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Cr MIL: 6000 m2/g
(Férey et al., Science 2005)

Cu MOF (HKUST-1): open 
coordination sites in the pore 

(Chui et al. Science 1999)

Many potential applications:

• Chemical sensors

• Decontamination

• Water purification

• H2 and CO2 storage

• Nanoscale templates

• Drug delivery

• Catalysts

• Separations/chromatography

“Isoreticular” MOF-5: tunable pore size 
and pore chemistry
(Yaghi et al. Science 1999)

MOFs: “Molecular Tinker Toys” lead to record-breaking materials

New fluorescent MOFs: nanoporous materials for selective chemical detection

Fluorescence emission 
(325 nm excitation)

1,4-BDCZn2(COO-)4

4,4′-Bipy

Above: Empty MOF (blue); infused 
with Tb (green) and Eu (red)

immobilized in a polymer film under 
254-nm light. Below: color signatures 
for various adsorbed organic solvents

IRMOF-S1: An isotropic, nanoporous cage with 
a high-efficiency fluorophore

Bauer, Allendorf et al. J. Amer. Chem. Soc. 129 (2007), 7136

Infiltration with Lanthoid elements:
adsorbed molecules generate unique color signatures
Allendorf and Houk, TA filed, 2008

Approach: Define canonical MOFs, Leverage Sandia capabilties, Collaborate to accelerate startup

Define
Leverage
• Nanopore models (6316)
• Chemical synthesis (8700)

• Materials integration (8300)

Task 1: Synthesis & Properties

Properties
Data for model validation
Identify MOF suites for SNL missions:

Chem/bio/radiation detection
Water purification
Enhanced surveillance
Efficient separations

Collaborate

Nanolaboratory 
for Confined-

Space Chemistry 
and Materials 

Science

Task 2: Validated 
confined-space 
models

Link nanoscale environment to 
observable properties

Ab initio calculations

Force-field development

Transport models

Reliable manufacturing and applications

•MOF films on surfaces 
•Membranes
•Sensing platforms
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First MOF compositions tested 
are comparable to commercial 
scintillators

Doty, Allendorf et al. 
subm. to Adv. Mater. 2008

MOFs are extremely radiation 
tolerant—more so than the 
anthracene standard

Ion beam-induced luminescence (IBIL) used to 
characterize MOF response to ionizing radiation

Scintillating MOFs: first new class of radiation detection materials since 1950
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3D MOF 2D MOF Anthracene

SAMPLE
Mass 
(mg)

Dose rate 
J/kg/s Cts./J Intensity

Anthracen
e 0.4 1.20E+04 1.13E+09 100%

2D MOF 0.38 9.33E+03 2.49E+08 22%

3D MOF 1 0.22 1.00E+04 9.62E+07 9%

3D MOF 2 0.49 9.33E+03 6.62E+07 6%

Stilbene 50%

BC422Q (commercial organic 
scintillator) 11%

First “Flexible” Force Field for MOFs

Structural non-rigidity in MOFs requires a radically different approach to atomistic modeling

Allow some 
atoms in the 
framework to 

move

Covalently 
bonded atoms 

are rigid

Coordination 
(ionic) bonds 
are flexible

MOF-5

Rigid Bonding

Nonbonded Interactions

Zn and Inorganic Oxygen

Zn and OBDC

Flexible force field proves to be a robust tool for simulating a wide spectrum of MOF properties

Thermal properties Mechanical properties Gas adsorption

Greathouse and Allendorf J. Phys. Chem. C 2008, 5795

•First simulation of MOF reactivity: collapse of MOF-5 upon reaction with water

Greathouse and Allendorf JACS 2006, 128, 10678
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• Example: IRMOF-1 (also known as MOF-5):

• a = 25:6690 Å post synthesis (8 DMF+ 1 
C6H5Cl/pore)

• a = 25:8849 Å evacuated     0.8% change

• Adsorption induces stress if MOF layer is 
mechanically coupled to microcantilever

• Calculated sensitivity

• Known response function of microcantilever 
(0.04 mN/m)

• 40 m x 450 m x 1 m CP layer

• Assume 10X S/N

Result: Calculated sensitivity = ~17 - 50 fmoles

• General problem: elastic constants for MOFs 
must be known

Structural 
flexibility upon 
“guest” 
molecule 
adsorption 
enables stress-
induced 
detection in 
microcantilevers

Integrating MOFs with surfaces is essential to incorporate MOFs into sensors 
and electronic devices

Step-by-step growth method implemented to adapt MOFs to 
MEMS and other devices

-Surface-
Enhanced Raman 
used to 
characterize thin 
MOF films on 
cantilevers

MOF mechanical 
properties 

measured (using 
nanoindent-ation) 
to predict device 

sensitivityMOF on a microcantilever

Bahr, Allendorf, et al. Phys. Rev. B 2007, 76, 184106 

Issues with nanoporous materials:
• Distribution of pore sizes, properties
• Surface chemistry is difficult to control
• Synthetic templates may be required
• Growth on surfaces is problematic

A Solution: Metal-organic frameworks
• Metal cations bridged by organic ligands
• Rigid structures, permanent porosity
• Tunable pore size (1-5 nm), chemistry
• Ultrahigh surface areas (up to 6,000 m2/g)
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