hat{f}_x
2. Find (approximate) solution to

$$\eta = \operatorname{argmin}_{\eta \in T_x \mathcal{M}, \|\eta\| \leq \Delta} m_x(\eta)$$

3. Compute $\rho_x(\eta)$:

$$\rho_x(\eta) = \frac{\hat{f}_x(0) - \hat{f}_x(\eta)}{m_x(0) - m_x(\eta)}$$

4. Use $\rho_x(\eta)$ to adjust Δ and accept/reject new iterate:

$$x_+ = R_x(\eta)$$

Convergence Properties

Retains convergence of Euclidean trust-region methods:

- ▶ **robust global** and **fast local** [ABG2007, BAG2008]

Riemannian Direct Search Methods

1. At iterate x , define pullback $\hat{f}_x = f \circ R_x$
2. Apply your favorite direct search technique to

$$\eta = \operatorname{argmin}_{\eta \in T_x \mathcal{M}} \hat{f}_x(\eta)$$

3. Compute new iterate:

$$x_+ = R_x(\eta)$$

Useful for problems where we have no higher-order information about f :

- ▶ face recognition problems
- ▶ design optimization problems

See also:

- ▶ Dreisigmeyer (LANL)
- ▶ Liu, Srivastava, Gallivan (FSU)

In Summary...

Riemannian Optimization methods enjoy numerous benefits:

- ▶ The ability to tackle problems in **natural** setting
 - ▶ favors optimality over heuristic approaches
- ▶ The ability to handle **constraints** in an optimal way
 - ▶ coming from a recognition of the geometry of the problem
- ▶ Approaches for solving problems that aren't easily posed as constrained Euclidean problems
- ▶ Techniques from Euclidean optimization are easily moved to Riemannian setting, with convergence theory intact

Software Efforts

- ▶ Stiefel/Grassmann Optimization (**SG_MIN**) package
<http://www-math.mit.edu/~lippert/sgmin.html>
- ▶ Generic RTR (**GenRTR**) package
<http://www.scs.fsu.edu/~cbaker/GenRTR>

References

- ▶ Edelman, Arias, Smith: SIMAX '98
“The Geometry of Algorithms with Orthogonality Constraints”
- ▶ Baker, Absil, Gallivan: IMAJNA '08
“An Implicit Trust-Region Method on Riemannian Manifolds”
- ▶ Absil, Mahony, Sepulchre: Princeton, 2008
“Optimization Algorithms on Matrix Manifolds”
(the Magritte book)

