

Multiscale Transport in Heterogeneous Materials

Jeremy Lechman (PI)

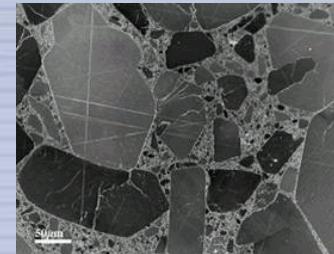
Nanoscale and Reactive Processes Department,
Engineering Sciences Center

Team Members: Corbett Battaile, Dan Bolintineanu, Marcia Cooper, Bill Erikson, Stephen Foiles, Jeff Kay, Ed Piekos, Leslie Phinney, Ryan Wixom, Cole Yarrington

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Background and Introduction

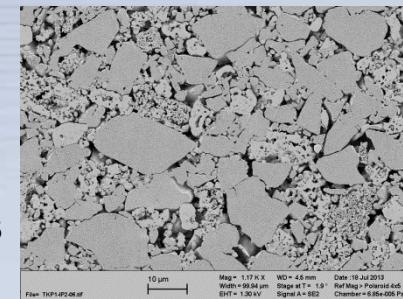
- **Need better prediction and design-control of, e.g.,**
 - Formation of critical ignition kernel in energetic materials
 - Yield and fracture in solid mechanics



HMX micrograph

Complex-structured Materials

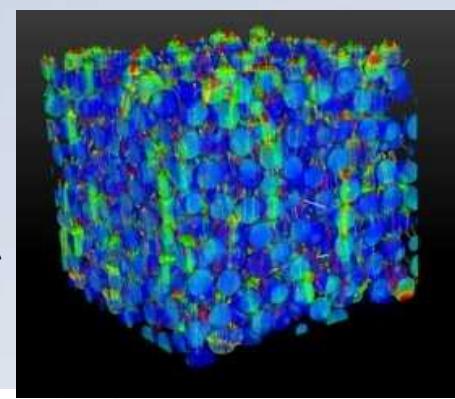
- Inhomogeneous, “discontinuous”, disordered
 - Microstructure varies in space and time: multi-scale
 - multi-crystalline, multi-phase, multi-component → interfaces



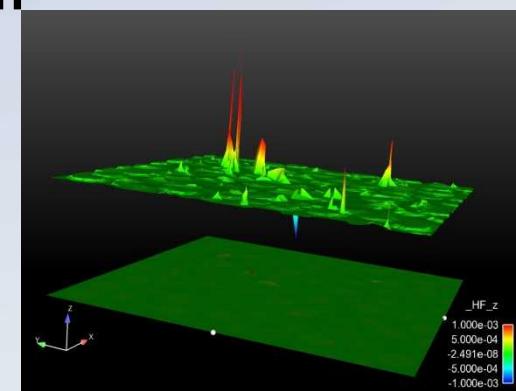
Pyro micrograph

Complex Multi-physics processes

- **Coupled matter, momentum, energy balances in complex materials driven far from equilibrium**
 - Transport processes vary across space and time *scales*
 - Generalized Stochastic Processes



Heat flux *in* granular material



Heat flux *across* plane

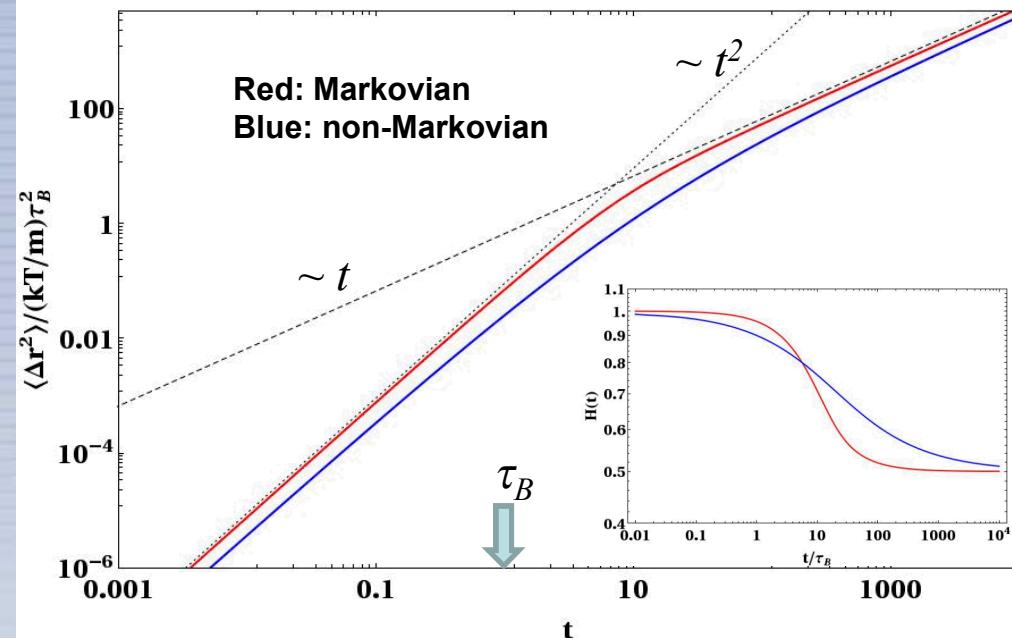
Transport in Complex Structured Materials: Interface of Materials and Engineering Sciences

- **Diffusion underlies all irreversible, non-equilibrium transport processes**
 - Linear, phenomenological constitutive relations
 - Fick's (Second) Law (mass transport)
 - Fourier's Law (thermal conduction)
 - Hooke's and Newton's Laws (momentum transport)
 - Valid in long length/time limit (beyond correlation length/time scales)
- **Where do these break down?**
 - Complex-structured materials: multiple, competing length/time scales
 - Inhomogeneities: fluctuations about macroscale, homogeneous response
 - No clear scale separation: “meso-scale”
 - How to handle these regions where correlations still present?
 - Systems far from equilibrium
 - fluctuations and instabilities: cascade processes → “Complexity” and “Emergent Phenomena”

When does scale matter?

Ans: When you have one

- Cannot measure absolute length
 - only scale ratios have physical meaning
- Diffusion is “scale free”
 - $MSD \sim t$
- Introduce a time scale
 - Momentum relaxation timescale, τ_B
 - consistent with classical, Newtonian particle dynamics on small time increments
- Solve and obtain mean-squared displacement vs. time
 - Defines long-time limit, $t \gg \tau_B$
 - $MSD \sim t^{\alpha(t)}$; $\alpha = 2$, $t \ll \tau_B$ and $\alpha = 1$, $t \gg \tau_B$
 - Introduces “meso” region, $t \sim \tau_B$



The Multi-scale Transport Picture through Particulate Media

(4) Homogeneous Macroscale

- “Continuum”
- “Smoothly” varying fields
- Constant transport coef.

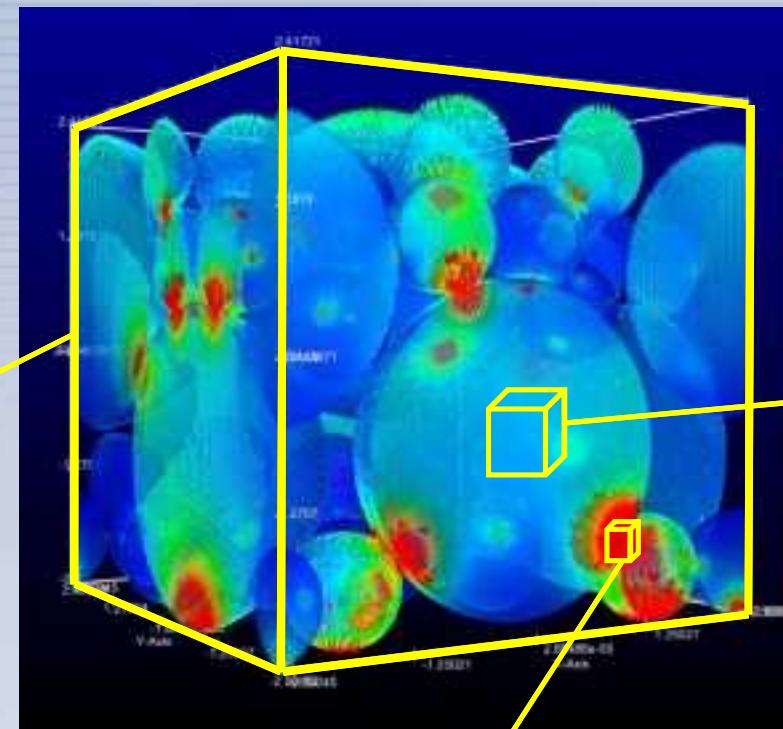
$$\frac{\partial f}{\partial t} = K_{eff} \nabla^2 f = \nabla \cdot \mathbf{j}$$
$$\mathbf{j} = K_{eff} \nabla f$$

(3) Particle-Particle Microstructure Scale

- Inhomogeneous, “discontinuous”

$$\frac{\partial f(x,t)}{\partial t} = \nabla \cdot [K(x,t) \nabla f(x,t)]$$

- Disordered
- “Anomalous” transport



(1) Interfacial Scale

- Contact area, roughness, interdiffusion (disorder)
- Material types (phonon, electron transport dominated)

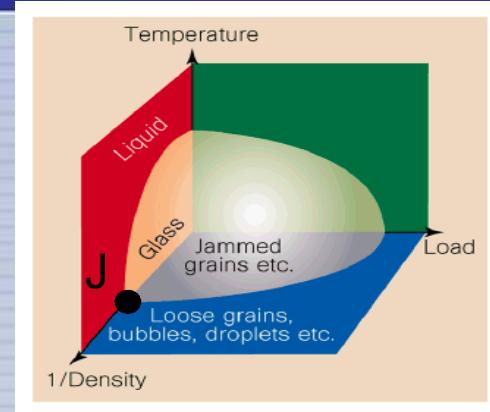
(2) Sub-particle materials structure

- Crystal structure
- Anisotropy
- Polycrystallinity
- Grain boundaries, defects, impurities (disorder)

Bridging the Particle-particle Microstructural to Homogeneous Macro scales

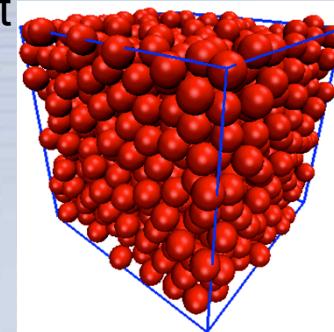
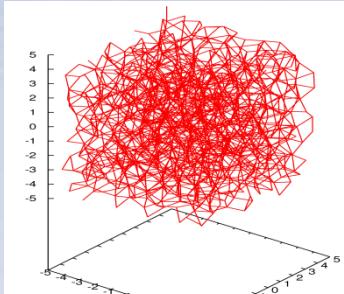
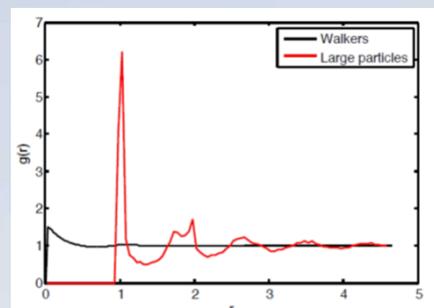
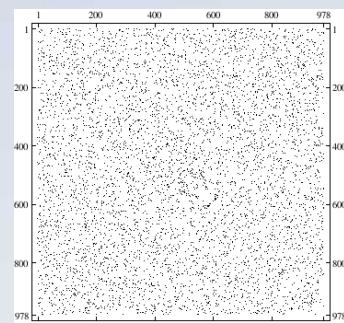
• Transport near “Point J”

- Critical-like “point” of marginal mechanical stability
 - Control of microstructural length scale
- Random walks on particle microstructures near “J”
 - Model for “failure” with respect to transport



• Random Walker Simulations

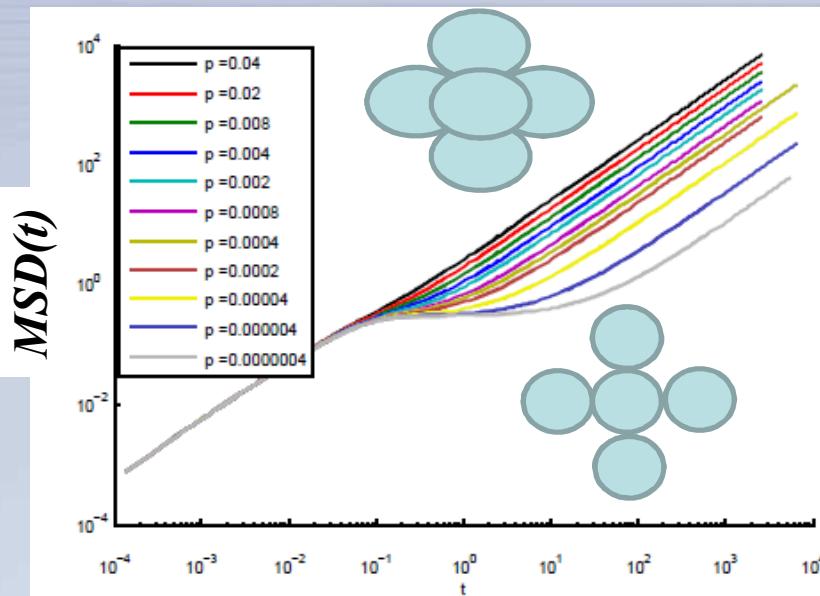
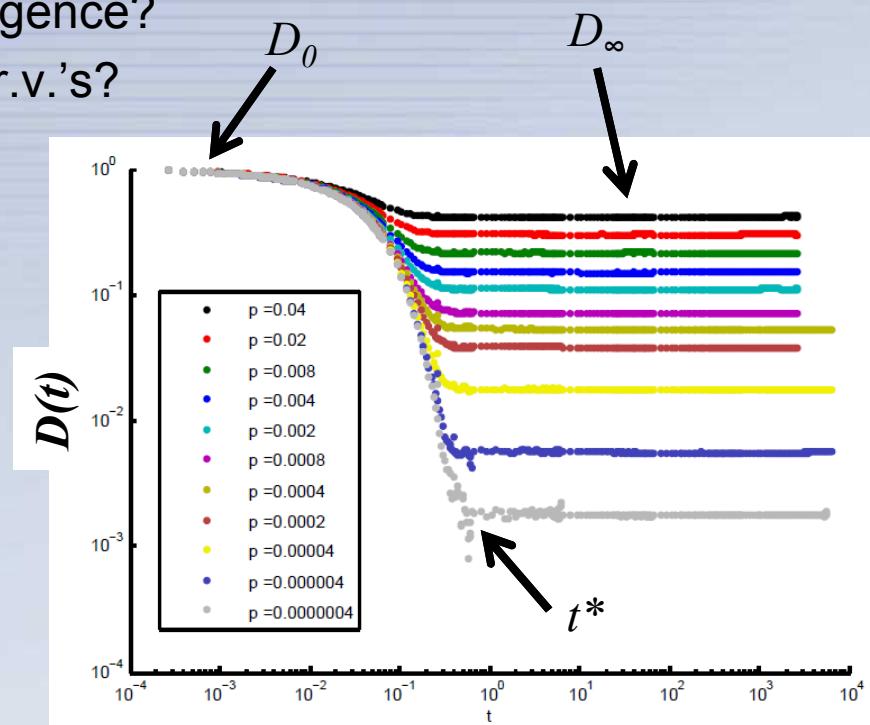
- Random walkers initially uniformly distributed within particles
- Particles conducting; voids insulating
 - Reflecting (specular) BC at interface
 - Neumann-like
- Global periodic simulation domain
 - Fluctuating homogeneous system
 - Size of fluctuations related to number of walkers



Conduction in Inhomogeneous Microstructure

- **Random Walk in a Random Environment**

- Law of large numbers?
- CLT (Homogenization)?
 - Convergence? Rate of convergence?
 - Sums of non-i. and/or non-i.d. r.v.'s?

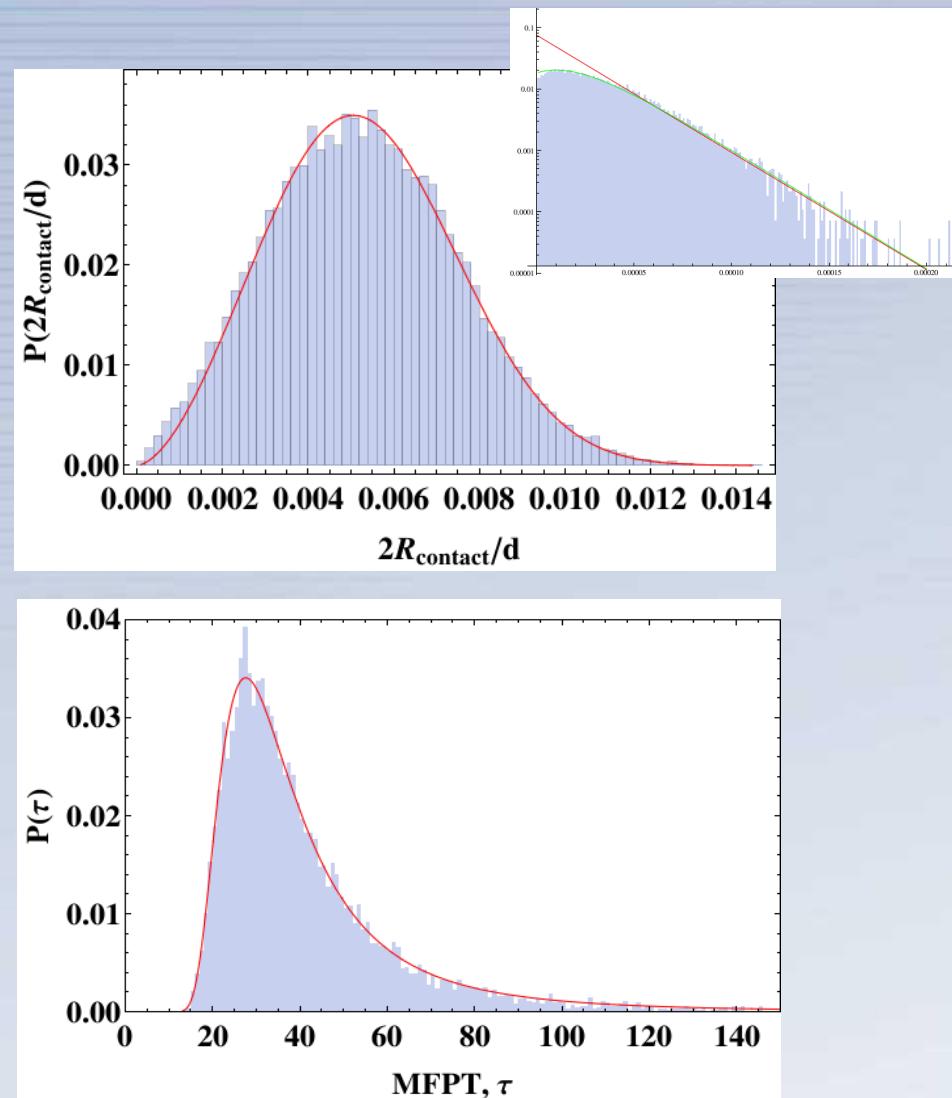


Microstructural Details: Interfaces

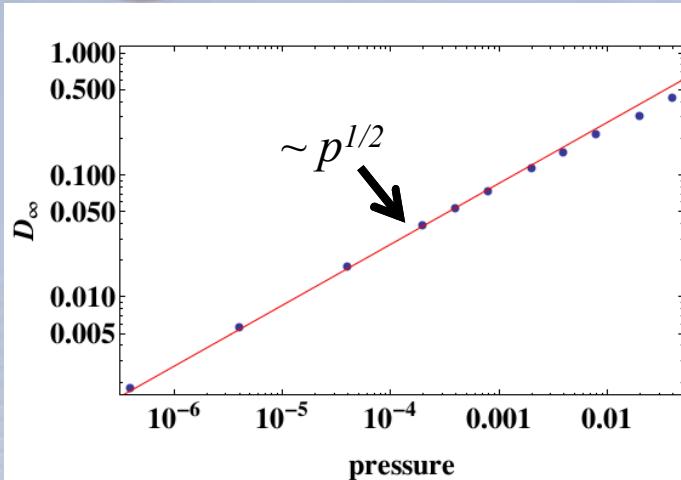
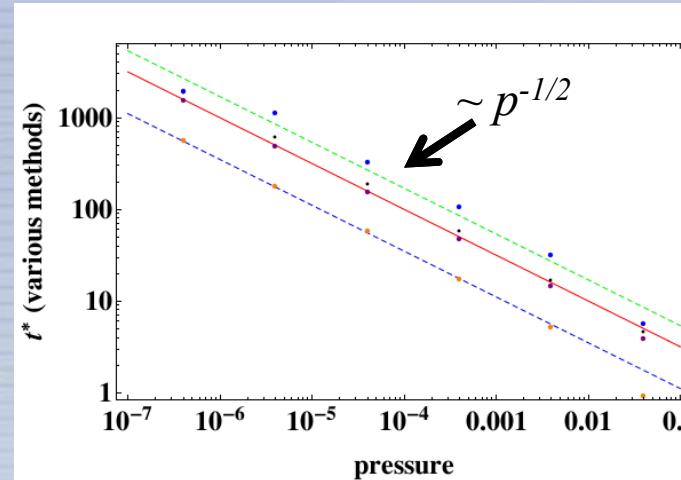
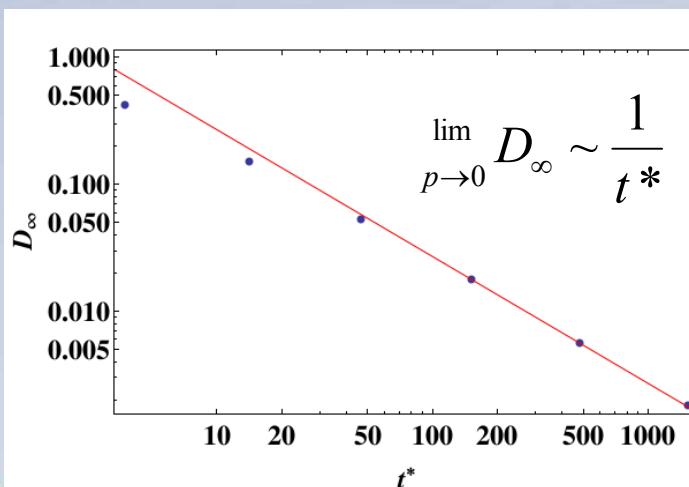
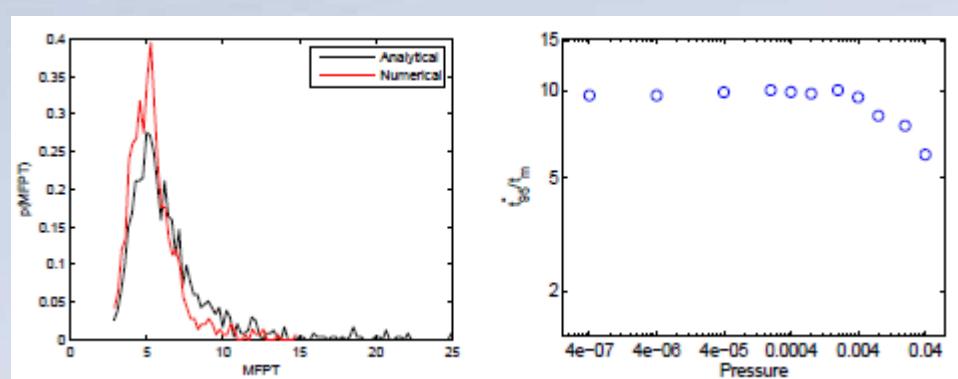
- **Difference from, say, SC lattice:**
“Disorder”/Inhomogeneity
 - Distribution of “overlaps”
 - Distribution of contact radii
 - Distribution of volume-averaged MFPT
 - Narrow Escape
 - Single and multiple contacts in well separated limit ($a \ll d$)

$$\bar{\tau} \sim \frac{1}{a}$$

$$\bar{\tau}_{z_i} \sim \sum_{j=1}^{z_i} \frac{1}{a_{ij}}$$



Scaling Results



“Coarse-graining” Workflow: Discretizing the Mesoscale

- Continuum percolation-type viewpoint + Spectral Graph Theory

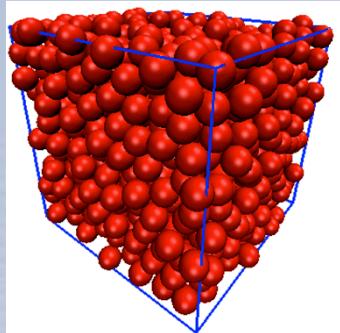
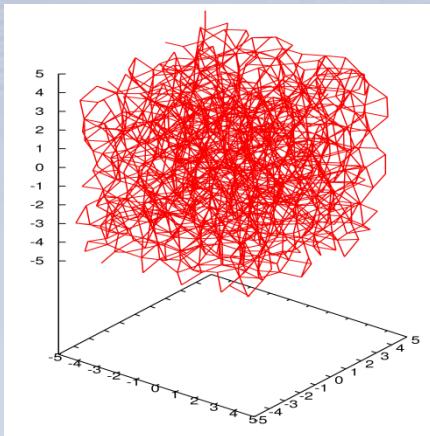


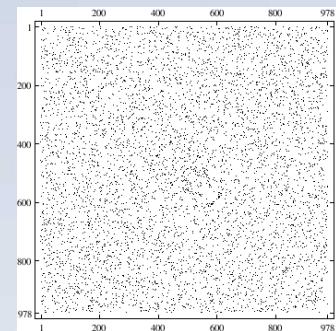
Image stack,
or simulated
 μ structure

Determine segmentation: clustering (similarity relation, e.g., greyscale) & connectivity (distinction relation, e.g., proximity relation)



graph of contact network

Determine: edge weights (interfacial resolution and physics models)



Graph Laplacian, Transition Probability Matrix, Transition Rates, etc.

“Coarse-grained” Equation on Contact Network

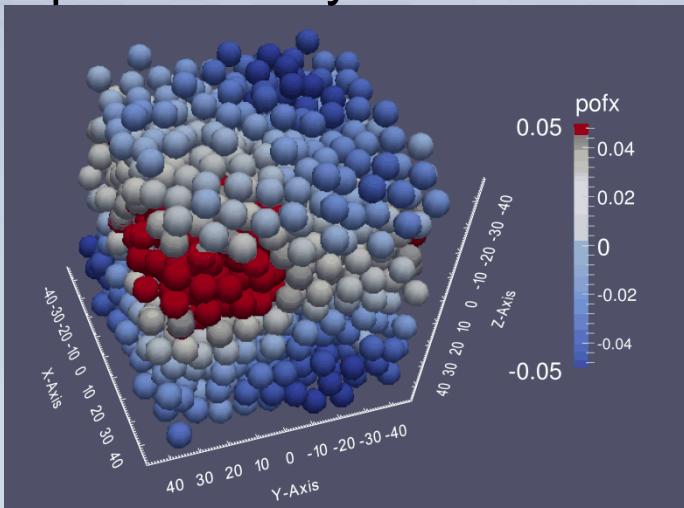
- **Transition Probability Matrix**

$$M_{ij} = \begin{cases} \frac{3D\Delta t}{\pi R^2} \sqrt{\frac{\delta_{ij}}{R}} & i \neq j \\ 1 - \sum_{j \neq i} M_{ij} & i = j \end{cases}$$

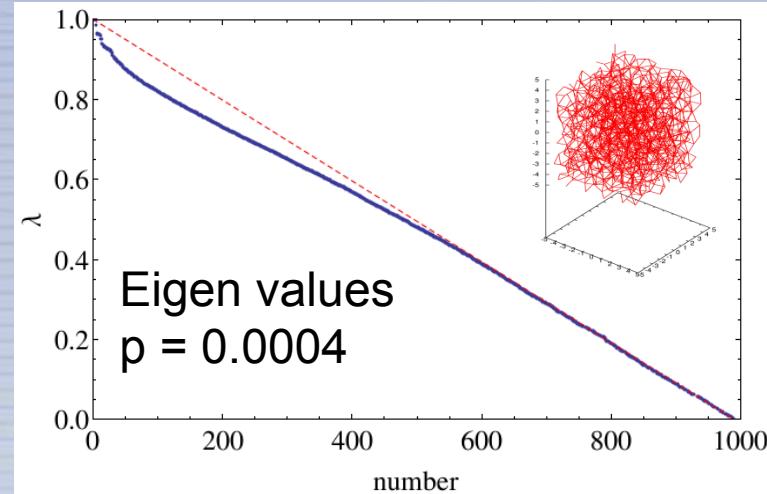
Thermo-mechanical nonlinearity

$$\delta_{ij} = 2R - \|\mathbf{r}_j - \mathbf{r}_i\| \geq 0$$

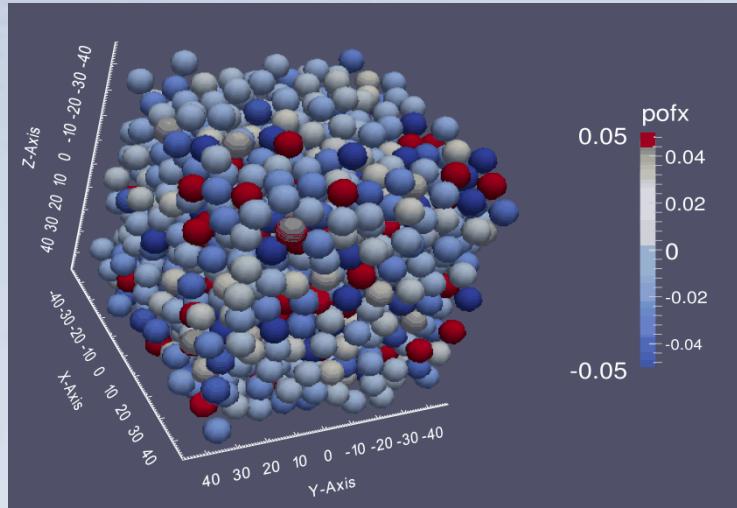
- Spectral analysis



Eigen mode for large λ



Eigen values
 $p = 0.0004$



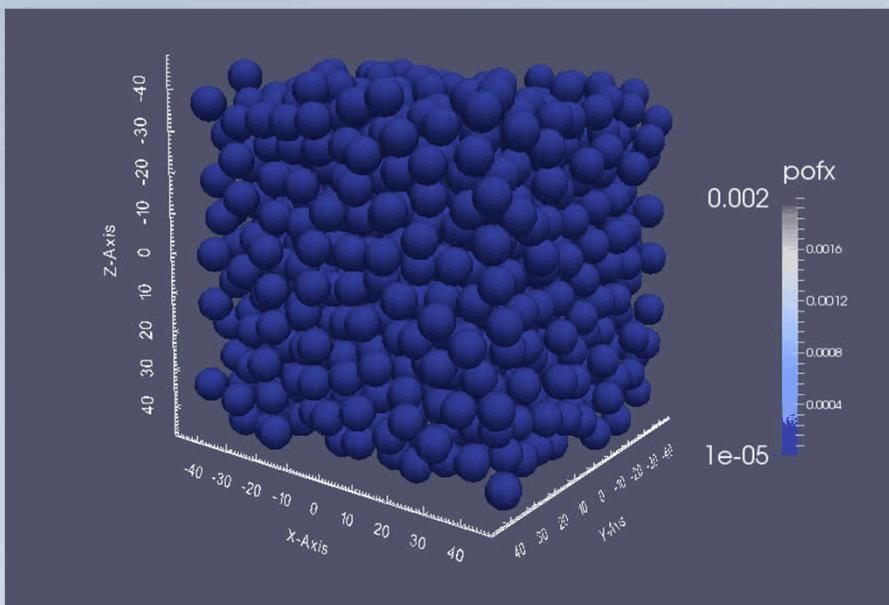
Eigen mode for small λ

Discrete Master Equation (RW) on Contact Network

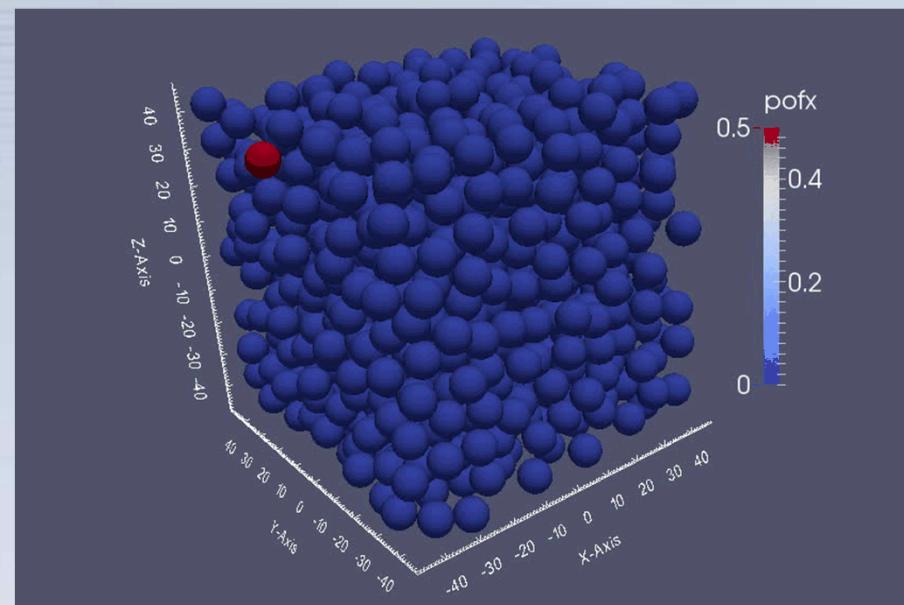
- Markov Process on contact network

$$\mathbf{P}_{n+1} = \mathbf{M}\mathbf{P}_n$$

– I.C. $\mathbf{P}_0 = \hat{\mathbf{e}}_1 \quad \|\hat{\mathbf{e}}_1\| = 1$



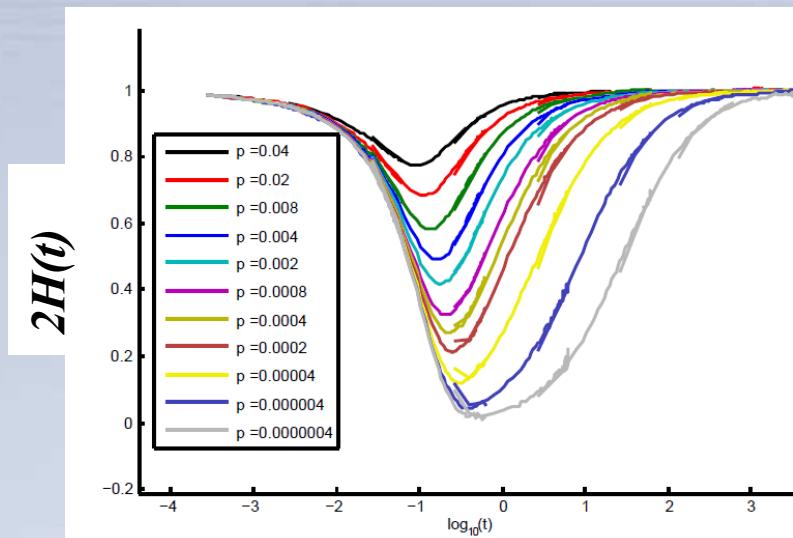
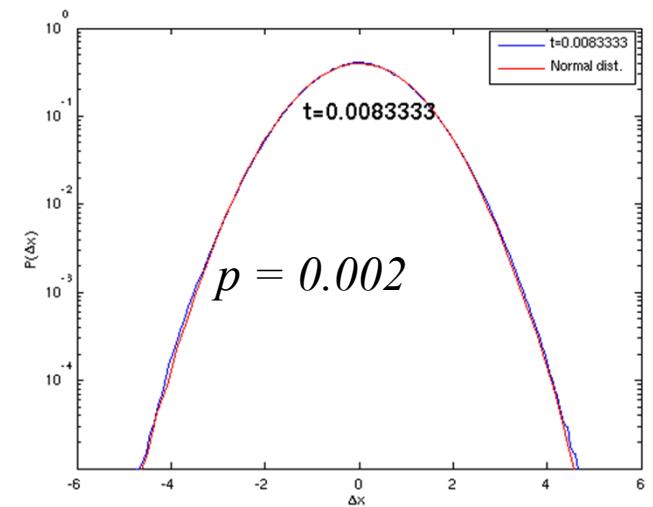
$$p = 0.0004$$



$$p = 0.00004$$

Non-Fickian and Non-Gaussian Transport

- **Fickian** \rightarrow $MSD \sim t$
 - Here $MSD \sim t^{2H(t)}$
- **Gaussian** \rightarrow
$$P(\Delta x, \Delta t) = \frac{1}{\sqrt{2\pi D \Delta t}} \exp\left[-\frac{\Delta x^2}{4D\Delta t}\right]$$



CTRW and GME

- Consider CTRW a la Montroll and Weiss (cf. Chaudhuri et al. (2010) PRL, v.99 , p.060604)
 - Conditional probability of walker being at position r at time t (van Hove function)

$$G_s(k, s) = f_{vib}(k) \left[\frac{1 - \phi_1(s) + f(k)(\phi_1(s) - \phi_2(s))}{s(1 - \phi_2(s)f(k))} \right]$$

$$f(k) = f_{vib}(k)f_{jump}(k)$$

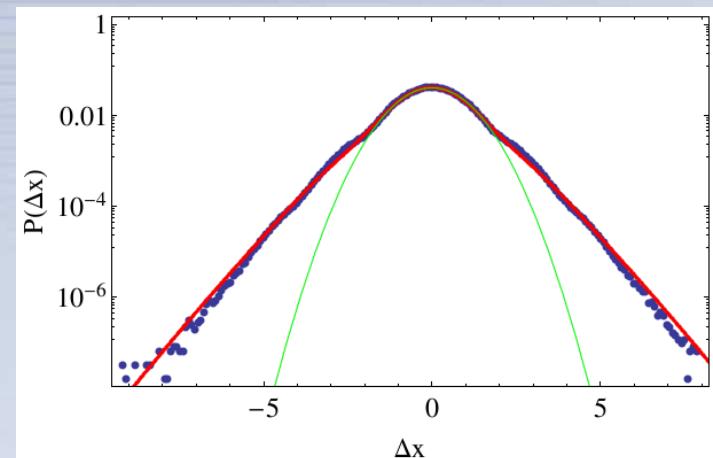
$$f_{vib}(k) = (2\pi\ell^2)^{-3/2} \exp(-r^2/2\ell^2)$$

$$f_{jump}(k) = (2\pi\lambda^2)^{-3/2} \exp(-r^2/2\lambda^2)$$

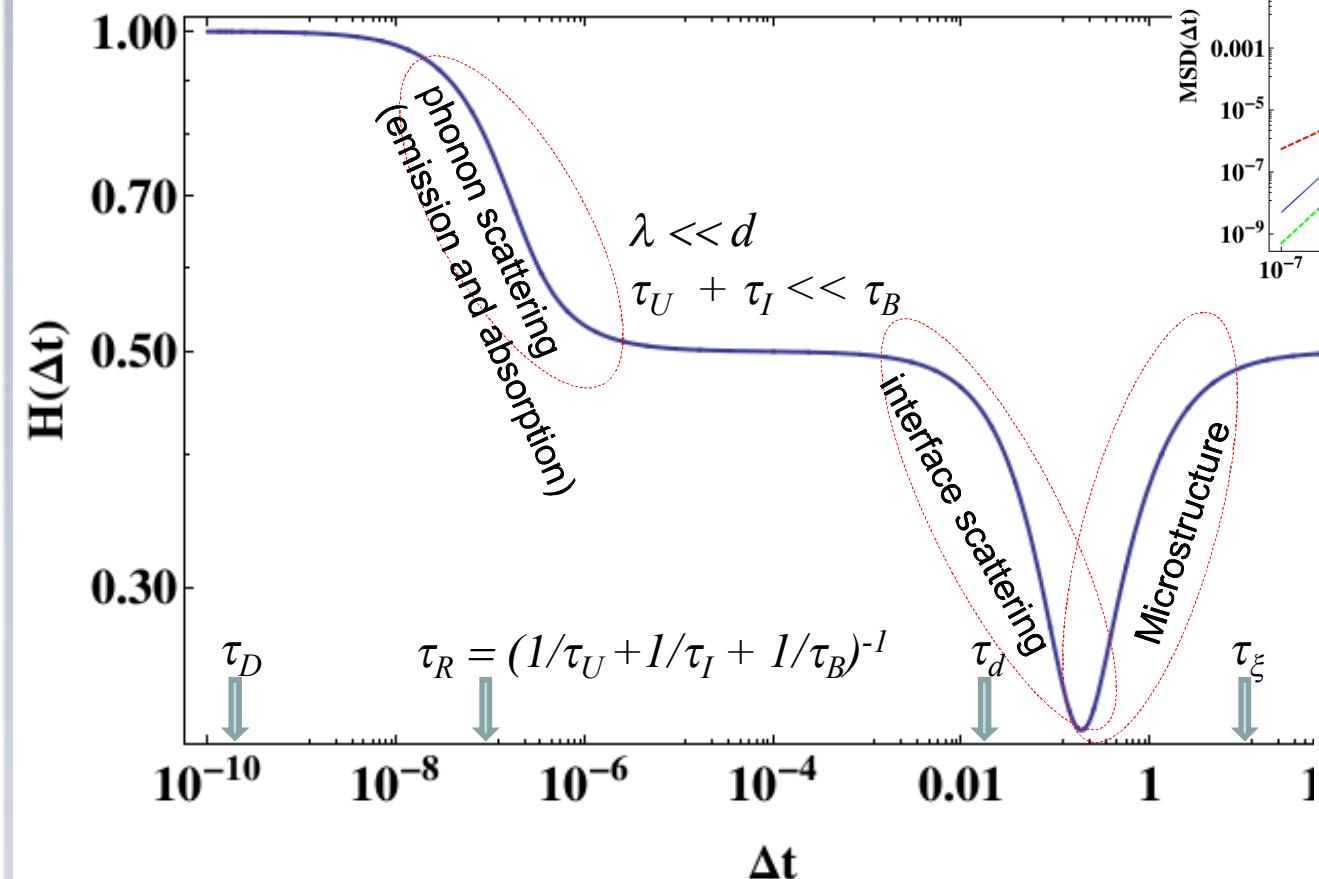
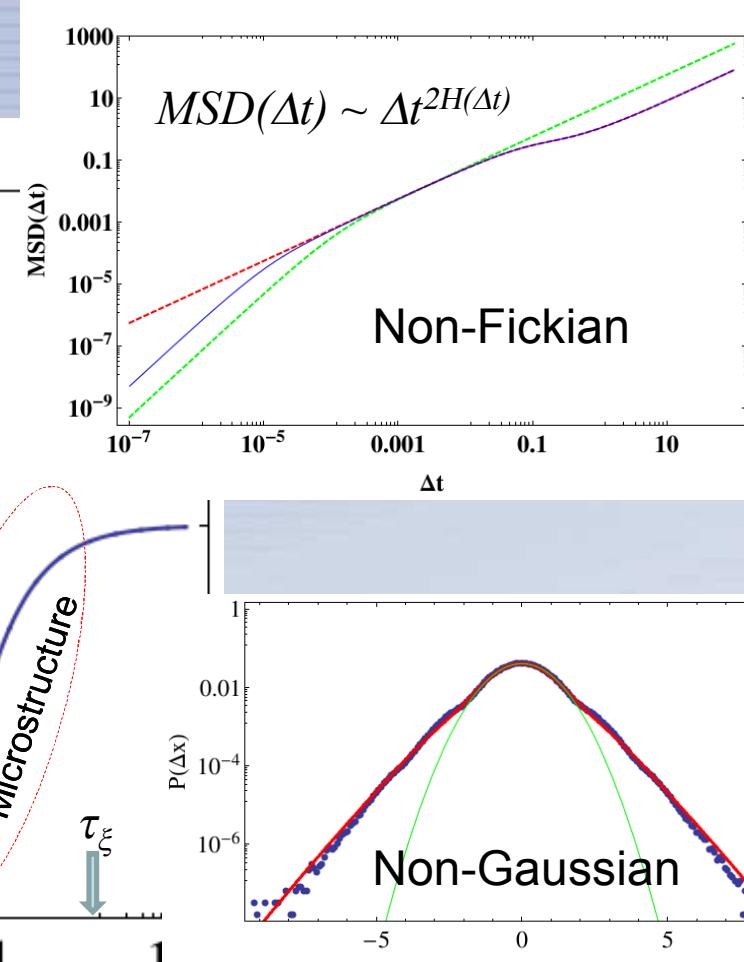
$$\phi_1 = \tau_1^{-1} \exp(-t/\tau_1)$$

$$\phi_2 = \tau_1^{-1} \exp(-t/\tau_2)$$

- Equivalent to GME



Summary: Bridging Scales...



Conclusions

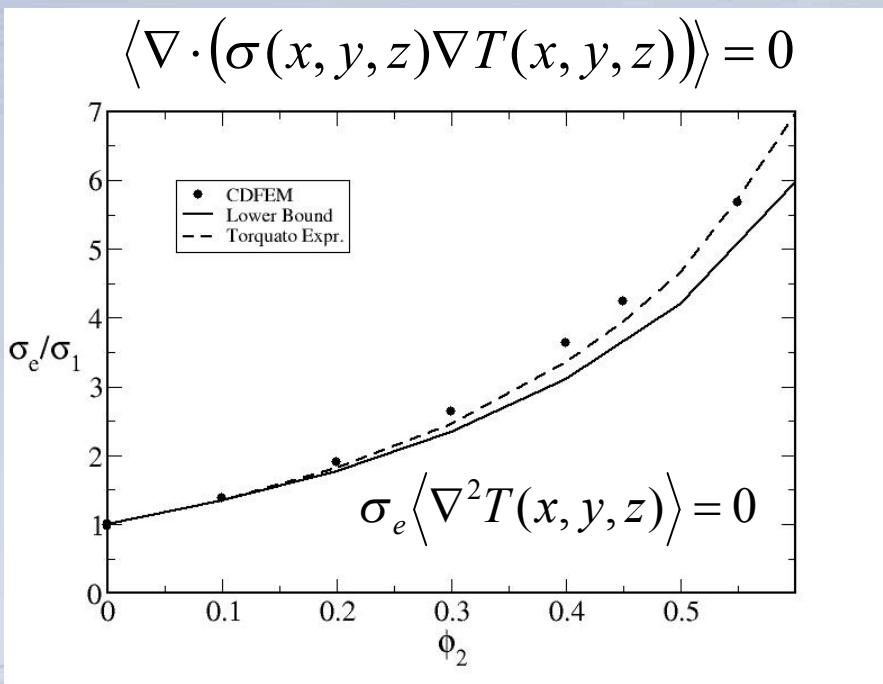
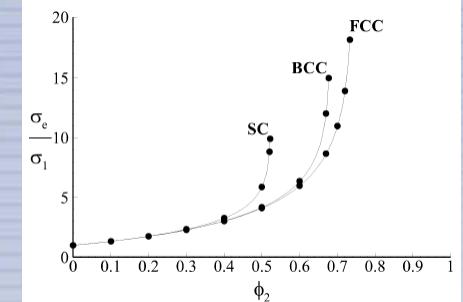
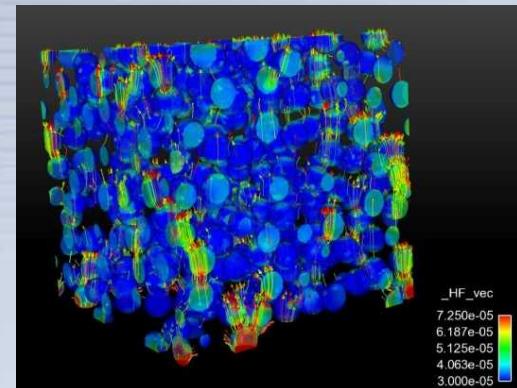
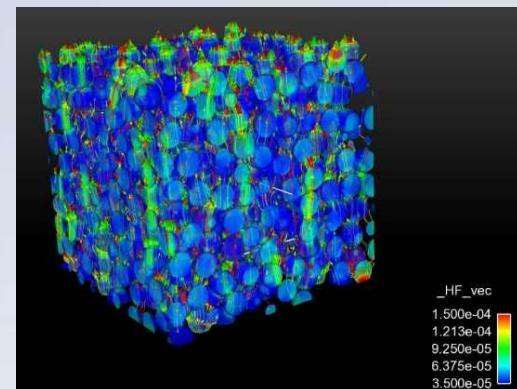
- Transport in inhomogeneous/heterogeneous materials can manifest multiple scales
- GME/CTRW approaches can be applied to bridge scales
 - Non-Fickian
 - Non-Gaussian
- Coarse-graining approaches are possible on discrete material structure

Acknowledgements

- **P. R. Schunk**
- **Leo Silbert, Gary S. Grest**
- **Stephen Bond, Rich Lehoucq**

Effective Thermal Conductivity of Particle Dispersions: Process to Property

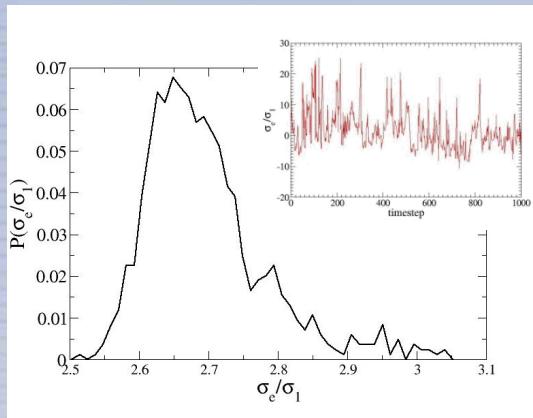
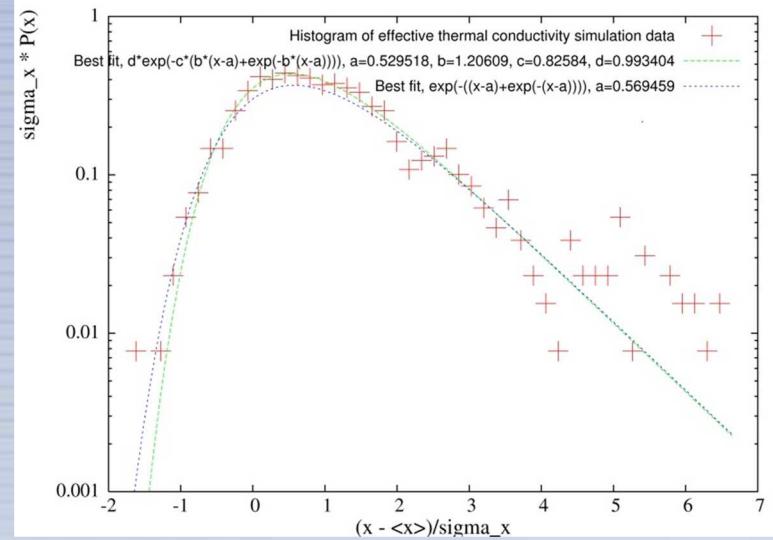
- **Verification of CDFEM for Average thermal conductivity in static random dispersions**
 - Particle configurations taken from Brownian Dynamics Simulations of Repulsive Colloids
 - Suspending fluid insulating, particles conductive (ratio of conductivities ~ 1000)



Statistics of Effective Conductivities

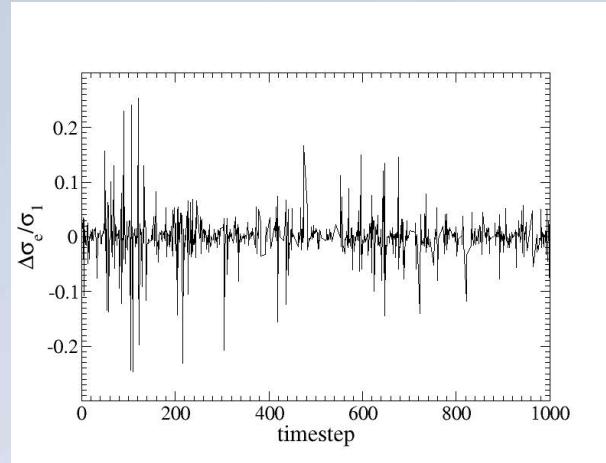
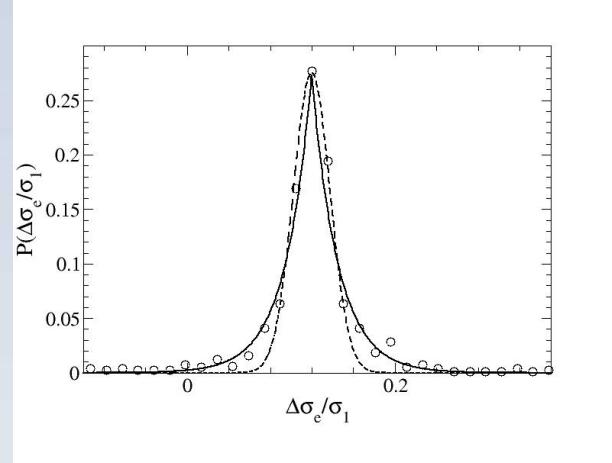
• Distribution of conductivities

- Asymmetric
- Broad tail to high values



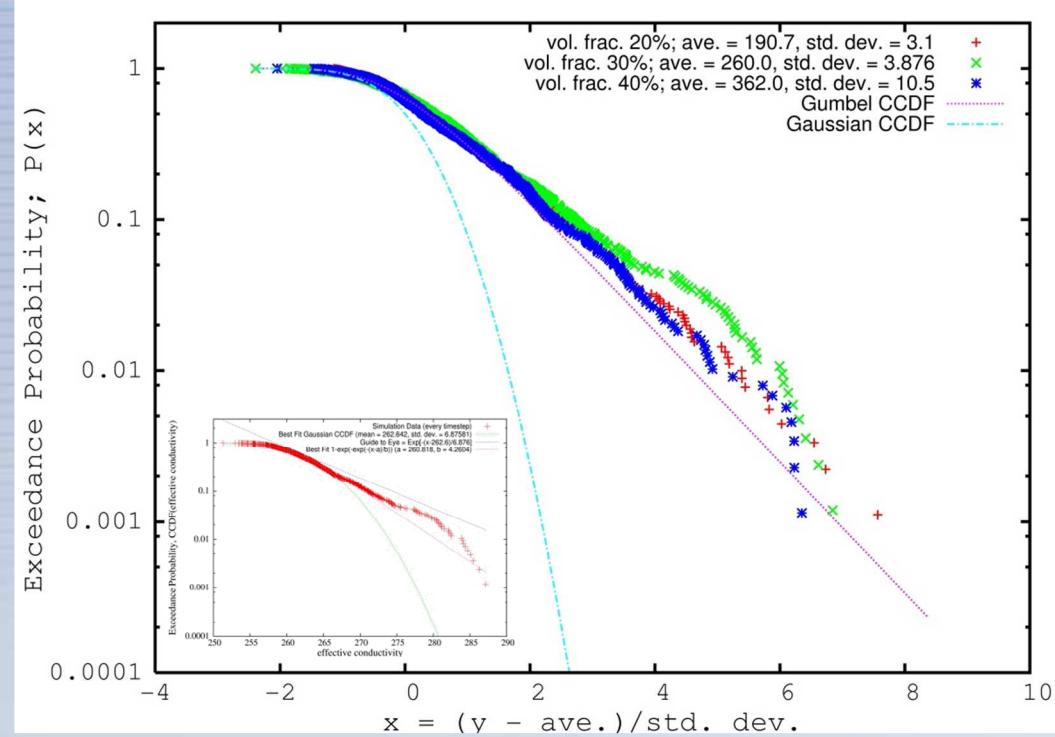
• “Increments” and their distribution

- Volatile
- Non-Gaussian



Exceedance Probability (Survival Function)

- Based on sampling ~1000 μ structures
 - “Aleatory” Uncertainty only
- What is “irreducible” about this uncertainty?
 - Note Gumbel distrib. and extreme-value-type statistics
 - “medium tailed”, between Frechet and Weibull
- What are sources of epistemic uncertainty?
 - Micro-structure resolution, thermal conductivity measurement



Temperature Profiles: Thermodynamics and Fluctuations

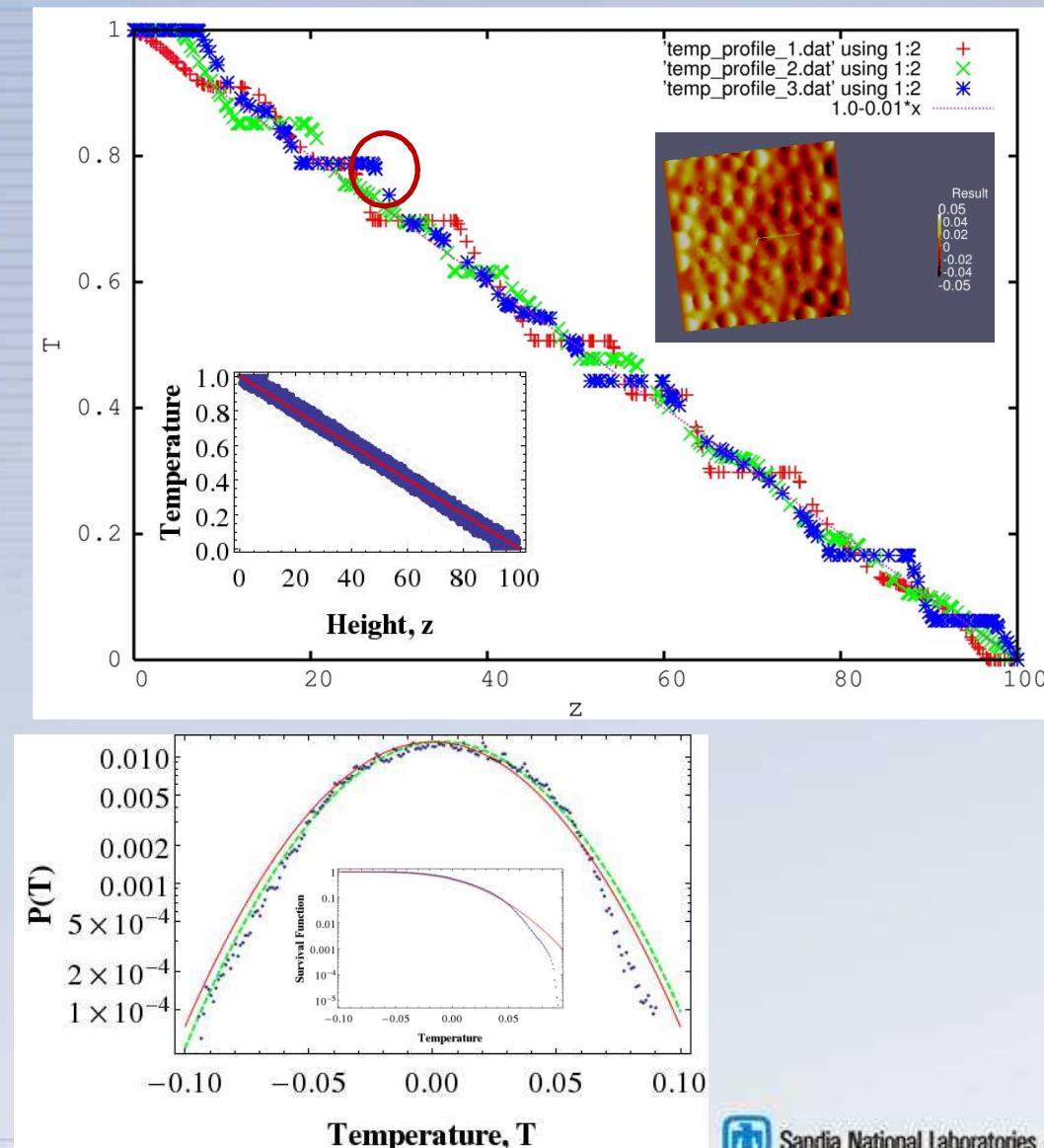
- Random “Stair-step” temperature profiles
 - Yield “fluctuating” temperature field
- A non-equilibrium thermodynamic fluctuation theory gives

$$P(\delta T) \sim \text{Exp} \left[-\frac{1}{2k_B} \int \frac{c_v^0}{T_0^2} (\delta T)^2 dV \right]$$

$$T_0(z) = 1.0 - 0.01z; \quad \delta T = T - T_0$$

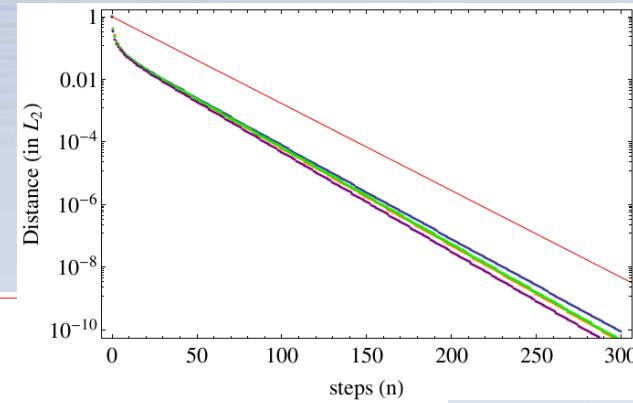
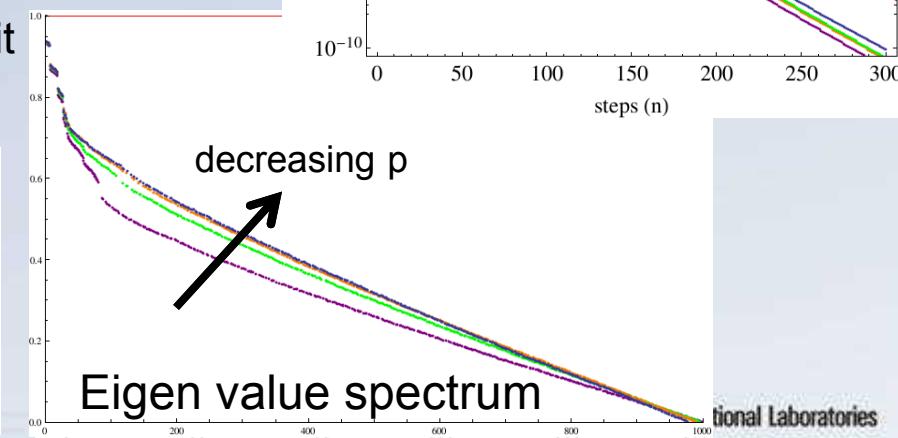
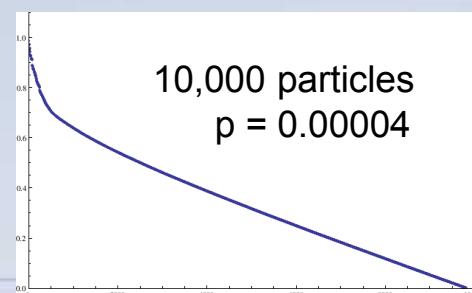
- Fit temperature fluctuations to Gaussian Distribution

- $\sigma \approx 0.03$



Contact Network Properties

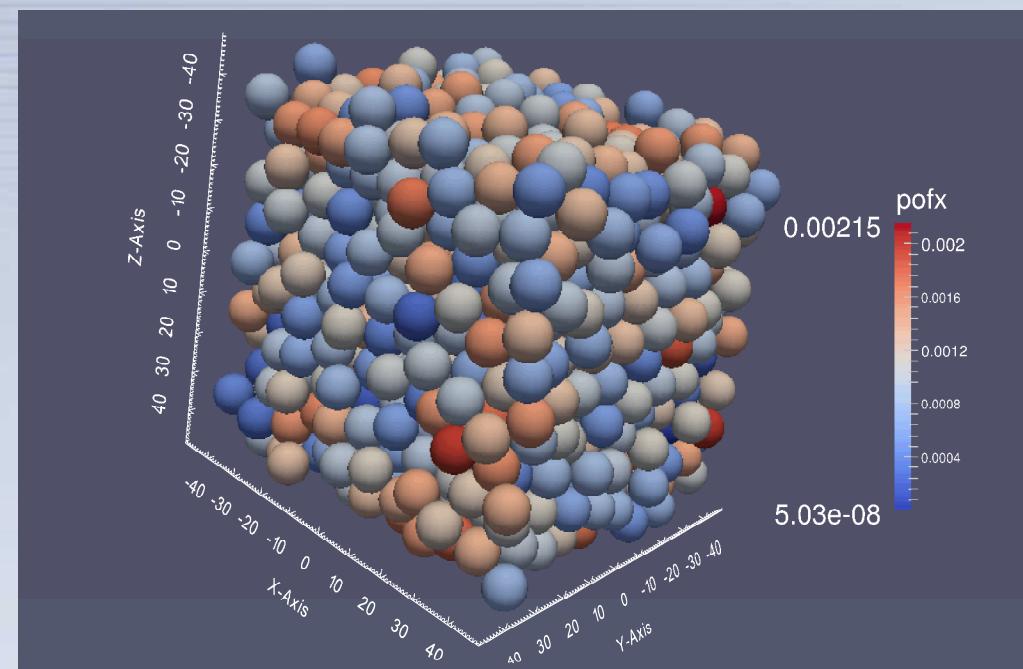
- **Walk on network (“myopic ant”)**
 - Define master equation on contact network
 - Transition Probability Matrix
 - Primitive => Strongly connected => Ergodic
 - » Steady-state exists and is (weakly) inhomogeneous
 - Conditional probability of finding a walker in a particle after long time not constant for all particles
 - » Rate of convergence given
 - $MSD \sim \text{number of steps}$
 - Relationship to homogenized limit (or CLT)?



Inhomogeneous Steady State

- **Nonequilibrium**
 - Non-zero global flux
 - Asymmetric local transitions

$$M_{ij} \neq M_{ji}$$



Thermodynamics and Homogenization

- **Necessary but not sufficient to consider homogenization (understood in my current naïve sense)**
 - How do we know that the homogenized limit is relevant from a stability perspective?
 - Prediction and “emergent” phenomena: e.g., phase changes (first and second order) and/or dissipative structures
 - What can we say about fluctuations away from asymptotic limit?
 - Role of Law of Large Numbers and Central Limit Theorem
 - Non-equilibrium phase transition and “self-organization”
- **Need non-Equilibrium Fluctuation Theory**

Thermodynamics and Homogenization: the Local Potential

- Consider boundary value problem

$$\rho \frac{\partial}{\partial t} e = -W_{,j,j} \quad + \text{B.C.'s and I.C.}$$

$$W_j = \lambda(x_j) T^2 (T^{-1})_{,j}$$

- Following Glansdorf and Prigogine (1971)

- Local equilibrium assumption
- Linear irreversible processes
 - C.f., multiscale projection method of homogenization (Vogelius and Papanicolaou 1982)

$$\frac{1}{2} \frac{\partial}{\partial t} (\delta^2 S) = \frac{1}{2} \int \lambda T^2 \delta (T^{-1})_{,j}^2 dV \geq 0$$

- Assume perturbation about steady state $\lambda T^2 = \lambda_0 T_0^2 + \delta(\lambda T^2)$

$$\frac{1}{2} \frac{\partial}{\partial t} (\delta^2 S) = \frac{1}{2} \int \lambda_0 T_0^2 \delta (T_{,j}^{-1})^2 dV + \frac{1}{2} \int \delta(\lambda T^2) \delta (T_{,j}^{-1})^2 dV$$

- First term can be taken as a functional of T and T_0 to be extremalized

Local Potential and Thermodynamic Stability

$$\frac{1}{2} \frac{\partial}{\partial t} (\delta^2 S) = \frac{1}{2} \int \lambda_0 T_0^2 \delta(T_{,j}^{-1})^2 dV + \frac{1}{2} \int \delta(\lambda T^2) \delta(T_{,j}^{-1})^2 dV$$

- **This is the excess entropy production**
 - Okay for thermodynamic equilibrium states or NESS near equilibrium (linear response region), but not okay far-from-equilibrium
- **First term taken as functional for variational problem**
 - Perturbation positive around reference state => absolute (global) minimum; always minimum at reference state
- **Second term *NOT* small (nor necessarily positive)**
 - When stability conditions hold, sign of local potential is same as excess entropy production; i.e., positive
 - Else reference solution given by first term is unstable
- **How can we obtain (approx.) lambda_0?**
 - periodic vs. random cell, boundary conditions, etc.

Homogenization and the Local Potential: Approximating λ_0

- **Multiscale Projection** following Vogelius and Papanicolaou (1982)

$$I^\varepsilon(w) = \frac{1}{2} \int_{\Omega} \lambda \left(\frac{\mathbf{x}}{\varepsilon} \right) |w(\mathbf{x})|^2 d\mathbf{x} \quad w(\mathbf{x}) = \bar{u} + \sum_{j=1}^3 \varepsilon \chi \left(\frac{\mathbf{x}}{\varepsilon} \right) \bar{v}_j$$

- If (1-periodic) cell functions $\chi_j(\mathbf{y})$ satisfy certain nondegeneracy conditions,

$$\bar{v}_j(\mathbf{x}) \xrightarrow{\varepsilon \rightarrow 0} \frac{\partial \bar{u}(\mathbf{x})}{\partial x_j}$$

- And (away from boundaries),

$$\sum_{i,j=1}^3 (\lambda_0)_{ij} \frac{\partial^2 \bar{u}_j}{\partial x_i \partial x_j} = f(\mathbf{x})$$

$$(\lambda_0)_{ij} = \int_0^1 \int_0^1 \int_0^1 \lambda(\mathbf{y}) \sum_{k=1}^3 \left(\delta_{ik} + \frac{\partial \chi_i(\mathbf{y})}{\partial y_k} \right) \left(\delta_{jk} + \frac{\partial \chi_j(\mathbf{y})}{\partial y_k} \right) d\mathbf{y}$$

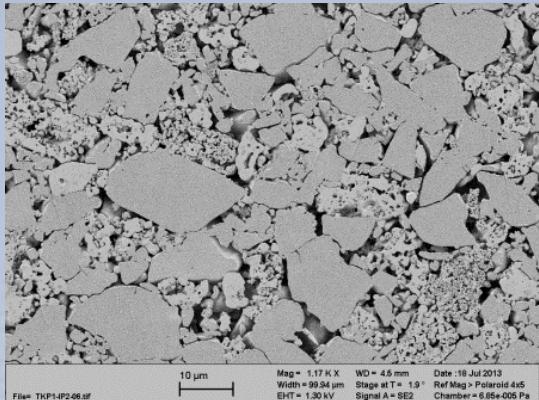
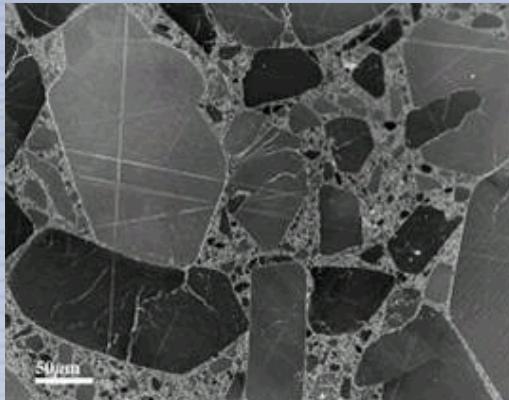
- Again, what about stability?

Materials Science Needs

- **Multi-scale Transport**
 - Sub-particle materials structure
 - Interfacial structure and transport processes
- **Multiphysics**
 - Heterogeneous reactions
 - Multi-species nonequilibrium thermodynamic phase behavior of material constituents
 - Phase changes, melting, ...
 - Role of Interfaces
 - Thermo-mechanical effects

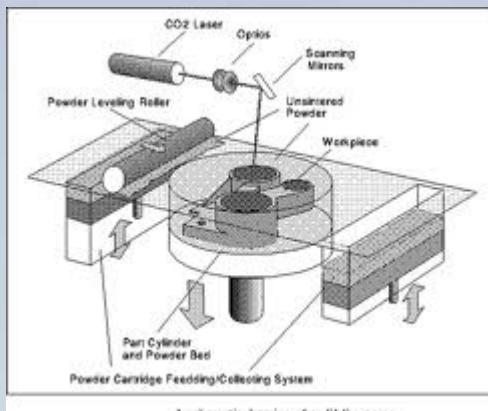
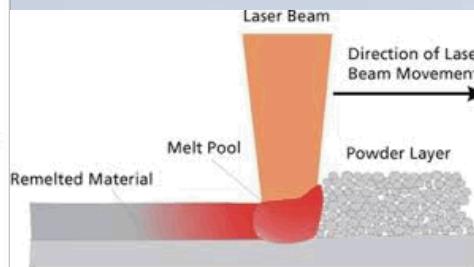
Meso-scale particle-based applications

Need particle scale mod-sim capability to predict microstructure formation and properties



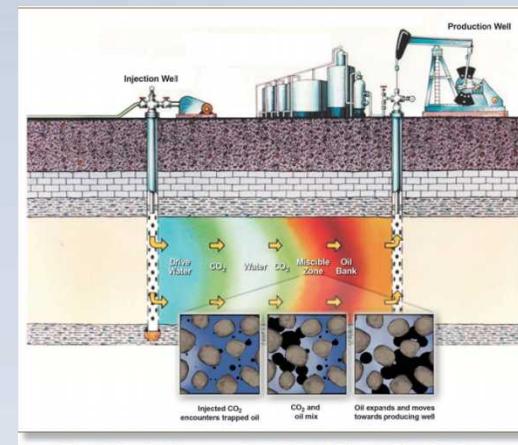
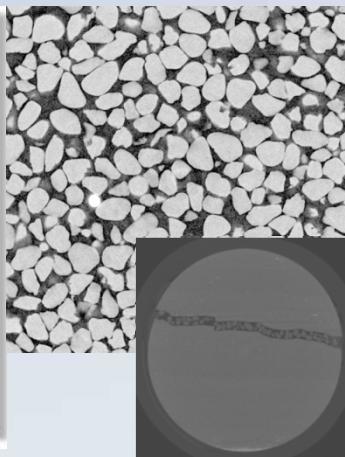
Energetic materials

Energy storage



A schematic drawing of an SLS process.

Additive Manufacturing: selective
Laser melting/sintering



Waste repository: porous flow
Energy: fracking