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Problem definition

« Aim: To characterize and infer the genesis of epidemics
from partial information
— Estimate the size of a bioattack (for medical response purposes)

— Estimate pathogenic characteristics (for tracking emerging
infectious diseases)

— Uncertainty quantification (UQ), due to partial observations

* Technical challenges
— Stochastic model of disease spread
— Separating social and pathogenic contributions to disease
propagation
— Inferring social parameters (social networks)
— Formulating a Bayesian inverse problem to do so

— MCMC methods for high-dimensional parameters spaces
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Overall approach

» Create a stochastic, individual-based epidemiological
model separating social and pathogenic contributions

— Start with an individual-based dynamic social contact network model
(Network Forward Model, NFM)

— Derive from it, an equivalent, but more efficient static network model

* Inverse problem: Bayesian; parameters estimated as PDFs
— Estimation of bioattack parameters from partial observations of the
epidemic
— Estimation of pathogenic properties, e.g., transmissibility
— MCMC algorithms to infer graphs

— Prior beliefs of graph morphologies/parameters guided by previous

item
@ Sandia
National
Laboratories



\

Stochastic epidemiological model

 Dynamic model (EpiSims, Eubank, et al.) based on bipartite,
time varying graph (transit network-based): people move
among locations throughout a day; shed or absorb virus

 Each person or location has a disease “load”; when
exceeds a threshold, progress through infection stages
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Epidemiological model reduction

* One reduced-order modeling approach:
create static contact network based on
person collocation in a 24 hour period

» Use a time-dependent probability of

transmission model
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» Similar epidemic prediction to
dynamic, load-based model

 Also explored graph
clustering and sampling
techniques to reduce number
of people/locations in
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Estimation of bioattacks (anthrax)

* Approach:
— Disease model predicated on a
dose-dependent incubation period ~ °*[ /\ . size of Atack Day 2
distribution : RS vt
— Analytical expression for the r ~ f 15
likelihood =(N,t,D|S) - ;"a. " ‘il Days counted from April 41"
« N: number infected, t: time of & .
infection, D: average dose .
» Test/results: Sverdlovsk, 1979.
— Accidental release; 80 victims; 70 °°'[f
deaths o
— Release: 2" April B
— First symptoms: 4" April It was quite clear by April 13t that
— Qutbreak lasted 42 days the outbreak would be small (less

— Medical response starts: April 14th than 100 infected)
— People affected: 50,000-60,000 @ S
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Estimation of pathogenic transmissibility

* Approach:

— Structured population, represented as
a graph @G, a collection of B-graphs

— Model disease transmission along links

of G as a Poisson process, with rate
— Differential transmission, inside and

dCross groups

— MCMC to infer B, G and infection

pathway P

— B
.............. 3
B, (40 days)
—— [, (40 days)

| Nt | IR S S T P il e
0.002  0.004 0.006 ~ 0.0G8 0.01 0.012 0.014
x (days’')

» Test/results: Smallpox outbreak, Abakaliki, 1967. WHO/SE/68.3
— Affected a closed population of 74, divided into 7 groups. 30 victims
— Differential rates of spread observed in data (“eyeball norm”)

— Qutbreak lasted 3 months

— Only dates of appearance of symptoms recorded; victims’ fate

unknown. No vaccinations.
— Inferences drawn from full data, and the first 40 days of data @ e
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Estimation of social characteristics

Expected social graph <G>
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Results estimated from the first 40 days of the epidemic.

Expected infection pathway<P>
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Significance

* One can derive simplified, static network models of disease
spread from detailed individual-based models

 Partial observations can yield significant information about
an epidemic’s genesis and pathogenic characteristics
* Requires:
— A good characterization of the social structure (to serve as a priorin
the Bayesian inference method)

— Powerful, multi-chain MCMC algorithms to traverse the parameter
space

— Mode-hopping MCMC to address multi-modality.
* Few previously published works on both topics

* Potential for largest impact

— More realistic social networks, derived from individual-based
models, used in the inference process

— Advanced MCMC schemes for inferring networks @ Sandia
laat}:)(:g?mies



