
Customizing ParaView

Timothy M. Shead

Sandia National Laboratories

Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s
National Nuclear Security Administration

under contract DE-AC04-94AL85000.

SAND2008-5204P

Extending ParaView

• Traditional ParaView provides a static collection of filters and views:
• Uses existing filters provided by VTK and ParaView libraries.

• The collection of filters can be extended at compile-time:
• Sources outside the ParaView tree can be incorporated into the ParaView build.

• Compiles and links external sources as part of the overall ParaView build.

• Cons: setting-up the correct build environment for external sources can be tricky.

• Cons: two-pass build process, dependencies

• Reference: http://paraview.org/Wiki/ExtendingParaView

http://paraview.org/Wiki/ExtendingParaView

ParaView Plugins

• Extend the collection of filters at runtime.

• Shared libraries containing new filters are dynamically-linked into the working-
set at runtime.

• Plugins can be loaded automatically at startup from known locations, locations
specified via environment variable (PV_PLUGIN_PATH) or manually loaded via
the plugin manager GUI:

Plugin Types - Readers & Writers

Plugin Types - General Filters

Plugin Types - Custom Toolbars

Useful for automating setup of a complex pipeline, an arbitrary view

configuration, etc.

Plugin Types - Custom Panels

Provides a proxy-specific user interface panel - useful with complex proxies
where the auto-generated GUI is insufficient.

Plugin Types - Custom Views

Plugin Types - Miscellaneous

• Autostart Plugins - Executed automatically at program startup / shutdown.
• Useful for logging, starting servers, etc.

• Graph Layout Algorithms

• Your Plugin Idea Here!

An Everyday, Garden-Variety
Parallel Pipeline …

vtkParallelReader

vtkFooFilter

vtkBarFilter

vtkParallelRenderStuff

…

Node 0

vtkParallelReader

vtkFooFilter

vtkBarFilter

vtkParallelRenderStuff

…

Node 1

vtkParallelReader

vtkFooFilter

vtkBarFilter

vtkParallelRenderStuff

…

Node N

vtkParallelReader

vtkFooFilter

vtkBarFilter

vtkParallelRenderStuff

…

Node 2

Client

…

Raises lots of practical questions …

vtkParallelReader

vtkFooFilter

vtkBarFilter

vtkParallelRenderStuff

…

Node 0

vtkParallelReader

vtkFooFilter

vtkBarFilter

vtkParallelRenderStuff

…

Node 1

vtkParallelReader

vtkFooFilter

vtkBarFilter

vtkParallelRenderStuff

…

Node N

vtkParallelReader

vtkFooFilter

vtkBarFilter

vtkParallelRenderStuff

…

Node 2

…

Client

•How does the client refer to a remote VTK filter?

•How does the client create / delete VTK filters on a different host?

•How are remote VTK filters initialized / modified?

•How are remote VTK filters connected to form a pipeline?

•How does the client generate a UI for a filter?

Referencing Remote VTK Filters

vtkFooFilter

Node

Client

vtkSMProxy

Proxies = Remote VTK Filters

Proxies and the Parallel Pipeline

vtkFooFilter

Node N-1

vtkFooFilter

…

Client

vtkSMProxy

vtkFooFilter

Node 1

vtkFooFilter

Node 0

Proxy Naming

• Proxies are identified using a two-level hierarchy: "group" and
"name".

• Proxy Groups identify broad categories of proxy.

• Some current examples: "sources", "filters", "views", "representations",
"writers", "lights", "textures".

• You can create your own, e.g: "layout_strategies".

• But many groups have special meaning to the user interface!

• Proxy Names identify specific proxy types.

• Typically "vtkFooFilter" will have a proxy named "FooFilter".

• This naming scheme isn’t enforced.

Initializing / Modifying Proxies

Properties = Remote Method Calls

vtkFooFilter
Node

Client

vtkSMProxy

+ SetFooCount(count : int) : void

+ …

vtkSMProperty

0 .. *

Property Types

Type C++ Class Representative Method Calls

Integers vtkSMIntVectorProperty SetFoo(int)

SetFoo(int[2])

Doubles vtkSMDoubleVectorProperty SetFoo(double)

SetFoo(double[3])

Strings vtkSMStringVectorProperty SetFoo(const char*)

SetFoo(const char*, const char*)

Proxy vtkSMProxyProperty SetFoo(vtkObject*)

Filter Input vtkSMInputProperty AddInput(…)

Property Domains

• Domains restrict the set of values that a property can assume.

• Example: a domain can limit an integer property to a range of values.

• Example: a domain can limit a string property to an enumerated list of
values.

• Where a property defines the type of data, a domain can provide a
higher-level description of how the data will be used.

• Example: a domain can limit an integer property to boolean true/false
values.

• Example: a domain can specify that a string property will be used to
represent filenames.

• "Server Manager XML" defines each proxy and all its properties:

<ServerManagerConfiguration>

<ProxyGroup name="filters">

<SourceProxy name="FooFilter" class="vtkFooFilter">

<InputProperty name="Input" … />

<IntVectorProperty name="FooCount" … />

</SourceProxy>

<!-- More proxies in this group … -->

</ProxyGroup>

<!-- More groups in this file … -->

</ServerManagerConfiguration>

• The XML is linked into the binary (ParaView or plugin) as a static string, then parsed at runtime to
populate a database of proxies.

• The XML provides a useful layer of indirection:

• Proxies and properties can be named however you like, replacing the names of the underlying filters and
methods.

• You can provide properties for only those methods that you want to expose, simplifying the user interface.

• You can provide your own preferred default values for properties, replacing those of the underlying filter.

• One filter could be used in multiple proxies, "preconfigured" for multiple specific use-cases.

But Where Do Proxies and
Properties Come From?

Plugin Examples

• Reader

• Filter

• Toolbar

• Custom Panel

Sample Reader Plugin XML

<ServerManagerConfiguration>

<ProxyGroup name="sources">

<SourceProxy name="TulipReader" class="vtkTulipReader">

<StringVectorProperty name="FileName"

command="SetFileName" number_of_elements="1">

<FileListDomain name="files"/>

</StringVectorProperty>

<Hints>

<View type="ClientGraphView"/>

</Hints>

</SourceProxy>

</ProxyGroup>

</ServerManagerConfiguration>

Sample Reader Client XML

<ParaViewReaders>

<Reader name="TulipReader" extensions="tlp"

file_description="Tulip graphs">

</Reader>

</ParaViewReaders>

Sample Reader Listfile

ADD_PARAVIEW_PLUGIN(MyReaders "1.0"

SERVER_MANAGER_XML

MyReadersSM.xml

SERVER_MANAGER_SOURCES

${VTK_SOURCE_DIR}/Infovis/vtkTulipReader.h

GUI_RESOURCE_FILES

MyReadersGUI.xml

)

TARGET_LINK_LIBRARIES(MyReaders

vtkInfovis

)

Sample Filter Plugin XML

<ServerManagerConfiguration>

<ProxyGroup name="filters">

<SourceProxy name="DataObjectToTable" class="vtkDataObjectToTable">

<InputProperty name="Input" command="SetInputConnection"/>

<IntVectorProperty name="FieldType" command="SetFieldType"

number_of_elements="1" default_values="0">

<EnumerationDomain name="enum">

<Entry value="0" text="Field Data"/>

<Entry value="1" text="Point Data"/>

<Entry value="2" text="Cell Data"/>

<Entry value="3" text="Vertex Data"/>

<Entry value="4" text="Edge Data"/>

</EnumerationDomain>

</IntVectorProperty>

<Hints>

<View type="ClientTableView"/>

</Hints>

</SourceProxy>

</ProxyGroup>

</ServerManagerConfiguration>

Sample Filter Listfile

ADD_PARAVIEW_PLUGIN(MyFilters "1.0"

SERVER_MANAGER_XML

MyFiltersSM.xml

SERVER_MANAGER_SOURCES

${VTK_SOURCE_DIR}/Infovis/vtkDataObjectToTable.h

)

TARGET_LINK_LIBRARIES(MyFilters

vtkInfovis

)

Sample Toolbar Plugin Source

#include <QActionGroup>
#include <QApplication>
#include <QMessageBox>
#include <QStyle>

class MyToolBar : public QActionGroup
{
Q_OBJECT

public:
MyToolBar (QObject* p) :

QActionGroup(p)
{

QIcon icon = qApp->style()->standardIcon(QStyle::SP_MessageBoxCritical);

QAction* a = this->addAction(new QAction(icon, "MyAction", this));
QObject::connect(a, SIGNAL(triggered(bool)), this, SLOT(onAction()));

}

public slots:
void onAction()
{

QMessageBox::information(NULL, "MyAction", "MyAction was invoked\n");
}

};

Sample Toolbar Listfile

QT4_WRAP_CPP(MOC_SRCS MyToolBar.h)

ADD_PARAVIEW_ACTION_GROUP(

IFACES IFACE_SRCS

CLASS_NAME MyToolBar

GROUP_NAME "ToolBar/MyActions"

)

ADD_PARAVIEW_PLUGIN(MyToolBar "1.0"

GUI_INTERFACES ${IFACES}

SOURCES MyToolBar.cxx ${MOC_SRCS} ${IFACE_SRCS}

)

Custom Panel Sources

#include "pqObjectPanel.h"

class MyCustomPanel :
public pqObjectPanel

{
Q_OBJECT

public:
MyCustomPanel(pqProxy* proxy, QWidget* p) :
pqObjectPanel(proxy, p)

{
vtkSMProxy* my_proxy = proxy->GetProxy();
/* Sync widgets with proxy property values here. */
/* Connect widget signals to the setModified() slot here … */
QObject::connect(this->Widgets.foo, SIGNAL(textEdited(const QString&)), this, SLOT(setModified()));

}

private slots:
virtual void accept()
{
vtkSMProxy* my_proxy = this->referenceProxy()->getProxy();
/* Sync proxy properties with widget states here. */

}
virtual void reset()
{
vtkSMProxy* my_proxy = this->referenceProxy()->getProxy();
/* Sync widgets with proxy property values here. */
pqObjectPanel::reset();

}
};

Custom Panel Listfile

QT4_WRAP_CPP(MOC_SRCS MyCustomPanel.h)

ADD_PARAVIEW_OBJECT_PANEL(

IFACES IFACE_SRCS

CLASS_NAME MyCustomPanel

XML_NAME DataObjectToTable

XML_GROUP filters

)

ADD_OVERVIEW_PLUGIN(

MyCustomPanel "1.0"

GUI_INTERFACES ${IFACES}

SOURCES MyCustomPanel.cxx ${MOC_SRCS} ${IFACE_SRCS}

)

Plugin Execution Context

• Remember that plugins can be loaded into the client, the server, or
both.

• In many cases a server won’t have access to the same libraries as
the client.

• Example: a plugin that contains a VTK filter and a corresponding custom
panel might not load successfully on the server, since the custom panel
has a Qt dependency.

• Solution: separate plugins for server and client - one containing just the
filter for use with server and client, and one containing just the panel for
use with the client.

Useful Plugin References

• Server Manager XML

• The ParaView Guide, Version 3, section 18.6, pp 262 - 273.

• The ParaView/Servers/ServerManager/Resources/ directory.

• General Plugin Information

• The ParaView Guide, Version 3, chapter 19.

• http://paraview.org/Wiki/Plugin_HowTo

• Sample Plugins

• The ParaView/Examples/Plugins directory.

• The ParaView/Plugins directory.

http://paraview.org/Wiki/Plugin_HowTo

Vertical Applications

• Traditional ParaView provides a pipeline-oriented interface.

• Users manipulate the pipeline directly, and must understand it at a low
level.

• Nothing we’ve seen so far changes that - we add to the list of pipeline
components, and we grow the UI by adding views, toolbars, etc.

• Sometimes, you just gotta simplify …

"Minor Simplification" - OverView

"Minor Simplification" - Steps

•Copy-n-paste the contents of ParaView/Applications/Client/
•Feels dirty, but it’s < 4000 lines-of-code.
•You can modify the MainWindow class to simplify:

•Remove / simplify menus, docking windows, toolbars.
•Add common operations, custom toolbars, etc.

Starting From Zero - Demo

