\

SAND2008- 5157P

Kitten Lightweight Kernel

August 7, 2008

Kevin Pedretti
Sandia National Laboratories
ktpedre@sandia.gov

J// .\
o

tional Nuclear Sec

iy
|
1)

v

for the United States Department of Energy’s National Nuclear Security Administration National
under contract DE-AC04-94AL85000. Laboratories

=
>,

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, @ Sandia



Motivations for LWK on Capability Platforms

* Scalability

— Low to no OS noiseljitter

* Selfish on very large Infiniband cluster showed
0.5% average noise, 2.5% worst case (see SC08 paper)

* Hard to unintentionally introduce noise with LWK
— Support full potential of network HW
* No error-prone memory pinning/unpinning
* Physically contiguous memory => 2x higher msg. rate
* Deterministic Performance
— Minimal run-to run variability
— Simplifies performance tuning/debugging

* Reliability (next slide)

Sandia
National
Laboratories



Y
Software MTTI

* 13 Week Period (16 Sep 2007 to 16 Dec 2007)
— Catamount: ~1735 hours

— CNL: ~569 hours
System Hours Interrupts S/W MTTI
CNL Site 2136 5 427
CNL Site 2095 7 299
CNL Site 1964 2 082
CNL Site 840 0 -
Sandia (Catamount) 2093 1 2093
Catamount Site 2087 4 522
Catamount Site 2043 0 -
Catamount Site 2162 1 2162
Catamount Site 2164 1 2164
Catamount Site 2110 0 -

Sandia
National
Laboratories



Common Criticisms of LWK

* It's not Linux/Solaris/BSD/AIX/Windows/etc.

* It's missing feature X (threads, python, dynamic libs, ...)
* It's too much work to maintain

* It's a proprietary black box

* There's no community around it

* There's no market for it

* We are trying to address (some of) these with Kitten
* Also, time is ripe for innovation

— Multicore provides lots of resources, OS role changed

— My opinion is OS should be treated more like an
application or library

Sandia
National
Laboratories



}

* Kitten is a simple, open-source (GPL) OS kernel
that provides basic mechanisms for managing
memory, computational tasks, hardware devices,
and (in the future) guest operating systems. Kitten
does not have an in-kernel file system and instead
relies on function-shipping for |/O.

* Kitten is not derived from Catamount

— Uses no kernel-level code from Catamount or
OpenCatamount

— Essentially same LWK philosophy
* Kitten is derived from Linux, but is not a fork

— Only leverage pieces of code where it makes sense
— No expectation of keeping up with Linux @ Sandia

Kitten Defined

National
Laboratories



}

* Kitten is only a small part of the compute node
system software. Suite of user-level libraries
provide POSIX environment and interface to the
full-system runtime environment (e.g., the job
launcher and node allocator).

— Currently running Kitten with Catamount user-level
(PCT, glibc, libsysio, liblustre)

— Kitten provides subset of Linux ABI system calls,
which someday may enable more standard user-level

* Not intended to be a general-purpose OS kernel...
simple compute node OS kernel for HPC

* Research platform for system software

Kitten Defined (cont.)

Sandia
National
Laboratories



A
} Kitten is designed for an MPP

environment with functional partitions
Compute

Processors
(LWK)

I/O processors (Linux)

Service
Processors,
l (Linux)

Network I/O
rocessors (Linux)

High
Speed

External

Network

Sandia
National
Laboratories



Project Info

* Funded by Sandia LDRD (Lab Directed Research and
Development) and CSRF (Computer Science Research
Foundation)

— Research multi-core and accompanying trends
— More flexible and open LWK platform
— Target next-generation capability platforms

* Kitten is ~1 yr. old, based on work from prior CSRF
project. Two more years of funding remain.

*1.25 FTE effort

— Trammell Hudson, Kurt Ferreira, Sue Kelly, Michael Levenhagen,
and Kevin Pedretti

— Collaborators at Univ. New Mexico and Northwestern

* Key measure of success is having impact on platforms,
enabling new capabilities @ Sandia

National
Laboratories



Kitten Kernel-level Functionality

* X86_64 bootstrap (from Linux)

— Physical memory detection (NUMA)
— CPU detection (shared cache topology)
— Kernel runs on all CPUs, locking for shared data

* Physical memory management
— Tracks contiguous regions of physical memory
* No page map
* Each region has type, name, Igroup, + other meta-data

— Portion of memory set-aside and managed by kernel,
remainder managed by user-space init task

* Default first 8 MB used for kernel dynamic allocations,
buddy allocator

* Large contiguous region(s) available for applications

Sandia
National
Laboratories




Kitten Kernel-level Functionality (cont.)

* Virtual memory management
— Address space object and management API
— Similar to Linux MM and VMA

— Contiguous virtual memory maps to contiguous
physical memory, possibly via a mapping function

* Task management

— Per CPU run queues
* No periodic OS tick
* Multiple scheduling policies

— Tasks that share an address space are threads

— Can support more tasks than CPUs, not usual case

— No kernel threads yet @ _
National
Laboratories



Kitten Kernel-level Functionality (cont.)

* Device management

— Simple console system
* Drivers for VGA, PC serial port, Cray XT L0
* KGDB support (ported by Univ. New Mexico)

— Portals network stack

* Based on LGPL Portals core + proprietary Cray
SeaStar NAL (Interrupt based)

* Uses Linux IOCTL interface, like Cray Portals

— Device driver structure similar to Linux
* External modules not supported initially, maybe later
* Interrupts are supported

* Lots missing, but adding functionality as necessary;
Platform is the target, not every device out there @ o
ndia
National
Laboratories



s#

Kitten Kernel-level Functionality (cont.)
* Other

— Sending signals to tasks (currently enough for uClibc's
pthreads implementation)

— Linux clone() interface for creating threads

— Shared memory regions between tasks (currently enough
for PCT)

— SMARTMAP support (see SC08 paper)

* Future
— Hypervisor functionality (FY09)

* Currently investigating, initial plan to use
Xen+paravirtualized guests

* Allocate physically contiguous memory to guests
— Heterogeneous CPUs, Asymmetric slave CPUs, ...

Sandia
National
Laboratories



¥>

* Nearing initial release
— X86_64, Cray XT, PC (mostly under Qemu+Bochs)

* Leveraging Catamount user-level
— Scalable job load
— User-level I/O libraries (glibc, libsysio, liblustre)

* Will be adding
— Support for user-level threads (sort of works now)
— Support for run-time and load-time dynamic libs
— Use of standard Glibc

Current Status

Sandia
National
Laboratories



}

* Impact of physically contiguous memory

— Can result in better best case bandwidth, worse worst-
case (due to DRAM bank conflicts)

— Large performance swings based on alignment/offsets

* SMARTMAP + bandwidth reduction techniques

— All address spaces mapped into each task
— Single copy intra-node MPI
— “Partitioned nodal address space”

* Hooks for lightweight threads and synchronization,
advanced architecture capabilities

* More transparent reliability mechanisms
* Virtualization @ Sandia

Research

National
Laboratories



	Main Title 32pt
	Slide 2
	Software MTTI
	Slide 4
	Slide 5
	Slide 6
	Catamount is designed for an MPP environment with functional partitions
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

