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What is Computational Science?

# What do we think of when we think of
computational science?

o Usually “big” things. ..
o Airplanes, cars, rockets, etc.
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%What IS Computational Science?

# What do we think of when we think of
computational science?

o Usually “big” things. ..
o Airplanes, cars, rockets, etc.

o BUT computational science touches
everyday things as well!
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}Key Computational Kernels

# What are the important kernels for computational science?
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;’Key Computational Kernels

# What are the important kernels for computational science?

&

Time integration (time-dependent problems).
Force calculations (particle methods).

Solving linear systems (implicit methods, static
problems).

Interface tracking (shock problems).

Load balancing, graph algorithms (parallel problems,
direct solvers).

Optimization (inverse problems).
Eigenvalues (structures problems).
...and more.
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%mportance of Linear Algebra

#® Solving linear systems was critical to the example
= One linear solve per time step!

#® This is true of many simulations.
#® We can do this w/ Gaussian elimination (GE).
# Butis it fast enough?
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Is GE Good Enough?

A sparse matrix is “any matrix with enough zeros that it pays to take
advantage of them.” — J. Wilkinson

#® For dense problems (almost all entries non-zero), yes.
# But what about sparse problems?
# Example: 1D Heat equation has 3 non-zeros per row.

1D Heat Equation Sparsity
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}'Introducing Iterative Methods

Ar =0

#® |dea: Sparse matrix-vector products are cheap
COSt = # non-zeros.

#® Let D =diag(A) contain “a lot” of the matrix. Then,
(D+(A—D))x = b
Dr = b—(A—D)x
r = D Yb—(A-D)x)

® Jacobi’'s method:

Ti+1l = T; + D_l(b — A:EZ)

National

@ Sandia
# Total Operations =~ nnz. Laboratores

Introduction to Multigrid Methods — p.11/42



}Speed of Various Methods

Consider a model Laplace problem of size: n = k¢, where

d=2.3
Method 2D 3D
Dense GE I k9
Sparse GE | & kO
Jacobi k*logk | k°logk
Table from:

Scientific Computing: An Introductory Survey, 2nd ed. by M.T. Heath
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}Speed of Various Methods

Consider a model Laplace problem of size: n = k¢, where

d=2.3.
Method 2D 3D
Dense GE kO k9
Sparse GE | & kO
Jacobi k*logk | k°logk
Multigrid k? k3
Table from:

Scientific Computing: An Introductory Survey, 2nd ed. by M.T. Heath
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Introducing Multilevel Methods

#® Goal: Solve problem with specified mesh spacing, h.
# |dea: Approximate problem w/ coarse mesh H.

# Big Question: Will this work?
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; _ Fourier Series

» Consider a (real) Fourier series

flx) = % + Z o cos(2mxi)
i=1

® What do these functions look like?
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}Sampling Fourier Modes

® What modes can a discretization sample?
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g’.l\/lultigrid & Fourier Modes

Question: What does this have to do with multigrid?

Coarse grids can only resolve smooth modes.

Coarse grids cannot resolve oscillatory modes (aliasing).

Next question: What about oscillatory modes?
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Coarse Grid OK. Coarse Grid no help.
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Multigrid by Picture

Smoot Gae— Pratitsz— ¥ mooth
W : = z - i

%‘Wwﬂ”ﬂ'

Smooth
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}Multigrid Method for A,z =10

Loop until convergence...

1. Smooth on fine grid.

2.

jacobi( Ay, x,b).

Transfer residual (b — Aj,x) to coarse grid (restriction).
Te — PT(b — Ahil?)

. Solve on coarse grid.

:xczzl4zf7b.

. Transfer solution to fine grid (prolongation).

r=x+ Px,

. Smooth on fine grid.

jacobi(A x,b).

Sandia
National
Laboratories

Introduction to Multigrid Methods — p.21/42



© © o o ©

_ '
}Outline

Background.

Solving Linear Systems with Iterative Methods.
Introduction to Multilevel Methods.

Introduction to Algebraic Multigrid.

Open Questions in Multilevel Methods.

Sandia
National
Laboratories

Introduction to Multigrid Methods — p.22/42



L I

°

\

Multigrid

Multigrid requires a
= Inconvenient for t

Can we automatical
Yes! This Is called a

without a Grid

nierarchy of grids
ne user.

y build the hierarchy?

gebraic multigrid (AMG).

Question: Does the smooth/oscillatory distinction make
sense”?
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}The Logic of AMG

Start by choosing a smoother.

If the smoother damps the error. ..
it is algebraically smooth.

If the smoother doesn’t damp the error ...
choose the grids so that it is smooth somewhere.

Note: Contrast this with geometric MG where you pick the
grid hierarchy first.
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} The Two Schools of AMG

# Classical AMG (Ruge-Stlben)
o Choose subset of nodes for the coarse mesh
(C-points).
o Fine-only nodes (F-points) interpolate off of
neighboring C-points.
# Smoothed Aggregation (SA)

o Group or “aggregate” unknowns together to form
coarse unknowns.

# Interpolate based on grouping plus smoothing.
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}Smoothed Aggregation AMG

Near Nullspace

#® Define the near null space.
o Often a null space for an unconstrained problem.
o Example: Constant vector for heat equation.
o Example: Rigid body modes for structural mechanics.
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}Smoothed Aggregation AMG

Near Nullspace

C ® o) (o ® o) (o ® ® )

#® Define the near null space.
#® Aggregate unknowns.
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}Smoothed Aggregation AMG

After Partitioning

(@ ® ) (o ® ) (o ® ®)

#® Define the near null space.
#® Aggregate unknowns.

# Partition near null space between aggregates.
o Preserves near null space on coarse grids.
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}Smoothed Aggregation AMG

After Smoothing

C e o) (e o o) (e e ®)

Define the near null space.
Aggregate unknowns.
Partition near null space between aggregates.

® o o ©

Smooth the prolongator using a step of Jacobi.
o Preserves null space.
o Improved interpolation.
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s Multigrid at Sandia

# ML is Sandia’s AMG package.
# It provides scalable multilevel/multigrid preconditioners.

#® Method types

o Smoothed Aggregation (SA) - symmetric or nearly
symmetric problems.

Non-symmetric SA - non-symmetric problems.
MatrixFree - matrix-free SA.

DD / DD-ML - domain decomposition.
Maxwell / RefMaxwell - Maxwell’'s equations.

@ & & &
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Trilinos Summary
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}’Open Questions in Multigrid

MG Is designed for Laplace/Heat problems
On other problems additional issues arise.

Mathematical issues: anisotropy, systems, variable
materials.

Computer science issues: parallelism, scalability.
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}Math Issue #1:. Anisotropy

0%u N 0%u
_ €E— —
ox?  Oy?

#® Anisotropic operators have direction-dependent behavior.

f

# Example: Heat diffuses “faster” in y direction (e small).
#® Tests varying ¢ w/ 10,000 unknowns.

‘ e=1 e=10"Y e=10"%2 e=10"% e=10""
terations | 14 20 53 129 189

® Thisis BAD!
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}Reacting to Anisotropy

#® Better meshes fix some problems.

Isotropic Mesh  Anisotropic Mesh
#® Meshes alone cannot solve hard problems.
#® Research problem: Robust detection of anisotropy.
#® Research problem: Non-axial anisotropy.
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*Math Issue #2. PDE Systems

9

Image courtesy of the CSAR/UIUC
http://ww. csar. ul uc. edu

PDE systems multiple different types of variables (e.g.
displacement, velocity, pressure, temperature, etc.).

Example: Linear elasticity.

One solution: Smoothed aggregation — explicitly preserve
null space on coarse levels.

Research problem: Fluid problems (e.g. Navier-Stokes).
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; Math Issue #3: Multimaterial

Material interfaces can be sites of discontinuities
—- oscillatory modes at boundaries.

Features can be hard to resolve on coarse grid.

Research problem: Detecting material interfaces.
Research problem: Handling disappearing features.
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CS Issues: Parallelism

#® More processors should lead to faster solutions.
#® Strong scaling — fix work, increase processors.
® Example: 2,000 steps of Jacobi.

5

] —— Strong Scaling
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CS Issues: Parallelism

#® More processors should lead to faster solutions.
#® Strong scaling — fix work, increase processors.
® Example: 2,000 steps of Jacobi.
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Sandia
#® Question: What causes the loss in efficiency? @l”aaﬁs‘iz?éﬂes
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Understanding Efficiency

#® Answer: Computation to communication ratio.
#® Weak scaling — fix work per processor.

—— Strong Scaling
0.9r ——Weak Scaling H
0.8 ]

\'

Efficiency
© o o o o
w N ul (o)) ~

o
[N

10° 10" 10°
Processors

#® Message: What works on a small # of procs, might
not work on a large #. @ Moo
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CS Issue #1: Scalability

Coarse grids = less work per proc = poor performance.
One solution: Move data to leave some procs idle.
Research problem: What is the best way to repartition?

Research problem: How to address poor performance on
really big (terascale) computers.

Red Storm(SNL) 26,569 procs Jaguar(ORNL) 23,016 procs
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; Take Home

“I would rather have today’s algorithms on yesterday’s computers
than vice versa.” - Reported by P. Toint

Importance of good algorithms.
Rationale behind multilevel algorithms.

Nature of the “big questions” in multilevel algorithm
research.

o Math: Anisotropy, multimaterial, PDE systems.
o CS: parallelism, scalability.

My web site: htt p: // ww. sandi a. gov/ ~csi ef er
Trilinos project: http://trilinos. sandi a. gov
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