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What is Computational Science?

What do we think of when we think of
computational science?

Usually “big” things. . .
Airplanes, cars, rockets, etc.
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What is Computational Science?

What do we think of when we think of
computational science?

Usually “big” things. . .
Airplanes, cars, rockets, etc.

BUT computational science touches
everyday things as well!
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Key Computational Kernels
What are the important kernels for computational science?
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Key Computational Kernels
What are the important kernels for computational science?

Time integration (time-dependent problems).
Force calculations (particle methods).
Solving linear systems (implicit methods, static
problems).
Interface tracking (shock problems).
Load balancing, graph algorithms (parallel problems,
direct solvers).
Optimization (inverse problems).
Eigenvalues (structures problems).
. . . and more.

Introduction to Multigrid Methods – p.6/42



Key Computational Kernels
What are the important kernels for computational science?

Time integration (time-dependent problems).
Force calculations (particle methods).
Solving linear systems (implicit methods, static
problems).
Interface tracking (shock problems).
Load balancing, graph algorithms (parallel problems,
direct solvers).
Optimization (inverse problems).
Eigenvalues (structures problems).
. . . and more.

Introduction to Multigrid Methods – p.7/42



Outline
Background.

Solving Linear Systems with Iterative Methods.

Introduction to Multilevel Methods.

Introduction to Algebraic Multigrid.

Open Questions in Multilevel Methods.

Introduction to Multigrid Methods – p.8/42



Importance of Linear Algebra
Solving linear systems was critical to the example
⇒ One linear solve per time step!

This is true of many simulations.

We can do this w/ Gaussian elimination (GE).

But is it fast enough?
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Is GE Good Enough?
A sparse matrix is “any matrix with enough zeros that it pays to take

advantage of them.” — J. Wilkinson

For dense problems (almost all entries non-zero), yes.

But what about sparse problems?

Example: 1D Heat equation has 3 non-zeros per row.

1D Heat Equation Sparsity
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Introducing Iterative Methods

Ax = b

Idea: Sparse matrix-vector products are cheap
cost = # non-zeros.

Let D = diag(A) contain “a lot” of the matrix. Then,

(D + (A − D))x = b

Dx = b − (A − D)x

x = D−1(b − (A − D)x)

Jacobi’s method:

xi+1 = xi + D−1(b − Axi)

Total Operations ≈ nnz.
Introduction to Multigrid Methods – p.11/42



Speed of Various Methods
Consider a model Laplace problem of size: n = kd, where
d = 2, 3.

Method 2D 3D
Dense GE k6 k9

Sparse GE k3 k6

Jacobi k4 log k k5 log k

Multigrid k2 k3

Table from:

Scientific Computing: An Introductory Survey, 2nd ed. by M.T. Heath
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Introducing Multilevel Methods
Goal: Solve problem with specified mesh spacing, h.

Idea: Approximate problem w/ coarse mesh H.

Big Question: Will this work?
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Fourier Series
Consider a (real) Fourier series

f(x) =
a0

2
+

∞∑

i=1

αi cos(2πxi)

What do these functions look like?

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Smooth Oscillatory
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Sampling Fourier Modes
What modes can a discretization sample?
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Multigrid & Fourier Modes
Question: What does this have to do with multigrid?

Coarse grids can only resolve smooth modes.

Coarse grids cannot resolve oscillatory modes (aliasing).

Next question: What about oscillatory modes?
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Jacobi to the Rescue
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Oscillatory Mode
1 Jacobi Step
2 Jacobi Steps
5 Jacobi Steps
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Multigrid by Picture

Smooth

Smooth

Smooth

Smooth

Solve
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Multigrid Method for Ahx = b

Loop until convergence...

1. Smooth on fine grid.
jacobi(Ah, x, b).

2. Transfer residual (b − Ahx) to coarse grid (restriction).
rc = PT (b − Ahx).

3. Solve on coarse grid.
xc = A−1

H rc.

4. Transfer solution to fine grid (prolongation).
x = x + Pxc

5. Smooth on fine grid.
jacobi(A,x, b).
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Multigrid without a Grid

?
.

Multigrid requires a hierarchy of grids
⇒ inconvenient for the user.

Can we automatically build the hierarchy?

Yes! This is called algebraic multigrid (AMG).

Question: Does the smooth/oscillatory distinction make
sense?
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The Logic of AMG
Start by choosing a smoother.

If the smoother damps the error. . .
it is algebraically smooth.

If the smoother doesn’t damp the error . . .
choose the grids so that it is smooth somewhere.

Note: Contrast this with geometric MG where you pick the
grid hierarchy first.
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The Two Schools of AMG
Classical AMG (Ruge-Stüben)

Choose subset of nodes for the coarse mesh
(C-points).
Fine-only nodes (F-points) interpolate off of
neighboring C-points.

Smoothed Aggregation (SA)
Group or “aggregate” unknowns together to form
coarse unknowns.
Interpolate based on grouping plus smoothing.
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Smoothed Aggregation AMG
Near Nullspace

Define the near null space.
Often a null space for an unconstrained problem.
Example: Constant vector for heat equation.
Example: Rigid body modes for structural mechanics.
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Smoothed Aggregation AMG
Near Nullspace

Define the near null space.

Aggregate unknowns.
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Smoothed Aggregation AMG
After Partitioning

Define the near null space.

Aggregate unknowns.

Partition near null space between aggregates.
Preserves near null space on coarse grids.
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Smoothed Aggregation AMG
After Smoothing

Define the near null space.

Aggregate unknowns.

Partition near null space between aggregates.

Smooth the prolongator using a step of Jacobi.
Preserves null space.
Improved interpolation.
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Multigrid at Sandia
ML is Sandia’s AMG package.

It provides scalable multilevel/multigrid preconditioners.

Method types
Smoothed Aggregation (SA) - symmetric or nearly
symmetric problems.
Non-symmetric SA - non-symmetric problems.
MatrixFree - matrix-free SA.
DD / DD-ML - domain decomposition.
Maxwell / RefMaxwell - Maxwell’s equations.
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Trilinos Summary

Discretizations

Methods

Core

Solvers

ML

Rythmos

Intrepid phdMesh

Moertel

Sacado

Thyra

Isorropia

RTOp

ForTrilinos

ZoltanTeuchos

Epetra EpetraExt

AztecOO

Ifpack Amesos

NOX

Anasazi Belos

Meros LOCA

Moocho
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Open Questions in Multigrid
MG is designed for Laplace/Heat problems

On other problems additional issues arise.

Mathematical issues: anisotropy, systems, variable
materials.

Computer science issues: parallelism, scalability.
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Math Issue #1: Anisotropy

∂2u

∂x2
+ ǫ

∂2u

∂y2
= f

Anisotropic operators have direction-dependent behavior.

Example: Heat diffuses “faster” in y direction (ǫ small).

Tests varying ǫ w/ 10, 000 unknowns.

ǫ = 1 ǫ = 10−1 ǫ = 10−2 ǫ = 10−3 ǫ = 10−4

Iterations 14 20 53 129 189

This is BAD!
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Reacting to Anisotropy
Better meshes fix some problems.

Isotropic Mesh Anisotropic Mesh

Meshes alone cannot solve hard problems.

Research problem: Robust detection of anisotropy.

Research problem: Non-axial anisotropy.
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Math Issue #2: PDE Systems

Image courtesy of the CSAR/UIUC
http://www.csar.uiuc.edu

PDE systems multiple different types of variables (e.g.
displacement, velocity, pressure, temperature, etc.).

Example: Linear elasticity.

One solution: Smoothed aggregation — explicitly preserve
null space on coarse levels.

Research problem: Fluid problems (e.g. Navier-Stokes).
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Math Issue #3: Multimaterial
Material interfaces can be sites of discontinuities
⇒ oscillatory modes at boundaries.

Features can be hard to resolve on coarse grid.

Research problem: Detecting material interfaces.

Research problem: Handling disappearing features.
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CS Issues: Parallelism
More processors should lead to faster solutions.

Strong scaling — fix work, increase processors.

Example: 2,000 steps of Jacobi.
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CS Issues: Parallelism
More processors should lead to faster solutions.

Strong scaling — fix work, increase processors.

Example: 2,000 steps of Jacobi.
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Strong Scaling

Question: What causes the loss in efficiency?
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Understanding Efficiency
Answer: Computation to communication ratio.

Weak scaling — fix work per processor.
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Strong Scaling
Weak Scaling

Message: What works on a small # of procs, might
not work on a large #.
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CS Issue #1: Scalability

Red Storm(SNL) 26,569 procs Jaguar(ORNL) 23,016 procs

Coarse grids ⇒ less work per proc ⇒ poor performance.

One solution: Move data to leave some procs idle.

Research problem: What is the best way to repartition?

Research problem: How to address poor performance on
really big (terascale) computers.
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Take Home
“I would rather have today’s algorithms on yesterday’s computers

than vice versa.” - Reported by P. Toint

Importance of good algorithms.

Rationale behind multilevel algorithms.

Nature of the “big questions” in multilevel algorithm
research.

Math: Anisotropy, multimaterial, PDE systems.
CS: parallelism, scalability.

My web site: http://www.sandia.gov/~csiefer

Trilinos project: http://trilinos.sandia.gov
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