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Metal-Metal thin film multilayers store significant 
energy which can be employed for materials joining
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Exothermic thin-film multilayers are heterostructures
that consist of two or more species that react.
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Typical design: 
• Large negative DHf
• Can exhibit high-T 
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We desired to evaluate not the fast Rx during SHS,
but the slower “intermixing” Rx for shelf-life prediction

Slow diffusion of reactants at relatively low temperature (T) over
a long time (t) could significantly reduce the stored energy for SHS

Our approach: 

• monitor one film constituent as a fn(t) at various temperature values.

• assume pseudo-first-order behavior for Rx.

• determine rate constants for decay of Intensity of reactant as Fn(T). 

• calculate activation energy for intermixing Rx by Arrhenius relationship.
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If we measure standard q-2q scans we could be assigning intensity loss 
from peak assuming loss of constituent concentration and not decay of texture.

Problem:  Multilayer films are often textured.  
What if texture decreases as sample reacts?

q-2q scan shows (111) 
out-of-plane texture for 
dominant Pt phase 

Textured
Pt (111)

Al/Pt multilayer, ttttBL = 400 Å, total thickness = 0.2 mm
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To account for change in texture during Rx we
integrate intensity as a window of 2q and Chi

Integration along Chi indicates Pt (111) peak 
FWHM is increasing during intermixing Rx 



Metal-Metal multilayer films were 
made using an in-house sputter system.

• Films were deposited by direct-current sputtering
– cryopumped vacuum system (Unifilm, Boulder CO) 
– base pressure  = 8x10-8 Torr
– Argon sputtering gas (10 mTorr)

• high purity elemental targets employed
– Al (99.995%), Pt (99.95%)
– Ni (99.99%), Ti (99.99%)
– Co (99.99%), Al (99.995%)

• Deposited on 0.5mm thick fused Silica substrates
– Substrate temperature < 50oC



D8 DISCOVER w/ 

Hi-STAR Detector

Courtesy Bruker-AXS, Inc.

Data collection employed a Bruker D8 
system equipped with a Anton-Paar stage

Courtesy 

Anton-Paar

GmbH

Anton-Paar
DHS 900 
hot stage

• Temperature calibrated via 
alumina thermal expansion 

• Films heated 10oC/min to 
various hold temperatures
– Vacuum (~10-2 Torr)

• Data collected using Hi-Star 
area detector
– 120 frames @ 30 sec/frame
– 1 hr total collection time/film
– 1 mm incident beam snout

• Data integrated in GADDS
• Peak profile fitting performed 

using JADE 8.5



To generate a rate constant for a given (T) 
we plot the natural log of concentration vs. time

We assume that the intensity of the Pt (111) is to [Pt]
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Plot of Ln(rate constants) vs. 1/T generates
line by which activation energy may be calculated
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• Lower scattering from lighter elements

• Needed to improve signal from film layers

• Bilayer thickness for Ni/Ti and Co/Al increased to 500 Å

• Increased total thickness for Ni/Ti and Co/Al to ~1 mm 
(20 Bilayers)

• Films tended to be less oriented

We have performed the same analysis for 
NiTi and CoAl Metal-Metal Multilayer films
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Ni/Ti and Co/Al films show higher 
Ea for intermixing as compared to Al/Pt  
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Film 
Bilayer 

Thickness 
(Å) 

Number 
Bilayers 

Total 
Thickness 

(mm) 

Observed   

hkl 
Ea  

(kJ/mol) 
Rx Temp. 
range (oC) 

Al/Pt 400 5 0.20 Pt (111) 95.4(2) 80-120 

Co/Al 500 20 1.00 Al (111) 247(19) 170-190 

Ni/Ti 522 20 1.04 Ni (111) 201(13) 270-300 

 

Analysis of reaction results for different 
film systems shows Al/Pt is most susceptible 

to the intermixing behavior 



Conclusions

•Use of a 2D area detector facilitates collection of 
Rx kinetics data from textured films.

•Reactions can be monitored for both texture decay 
and intensity decay simultaneously. 

•Al/Pt films show more susceptibility to intermixing 
reaction than Co/Al or Ni/Ti film systems.



Fun movie
Joining plastic via Ni/Al Exothermic Metal-Metal Multilayer films
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