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. Need better prediction and design-control of, e.g.,
— Formation of critical ignition kernel in energetic materials
— Yield and fracture in solid mechanics

 Complex-structured Materials

— Inhomogeneous, “discontinuous”, disordered
» Microstructure varies in space and time: multi-scale
— multi-crystalline, multi-phase, multi-component - mterfaces
« Complex Multi-physics processes
— Coupled matter, momentum, energy balances in
complex materials driven
far from equilibrium
« Transport processes vary
across space and time scales

—#3._* Generalized Stochastic
JBDRD - processes

, . Heat flux across plane
Heat flux in granular material




of

transport processes =k o '
— Linear, phenomenological constitutive relations EZV'[J]
» Fick’'s (Second) Law (mass transport)
« Fourier's Law (thermal conduction) } J=kVf

* Hooke’s and Newton’s Laws (momentum transport)
— Valid in long length/time limit (beyond correlation length/time scales)

* Where do these break down?

— Complex-structured materials: multiple, competing length/time scales
* Inhomogeneities: fluctuations about macroscale, homogeneous response
* No clear scale separation: “meso-scale”
— How to handle these regions where correlations still present?
— Systems far from equilibrium

— « fluctuations and instabilities: cascade processes =2 “Complexity” and
I_\.Dit}l “Emergent Phenomena” B o i




100l Red: Markovian
Blue: non-Markovian
absolute length
— 1t
— only scale ratios have é
physical meaning 5 0l
» Diffusion is “scale free” .
— MSD ~t |
e Introduce a time scale o o1 10 1000

— Momentum relaxation timescale, 7,

— consistent with classical, Newtonian particle dynamics on small
time increments

 Solve and obtain mean-squared displacement vs. time
— Defines long-time limit, t >> 1,
—% i e MSD~t*V; q=2t<<tzanda=1,1t>> 15

BDRD|ntroduces “meso” region, ¢t ~ 14
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The Multi-scale Transport Picture

h Particulate Media

-/ (2) Sub-particle

(4) Hogeneous materials structure
Macroscale » Crystal structure
« “Continuum”  Anisotropy

* Polycrystallinity

« “Smoothly” varying fields :
* Grain

» Constant transport coef.

of boundaries,
= = Keﬁvzf =V-j defects,
KV impurities
=Ky Vi (disorder)
(3) Particle-Particle
Microstructure Scale
* Inhomogeneous,
“discontinuous”
% =V -[K(x,0)Vf(x,1)]
. Disordered (1) Interfacial Scale
. “Anomalous’ transport  ° Contact area, roughness, interdiffusion (disorder)
8 « Material types (phonon, electron transport dominated)




2\ Bridging the Particle-particle Microstructural to

Homogeneous Macro scales

- g Temperature

 Transport near “Point J”

— Critical-like “point” of marginal mechanical stability Jarmeq
- Control of microstructural length scale _Looss grains.

— Random walks on particle microstructures near “J”  1oensiv
* Model for *failure” with respect to transport . ewne.

« Random Walker Simulations
— Random walkers initially uniformly
distributed within particles

— Particles conducting; voids insulating

» Reflecting (specular) BC at interface
— Neumann-like

E]
2

— Global periodic simulation domain —

,._.@}’ Fluctuating homogeneous system
LDRD - Size of fluctuations related to number of walkers () sandia National Laboratoies
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— Law of large numbers?
— CLT (Homogenization)?
« Convergence? Rate of convergence? D
. . 0
« Sums of non-i. and/or non-i.d. r.v.’s? /
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« Difference from, say, SC
lattice:
“Disorder”’/Inhomogeneity
— Distribution of “overlaps”

— Distribution of contact radii

— Distribution of volume-
averaged MFPT

« Narrow Escape

— Single and multiple contacts
in well separated limit (a <<
d)
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Z, ‘Coarse-graining” Workflow: Discretizing
15 the Mesoscale

Determine segmentation: clustering (similarity relation, e.g., greyscale)
& connectivity (distinction relation, e.g., proximity relation)

Image stack, Determine: edge weights (interfacial
or simulated : resolution and physics models)
ustructure -
graph of contact network
f-—:ﬁ}’ Graph Laplacian, Transition'ProbabiIity Matrix,
LDRD Transition Rates, etc. () sandia Nationat Laboratores




+ Transition Probability Matrix N

Thermo-mechanical
. honlinearity

' Eigen values
02 p =0.0004

800 1000

Eigen mode for small A
() sancia National Laboratores




Discrete Master Equation (RW) on
Contact Network

Markov Process on contact network
Pn+1 = MPn
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 Fickian 2 MSD ~ ¢
— Here MSD ~ ?H®

. 1 Ax?
« Gaussian 2> P(Ax,Ar)= e exp{— }
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Chaudhuri et al. (2010) PRL, v.99 , p.060604 )
— Conditional probability of walker being at position » at time ¢ (van
Hove function)

1—¢1(S)+f(k)(d)l(s)—cbz(s))}
s(1—¢,(s) £ (k)

G, (k,5) = f, (k)

S &)= oo ) S jump ()

I () = (27%2)_3/2 exp(— r2/2£2)
Lo () = (27202 7 expl= 12 /22)
¢ =1, exp(-1t/1,)
¢, =1, exp(~1/7,)

— Equivalent to GME

oAb




Non-Fickian
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Conclusmns

 Transport in inhomogeneous/heterogeneous
materials can manifest multiple scales

« GME/CTRW approaches can be applied to bridge
scales

— Non-Fickian
— Non-Gaussian

« Coarse-graining approaches are possible on
discrete material structure




Acknowledgements

 P.R. Schunk
 Leo Silbert, Gary S. Grest
« Stephen Bond, Rich Lehoucq

oAb




Effective Thermal Conductivity of Particle

nersions: Process to Propert

« Verification of CDFEM for Average thermal i s |
conductivity in static random dispersions A
— Particle configurations taken from Brownian Dynamics AR e

Simulations of Repulsive Colloids

— Suspending fluid insulating, particles conductive (ratio
of conductivities ~ 1000)

(V-(0(x,3,2)VT(x,,2)))

7 T I

0

¢ CDFEM Py
— Lower Bound
— — Torguato Expr.
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 “Increments” and their distribution
— Volatile T
— Non-Gaussian I

AG /o
e 1

200 400 600 800 1000

/_@E timestep
AERUTRY RO FEFLAR & Ry BT




1 ,' | ok B e S0 e 5 &
- Based on sampling - | R
~1000 pstructures 5 ooa
— “Aleatory” Uncertainty =
only £ oo o
- What is “irreducible” = |
about this "
uncertainty? . . . . . . .
— Note Gumbel distrib. and C L avesstaaev.

extreme-value-type statistics

* “medium tailed”, between Frechet and Wiebul

« What are sources of epistemic uncertainty?
» Micro-structure resolution, thermal conductivity

f—-@}’ measurement




. Temperature Profiles: Thermodynamics

and Fluctuations

T

‘temp_profile_1.dat’ usmg1

‘temp_profile_2.dat’ using 1:

'temp_profile_3.dat’ using 1:
1.0-0.01*

. Random “Stair-step”
temperature profiles

— Yield “fluctuating” !
temperature field )
* A non-equilibrium
thermodynamic

fluctuation theory gives | 0% w0 w0 w 100

1 CO , ; . Height, z . .
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Contact Network Properties

Walk on network (“myopic ant”)

— Define master equation on contact network
» Transition Probability Matrix
— Primitive => Strongly connected => Ergodic
» Steady-state exists and is (weakly) inhomogeneous
Conditional probability of finding a walker in a i

particle after long time not constant for all 0.01
particles

» Rate of convergence given
* MSD ~ number of steps

— Relationship to homogenized limit | DRI
5 0 50 100 150 200 250 300
(or CLT)?

1074
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steps (n)
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p = 0.00004
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Eigen value spectrum
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3 Inhomogeneous Steady State

 Nonequilibrium

— Non-zero global flux
» Asymmetric local transitions

Ml.j;tMﬂ.
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: Thermodynamics and Homogenization

 Necessary but not sufficient to consider
homogenization (understood in my current naive
sense)

— How do we know that the homogenized limit is relevant from a
stability perspective?

* Prediction and “emergent” phenomena: e.g., phase changes (first
and second order) and/or dissipative structures

— What can we say about fluctuations away from asymptotic limit?
* Role of Law of Large Numbers and Central Limit Theorem
— Non-equilibrium phase transition and “self-organization”

 Need non-Equilibrium Fluctuation Theory




Thermodynamics and Homogenization: the

3445 Local Potential

. ConS|der boundary value problem

Ee——W
p@t 27 + B.C.5sand I.C.

W; =/’L(xj)T2(T‘1),j
— Following Glansdorf and Prigogine (1971)
» Local equilibrium assumption

» Linear irreversible processes

— C.f., multiscale projection method of homogenization (Vogelius and
Papanicolaou 1982)

19 (525)= j/lT (', Jdv=0
20t

— Assume perturbation about steady state A7 = 2,77 +5(A7?)
10

55(55 j/sz(S 2 fav + - ol (7' av

,—-@B  First term can be taken as a functional of 7 and T, to be extremalized
LD () sendia Nationat Laboratores




1 8 2 1 2 -1 2 1 2 -1 <
55(5 S)=EJ%TO5(T,J- )dV+§j5(/lT b(r)av
« This is the excess entropy production

— Okay for thermodynamic equilibrium states or NESS near
equilibrium (linear response region), but not okay far-from-
equilibrium

* First term taken as functional for variational problem

— Perturbation positive around reference state => absolute (global)
minimum; always minimum at reference state

« Second term NOT small (nor necessarily positive)

— When stability conditions hold, sign of local potential is same a
excess entropy production; i.e., positive

— Else reference solution given by first term is unstable

* How can we obtain (approx.) lambda_0?
bﬁ?:;},— periodic vs. random cell, boundary conditions, etc.

() sandia National Laboratoies




Homogenization and the Local Potential:

(®sx8H Approximating A

 Multiscale Projection following Vogelius and Papanicolaou (1982)

2
1 = 3
I°(w) = j/l(xjw(x) dx w(X)=u + Z gx(x)vj
27 \¢ o \¢&
— If (1-periodic) cell functions y,(y) satisfy certain nondegeneracy conditions,

e—0 \817()()
" ox,

J

v;(X)

— And (away from boundaries),
2_

3 0% .
Z(;Lo) o = f(x)

:
i Ox,0x




wa 3 Materials Science Needs

 Multi-scale Transport
— Sub-particle materials structure
— Interfacial structure and transport processes

 Multiphysics
— Heterogeneous reactions

» Multi-species nonequilibrium thermodynamic phase behavior of
material constituents

— Phase changes, melting, ...
* Role of Interfaces

— Thermo-mechanical effects

ORD




Meso-scale particle-based applications
Need particle scale mod-sim cap i

Energy storage

Laser Beam

Direction of Laser
Beam Movement

Melt Pool Powder Layer

Remelted Material

R

Pireaiti Garvidgn Faiddig < olhiien Sydam

A pchematic diawing of an ¥LY precem

_ Additive Manufacturing: selective  \Waste répoéitofy;pofous flow
mB Laser melting/sintering Energy: fracking (1) sandia Natonal Labaratores




