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Example #1: Pose Estimation Problem

x0

I0

I1

P0 x0

P1 x0

Problem description

Given: a set of images {Ij} and identifications between
feature points {xi} and their corresponding image
points {Pj{xi}}

Task: find the projections {Pj} determining the pose of
each camera

Bonus: find the 3-D location of the feature points {xi}

Applications

I recover motion of camera

I recover structure of 3-D scene
from 2-D images

I allow augmentation of scene
with virtual objects

,
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Problem Setting

t

R

Camera Parameters
Determining the orientation of the camera amounts to
finding

I the center of the camera in 3-D space

I the direction it is pointing

This amounts to finding

I a translation vector t ∈ R3

I a rotation matrix R ∈ SO(3)
I R is orthogonal
I det(R) = +1

Difficulties
It is not possible to find an analytic/exact solution to this problem:

I errors in the point correspondence algorithm

I problem matching discrete pixels against points in continuous space

,
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Optimization Characterization

One approach to solving the problem is to apply an optimization
algorithm:

minimize f(c0, c1, . . . , cn−1)

where

I f is a measure of the error in the point correspondences

I ci ∈ SE(3) are the coordinates for the i-th camera

I SE(3) is the special Euclidean group:

SE(3) = SO(3)× R3

Riemannian Optimization Characterization
Our goal is the Riemannian optimization f :

f :M→ R
M = SE(3)× · · · × SE(3)

,
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Example #2: Face/Object Recognition

Problem description
Given an image I, identify the object/person in the image as a member
of a set of known objects/people.

Difficulties

I Problem: images are often high-dimensional

I Solution: reduce the dimensionality of the images

Popular methods involve
projecting the images onto a
linear subspace:
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PCA

I PCA chooses a basis U from
the SVD of

A =
[
Ĩ0 Ĩ1 · · · Ĩn−1

]
I U is optimal in terms of

minimizing the error

‖A− UUTA‖2

I Approach is motivated by the
ability of U to capture the
components of highest variance.

I U is computed via the SVD of
A or the EVD of AAT or ATA.

Eigenfaces courtesy of

Christopher DeCoro @ Princeton
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LDA

I LDA chooses basis U as the
vectors maximizing Fisher’s
linear discriminant.

I These vector maximize the
distance between classes (e.g.,
people) while minimizing the
distance inside classes.

I This basis is computed via a
generalized eigenvalue or
generalized SVD problem.

LDA

,
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Optimal Basis Choice

What is Optimal?

I Both PCA and LDA choose bases that are optimal in some respect.

I However, neither is optimal with respect to recognition accuracy.

I Result: linear projection methods have a bad reputation.

I Before dismissing the entire class of methods, consider finding the
optimal linear subspace with respect to recognition accuracy.

Riemannian Optimization Characterization

I Let f(U) denote the recognition accuracy of the basis U .

I If f employs a nearest-neighbor classifier, then f(U) = f(U ·M).
I Then f is a function over the Grassmann manifold:

Grass(p, n) = {all p-dimensional subspaces of Rn}

I Optimizing f over Grass(p, n) gives the optimal p-dimensional basis.

,
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Significant Manifolds

Orthogonal Group
The manifold of orthogonal matrices:

O(n) = {U ∈ Rn×n : UTU = UUT = I}

Compact Stiefel Manifold
The manifold of orthonormal bases:

St(p, n) = {Q ∈ Rn×p : QTQ = Ip}

Grassmann manifold
Manifold of linear subspaces:

Grass(p, n) = {p-dimensional subspaces of Rn}
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Stiefel/Grassmann Applications

I dominant singular vectors of a matrix (Stiefel)

f(U, V ) = trace
(
UTAV N

)
I optimal-rank tensor factorization (Grassmann)

f(U, V,W ) = ‖A •1 UT •2 V T •3 WT ‖2

I ICA, blind-source separation (“cocktail party problem”) (Grassmann)

I eigenspaces of a generalized symmetric matrix pencil (Grassmann)

f(V ) = trace
((
V TBV

)−1 (
V TAV )

))
I computing H2-optimal reduced order models (Grassmann)

f(Ĥ) = ‖Ĥ(s)−H(s)‖2H2

,
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What is Riemannian Optimization?

Definition
Riemannian Optimization refers to the optimization of an objective
function over a Riemannian manifold.

Objective
Given a Riemannian manifold M and a smooth function

f :M→ R ,

the goal is to find an extreme point:

min
x∈M

f(x) or max
x∈M

f(x)

,
C. G. Baker Optimization on Manifolds 14



Motivating Problems Riemannian Optimization Riemannian Optimization Methods Euclidean versus Riemannian Optimization Components of Riemannian Manifolds Retraction-based Riemannian Optimization

Isn’t this just constrained Euclidean optimization?

Euclidean vs. Riemannian

Euclidean minimize f : Rn → R
Constrained Euclidean minimize f : C ⊂ Rn → R

Riemannian minimize f :M→ R

Why bother with manifolds?

I You have no choice.
I There may be no efficient embedding M⊂ Rn.

I You don’t like constrained optimization.
I Riemannian optimization methods are feasible.
I Riemannian optimization methods have “simpler” theory.

The difference
Riemannian optimization can be thought of as an unconstrained
optimization in a constrained search space.

,
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What is a Manifold?
A manifold is a set that is
locally Euclidean.

Rd

U

M

Why Riemannian Manifolds?
Riemannian manifold is a differentiable
manifold with a Riemannian metric:

I The manifold gives us topology.

I Differentiability gives us calculus.

I The Riemannian metric gives us geometry.

Riemannian manifolds strike a balance between power and practicality.

Manifold

Diff. Man.

Rie. Man.
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Iterative Methods

Goal
Given an objective function f :M→ R and an initial iterate x0 ∈M,
construct a sequence {xi} ∈ M which converges to a minimizer of f .

x3

x1

x2

M

x0
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Iterations on the Manifold

Consider the following generic update for an iterative Euclidean
optimization algorithm:

xk+1 = xk + sk .

This iteration is implemented in numerous ways, e.g.:

I Newton’s method: xk+1 = xk − αk
[
∇2f(xk)

]−1∇f(xk)
I Steepest descent: xk+1 = xk − αk∇f(xk)

We Need

I Riemannian concepts describing
directions and movement on the
manifold

I Riemannian analogues for gradient
and Hessian

xk xk + sk

,
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Tangent Vectors

I The concept of direction is provided by
tangent vectors.

I Intuitively, tangent vectors are tangent to
curves on the manifold.

I Tangent vectors are an intrinsic property
of a differentiable manifold.

Definition
The tangent space TxM is the vector space comprised of the tangent
vectors at x ∈M. The Riemannian metric is an inner product on each
tangent space.

,
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Riemannian gradient and Riemannian Hessian

Definition
The Riemannian gradient of f at x is the tangent vector in TxM
satisfying

D f(x)[η] = 〈grad f(x), η〉

Definition
The Riemannian Hessian of f at x is a symmetric linear operator from
TxM to TxM defined as

Hess f(x)[η] = D grad f(x)[η]

,
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Retractions

Definition
A retraction is a mapping R from TM to M
satisfying the following:

I R is continuously differentiable

I Rx(0) = x

I DRx(0)[η] = η

What is it good for?

I maps tangent vectors back to the manifold

I lifts objective function f from M to TxM,
via the pullback

f̂x = f ◦Rx

η

x Rx(tη)

TxM
x

η

Rx(η)

M
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Retraction-based Riemannian optimization

A novel optimization paradigm
Q: How do we conduct optimization on a manifold?
A: We do it in the tangent spaces.

Benefits

I Can easily employ classical
optimization techniques

I Less expensive than previous approaches

I Increased generality does not compromise
the important theory

Sufficient Optimality Conditions

If grad f̂x(0) = 0 and Hess f̂x(0) > 0,
then grad f(x) = 0 and Hess f(x) > 0,

so that x is a local minimizer of f .

M

x

,
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Generic Riemannian Optimization Algorithm

1. At iterate x ∈M, define f̂x = f ◦Rx.

2. Find minimizer η of f̂x.

3. Choose new iterate x+ = Rx(η).

4. Goto step 1.

A suitable setting
This paradigm is sufficient for describing numerous optimization methods.

Tx0M
Tx1M

Tx2M

η2

x0

x3

η1

x1 = Rx0(η0)

η0 x2
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Riemannian Newton Method

1a. At iterate x, define pullback f̂x = f ◦Rx
1. Find solution η of

∇2 f(x) η = −∇ f(x)

2. Choose step size α.

3. Compute new iterate:
x+ = x+ αη

Convergence Properties
Retains convergence of Euclidean counterparts:

I Riemannian Newton: fast local convergence
[Lue72, Gab82, Udr94, EAS98, MM02, ADM+02, DPM03, HT04]

I Riemannian Steepest Descent: robust global convergence [HM94,Udr94]
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Riemannian Trust-Region Method

1a. At iterate x, define pullback f̂x = f ◦Rx
1. Construct quadratic model mx of f around x

2. Find (approximate) solution to

η = argmin
‖η‖≤∆

mx(η)

3. Compute ρx(η):

ρx(η) =
f(x)− f(x+ η)
mx(0)−mx(η)

4. Use ρx(η) to adjust ∆ and accept/reject new iterate:

x+ = x+ η

Convergence Properties
Retains convergence of Euclidean trust-region methods:

I robust global and fast local [ABG2007,BAG2008]

,
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Riemannian Direct Search Methods

1. At iterate x, define pullback f̂x = f ◦Rx
2. Apply your favorite direct search technique to

η = argmin
η∈TxM

f̂x(η)

3. Compute new iterate:
x+ = Rx(η)

Useful for problems where we have no higher-order information about f :

I face recognition problems

I design optimization problems

See also:

I Dreisigmeyer (LANL)

I Liu, Srivastava, Gallivan (FSU)

,
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In Summary...

Riemannian Optimization methods enjoy numerous benefits:

I The ability to tackle problems in natural setting
I favors optimality over heuristic approaches

I The ability to handle constraints in an optimal way
I coming from a recognition of the geometry of the problem

I Approaches for solving problems that aren’t easily posed as
constrained Euclidean problems

I Techniques from Euclidean optimization are easily moved to
Riemannian setting, with convergence theory intact

,
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Software Efforts

I Stiefel/Grassmann Optimization (SG MIN) package
http://www-math.mit.edu/∼lippert/sgmin.html

I Generic RTR (GenRTR) package
http://www.scs.fsu.edu/∼cbaker/GenRTR
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