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MOFs: “Molecular Tinker Toys™ lead fo record-breaking materlals Approach: Define canonical MOFs, Leverage Sandia capabilties, Collaborate to accelerate startup

Issges_ wi.th hanoporous materialls: A Solution: Metal-organic frameworks ™~ /" Leverage )
« Distribution of.pore_ sizes, properties « Metal cations bridged by organic ligands * Nanopore models (6316)

. Surface. chemistry is difficult to cqntrol - Rigid structures, permanent porosity o | B « Chemical synthesis (8700)

* Synthetic templates may be required « Tunable pore size (1-5 nm), chemistry » - Materials integration (8300)
« Growth on surfaces is problematic - Ultrahigh surface areas (up to 6,000 m2/g) ¥ . /

Many potential applications:

‘ @ Task 2: Validated

- Chemical sensors “Isoreticular” MOF-5: tunable pore sige ") Task 1: Synthesis & Properties confined-space
- Decontamination and pore chemistry models
(Yaghi et al. Science 1999)

Properties
Data for model validation
Identify MOF suites for SNL missions:
Chem/bio/radiation detection
Water purification
Enhanced surveillance
Efficient separations

« Water purification

* H, and CO, storage

* Nanoscale templates
* Drug delivery

« Catalysts

» Separations/chromatography

Cr MIL: 6000 m?/g
(Férey et al., Science 2005)

Nanolaboratory
for Confined-
Space Chemistry
and Materials
Science

Link nanoscale environment to
observable properties

Ab initio calculations
Force-field development
Transport models

/Collaborate h
Reliable manufacturing and applications [[h NMHU

Cu MOF (HKUST-1): open
coordination sites in the pore
(Chui et al. Science 1999)
*MOF films on surfaces

.Membranes ”?) {LCOLLEGE OF CHEMISTRY
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*Sensing platforms

New fluorescent MOFs: nanoporous materials for selective chemical detection

Scintillating MOFs: first new class of radiation detection materials since 1950
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Bauer, Allendorf et al. J. Amer. Chem. Soc. 129 (2007), 7136 for various adsorbed organic solvents MOFs are extremely radiation

tolerant—more so than the
anthracene standard
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Infiltration with Lanthoid elements:
adsorbed molecules generate unique color signatures

Allendorf and Houk, TA filed, 2008 Mass | Dose rate
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Structural non-rigidity in MOFs requires a radically different approach to atomistic modeling e 0.4 1.20E+04 | 1.13E+09 100% SHbm. 1o Ay e
2D MOF 0.38 9.33E+03 | 2.49E+08 22% )
3D MOF 1 0.22 1.00E+04 | 9.62E+07 9%
First MOF itions tested
3D MOF 2 0.49| 9.33E+03| 6.62E+07 6% | are comparable to commoreial
First “Flexible” Force Field for MOFs Stilbene 50% scintillators
BC422Q (commercial organic
scintillator) 11% _~ Patent pending

Allow some Flexible force field proves to be a robust tool for simulating a wide spectrum of MOF properties

atoms in the
framework to
move

Covalently
bonded atoms
are rigid

Coordination
(ionic) bonds -4
¢ ©

are flexible *First simulation of MOF reactivity: collapse of MOF-5 upon reaction with water
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Integrating MOFs with surfaces is essential to incorporate MOFs into sensors
and electronic devices
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Step-by-step growth method implemented to adapt MOFs to = A L | | usedto _ _ - Example: IRMOF-1 (also known as MOF-5):

MEMS and other devices g T " characterize thin - a = 25:6690 A post synthesis (8 DMF+ 1
= it B Y M e - MOF_ films on C4HsCl/pore)
T TIC:C')':" = H /| cantilevers Structural - a = 25:8849 A evacuated — 0.8% change

JJ
guest mechanically coupled to microcantilever
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’ avenumbers (cm’) e « Adsorption induces stress if MOF layer is

MOF mechanical molecule . Calculated sensitivity

o5 properties adsorption « Known response function of microcantilever

T e enables stress- 0.08 mvm)

é to predict device induced *40 pum x 450 um x 1 um CP layer
MOF on a microcantilever 0.05 sensitivity detection in « Assume 10X S/N
°°°°° . . Result: Calculated sensitivity = ~17 - 50 fmoles a
ol L microcantilever
Bahr, Allendorf, et al. Phys. Rev. B2007, 76, 184106 o 0 fogo 5% 200 2800 crocantilevers « General problem: elastic constants for MOFs
must be known
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