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Heat flux in granular material

• Need better prediction and design-control of, e.g., 

– Formation of critical ignition kernel in energetic materials

– Yield and fracture in solid mechanics

• Complex-structured Materials

– Inhomogeneous, “discontinuous”, disordered

• Microstructure varies in space and time: multi-scale 

– multi-crystalline, multi-phase, multi-component  interfaces

• Complex Multi-physics processes

– Coupled matter, momentum, energy balances in 

complex materials driven 

far from equilibrium

• Transport processes vary 

across space and time scales

• Generalized Stochastic 

Processes

Background and Introduction

HMX micrograph

Pyro micrograph

Heat flux across plane



Transport in Complex Structured Materials:  
Interface of Materials and Engineering Sciences

• Diffusion underlies all irreversible, non-equilibrium 
transport processes
– Linear, phenomenological constitutive relations

• Fick’s (Second) Law (mass transport)

• Fourier’s Law (thermal conduction)

• Hooke’s and Newton’s Laws (momentum transport)

– Valid in long length/time limit (beyond correlation length/time scales)

• Where do these break down?
– Complex-structured materials: multiple, competing length/time scales

• Inhomogeneities: fluctuations about macroscale, homogeneous response

• No clear scale separation: “meso-scale”

– How to handle these regions where correlations still present?

– Systems far from equilibrium

• fluctuations and instabilities:  cascade processes  “Complexity” and 
“Emergent Phenomena”
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When does scale matter?
Ans: When you have one

• Cannot measure 

absolute length
– only scale ratios have 

physical meaning

• Diffusion is “scale free”
– MSD ~ t

• Introduce a time scale 
– Momentum relaxation timescale, B

– consistent with classical, Newtonian particle dynamics on small 
time increments

• Solve and obtain mean-squared displacement vs. time

– Defines long-time limit, t >> B 

• MSD ~ t(t);  = 2, t << B and  = 1, t >> B 

– Introduces “meso” region, t ~ B 

~ t

Red: Markovian
Blue: non-Markovian

~ t2

B



The Multi-scale Transport Picture 
through Particulate Media

(2) Sub-particle 
materials structure
• Crystal structure
• Anisotropy
• Polycrystallinity
• Grain 

boundaries, 
defects, 
impurities 
(disorder)

(1) Interfacial Scale
• Contact area, roughness, interdiffusion (disorder)
• Material types (phonon, electron transport dominated)

(3) Particle-Particle 
Microstructure Scale
• Inhomogeneous, 

“discontinuous”

• Disordered
• “Anomalous” transport

(4) Homogeneous 
Macroscale
• “Continuum”
• “Smoothly” varying fields
• Constant transport coef.
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Bridging the Particle-particle Microstructural to 
Homogeneous Macro scales

• Transport near “Point J”
– Critical-like “point” of marginal mechanical stability

• Control of microstructural length scale

– Random walks on particle microstructures near “J”

• Model for “failure” with respect to transport

• Random Walker Simulations
– Random walkers initially uniformly 

distributed within particles

– Particles conducting; voids insulating

• Reflecting (specular) BC at interface

– Neumann-like

– Global periodic simulation domain

• Fluctuating homogeneous system

– Size of fluctuations related to number of walkers

J
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Conduction in Inhomogeneous 
Microstructure

• Random Walk in a Random Environment
– Law of large numbers?

– CLT (Homogenization)?

• Convergence?  Rate of convergence?

• Sums of non-i. and/or non-i.d. r.v.’s?
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Microstructural Details: Interfaces

• Difference from, say, SC 
lattice: 
“Disorder”/Inhomogeneity
– Distribution of “overlaps”

– Distribution of contact radii

– Distribution of volume-
averaged MFPT

• Narrow Escape

– Single and multiple contacts 
in well separated limit (a << 
d)
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Scaling Results
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“Coarse-graining” Workflow:  Discretizing 
the Mesoscale

• Continuum percolation-type viewpoint + Spectral 
Graph Theory

Determine segmentation: clustering (similarity relation, e.g., greyscale) 
& connectivity (distinction relation, e.g., proximity relation)

Determine: edge weights (interfacial 
resolution and physics models)

Image stack,
or simulated
structure

graph of contact network

Graph Laplacian, Transition Probability Matrix, 
Transition Rates, etc.



“Coarse-grained” Equation on Contact 
Network

Eigen mode for large  Eigen mode for small 

• Transition Probability Matrix

– Spectral analysis
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Discrete Master Equation (RW) on 
Contact Network

• Markov Process on contact network

– I.C.
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Non-Fickian and Non-Gaussian Transport

• Fickian  MSD ~ t
– Here MSD ~ t(t)

• Gaussian 

p = 0.002
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CTRW and GME

• Consider CTRW a la Montroll and Wiess (cf. 
Chaudhuri et al. (2010) PRL, v.99 , p.060604 )
– Conditional probability of walker being at position r at time t (van 

Hove function)

– Equivalent to GME
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Summary:  Bridging Scales…

R U +1/I + 1/B)-1 dD

d
U + I << B

MSD(t) ~ t(t)

cf. K. Razi Naqvi and S. Waldenstrom (2005) PRL 95, 065901

Non-Fickian

Non-Gaussian



Conclusions

• Transport in inhomogeneous/heterogeneous 
materials can manifest multiple scales

• GME/CTRW approaches can be applied to bridge 
scales
– Non-Fickian

– Non-Gaussian

• Coarse-graining approaches are possible on 
discrete material structure
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Effective Thermal Conductivity of Particle 
Dispersions: Process to Property

• Verification of CDFEM for Average thermal 
conductivity in static random dispersions

– Particle configurations taken from Brownian Dynamics 
Simulations of Repulsive Colloids

– Suspending fluid insulating, particles conductive (ratio 
of conductivities ~ 1000)
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Statistics of Effective Conductivities

• Distribution of conductivities
– Asymmetric

– Broad tail to 

high values

• “Increments” and their distribution
– Volatile

– Non-Gaussian



Exceedance Probability (Survival Function)

• Based on sampling 

~1000 structures
– “Aleatory” Uncertainty 

only

• What is “irreducible” 

about this 

uncertainty?
– Note Gumbel distrib. and

extreme-value-type statistics

• “medium tailed”, between Frechet and Wiebul

• What are sources of epistemic uncertainty?
• Micro-structure resolution, thermal conductivity 

measurement



Temperature Profiles: Thermodynamics 
and Fluctuations

• Random “Stair-step” 
temperature profiles 
– Yield “fluctuating” 

temperature field

• A non-equilibrium 
thermodynamic 
fluctuation theory gives

– Fit temperature 
fluctuations to Gaussian 
Distribution

•  ≈ 0.03
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Contact Network Properties

• Walk on network (“myopic ant”)
– Define master equation on contact network

• Transition Probability Matrix

– Primitive => Strongly connected => Ergodic

» Steady-state exists and is (weakly) inhomogeneous 

Conditional probability of finding a walker in a 

particle after long time not constant for all 

particles

» Rate of convergence given

• MSD ~ number of steps

– Relationship to homogenized limit 

(or CLT)?

Eigen value spectrum

decreasing p

10,000 particles
p = 0.00004



Inhomogeneous Steady State

• Nonequilibrium
– Non-zero global flux

• Asymmetric local transitions 
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Thermodynamics and Homogenization

• Necessary but not sufficient to consider 
homogenization (understood in my current naïve 
sense)
– How do we know that the homogenized limit is relevant from a 

stability perspective?

• Prediction and “emergent” phenomena: e.g., phase changes (first 
and second order) and/or dissipative structures

– What can we say about fluctuations away from asymptotic limit?

• Role of Law of Large Numbers and Central Limit Theorem

– Non-equilibrium phase transition and “self-organization”

• Need non-Equilibrium Fluctuation Theory



Thermodynamics and Homogenization: the 
Local Potential

• Consider boundary value problem

– Following Glansdorf and Prigogine (1971)

• Local equilibrium assumption

• Linear irreversible processes

– C.f., multiscale projection method of homogenization (Vogelius and 
Papanicolaou 1982)

– Assume perturbation about steady state

• First term can be taken as a functional of T and T0 to be extremalized

    0,
2

1

2

1 2
122 






 dVTTS
t

j

 22
00

2 TTT  

        dVTTdVTTS
t

jj

2
1

,
2

2
1

,
2

00
2

2

1

2

1

2

1


 





  jjj

jj

TTxW

We
t

,)(

,

12 









+ B.C.’s and I.C.



Local Potential and Thermodynamic 
Stability

• This is the excess entropy production
– Okay for thermodynamic equilibrium states or NESS near 

equilibrium (linear response region), but not okay far-from-
equilibrium

• First term taken as functional for variational problem
– Perturbation positive around reference state => absolute (global) 

minimum; always minimum at reference state

• Second term NOT small (nor necessarily positive)
– When stability conditions hold, sign of local potential is same a 

excess entropy production; i.e., positive

– Else reference solution given by first term is unstable

• How can we obtain (approx.) lambda_0?
– periodic vs. random cell, boundary conditions, etc.
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Homogenization and the Local Potential: 
Approximating 0

• Multiscale Projection following Vogelius and Papanicolaou (1982)

– If (1-periodic) cell functions j(y) satisfy certain nondegeneracy conditions,

– And (away from boundaries), 

• Again, what about stability?
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Materials Science Needs

• Multi-scale Transport
– Sub-particle materials structure

– Interfacial structure and transport processes

• Multiphysics
– Heterogeneous reactions

• Multi-species nonequilibrium thermodynamic phase behavior of 
material constituents

– Phase changes, melting, …

• Role of Interfaces

– Thermo-mechanical effects



Meso-scale particle-based applications
Need particle scale mod-sim capability to predict 
microstructure formation and properties

Waste repository: porous flow
Energy: fracking

Additive Manufacturing: selective
Laser melting/sintering

Energetic materials
Energy storage


