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Outline

� Percolation Theory

� Lattice Model

� Carbon nanofiber (CNF) composite exhibiting properties of 

percolation 

� Bulk measurement results

� Atomic Force Microscopy (AFM) Measurements of CNF composite

� Conducting-tip AFM (C-AFM)

� Analysis using Principle of Delesse

� Conclusions 
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Intro to Percolation Theory

� Question:  If I submerge a porous rock into water, what is the probability 
water will wet the center of the rock?

� Percolation theory deals with fluid flow (or any other similar process) in 
random media.

� The most basic percolation model is known as lattice percolation and 
actually has two forms:  bond percolation and site percolation.
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Real Systems

� Oil Exploration – how is oil dispersed in porous bedrock and how do 

you get it out of the rock?

� Forest Fires – can one simulate how forest fires spread?

� Electrical transport in metal/insulator composites – how do charge 

carriers traverse a system of randomly placed metal particles 

embedded in an insulating matrix. 
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Our System

� CNF dispersed in a insulating polymer 
matrix

� Why CNF?

� Aspect ratio results in lower 
percolation thresholds.

� The material is a flexible conductor
with a conductivity dependent on the 
nanotube loading.

electrode

electrode

Polymer-rich skin layer

Isotropic, uniform dispersion
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Intro to Percolation Theory

� Cluster – a group of connected lattice points.

� Occupation probability (p) – the ratio of occupied bonds to that 

of all lattice edges

� Percolation threshold (pc) – the minimum occupation 

probability required to create an infinite cluster in the lattice.

� Infinite Cluster – a cluster that spans the entire lattice.
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Intro to Percolation Theory

� The change at pc from the absence of an infinite cluster to the presence of 

one without a latent heat implies a second order phase transition

� Second order phase transitions have 2 characteristics:

� Universality

� Scaling laws (i.e. critical exponents)

� Universality implies that critical exponents of properties in percolation system 

(such as σ) should be dependent on dimensionality only.

� Scaling law implies:

t

cppp )()( −∝σ

C.-W. Nan, Progress in Materials Science 37, 1 (1993).

Typically 

measured
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Chi^2/DoF = 7.6878E-6

R^2 =  0.98403

  

p
c
:  0.00191 ± 0.00116

A:  1041.78 ± 359.416

t:   2.97972 ± 0.06934
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Bulk Conductivity

� Critical exponent, t, of the DC conductivity for the 

material is ~ 3.

� Lattice percolation model predicts a t value of ~ 2 for the 

electrical conductivity in a 3D percolation network.

2.8Polymer/Carbon Black

tComposite

3-5Glass/RuO2

3.4Epoxy/Graphite

3.1Glass/Indium

C.-W. Nan, Progress in Materials Science 37, 1 (1993).
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Possible Explanation

Conducting 

particle

� Inverted Random Void (IRV) Tunneling Model

� Conducting particles have a small gap between them leading to a 
tunneling resistance.

� Gap size has a distribution
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� While the IRV tunneling model predicts a non-universal critical 

exponent for t, it has been shown that geometrical critical 

exponents (such as ββββ) should be the same in all percolation 
systems*.

Percolation Probability θ∞(p)

� Percolation probability, θ∞(p), is the probability that any one occupied 

site (or nanotube in our system) is part of the infinite cluster

β ≈ 0.4 in 3D

*I. Balberg, Phys. Rev. B 37, 2391 (1988).

βθ )()( cppp −∝∞
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What we propose

� Determine β and compare with lattice model prediction of 
β≈0.4.

� How can we measure the percolation probability????

� We will need to do the measurement at the microscopic 

scale!

� Atomic Force Microscopy allows us to probe electrical 

properties at the microscopic level.

� This measurement has never been performed in an electrical 

percolation system.
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Atomic Force Microscopy
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A

Conducting-tip AFM

electrode
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Problem with the Native Surface?!

5 µm

(a) (b)

5 µm

Before (a) and after (b) exposure to an oxygen plasma.  

Clearly, there is a significant absence of tubes at native 

surfaces of material.
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3.5 vol % composite before and after plasma 

treatment

Topography Current

After Plasma

Before Plasma
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C-AFM details
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Different MWNT Loading

Topography Current

βθ )()( cppp −∝∞
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Principle of Delesse

� In a random isotropic composite, the areal density of a phase in a 

representative 2D cross-section is statistically equal to expected 3D 

volume fraction of that phase. 
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How to measure the percolation probability

� Given an average areal density of conducting tubes (AA
CT).

� Using the principle of Delesse, average areal density will be equal to 

volume fraction of conducting tubes (VV
CT).

� This will give us the volume fraction of the infinite cluster!

� Total volume fraction of tubes (p) is known from synthesis.

( ) βθ )(/)()( c

CT

A ppppAp −∝=∞
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CAFM Local I-V Data

� Ohmic I-Vs likely indicate no tunneling behavior

� Non-ohmic I-Vs are present indicating some tunneling transport is 

possible.

Tip 

resistance 

~ 500 Ω
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Conclusion

� Bulk transport measurements of CNF composites give a critical exponent t = 

3, possibly suggesting IRV tunneling model as theoretical model of the 

material 

� Native surfaces of material are not bulk representative of carbon nanofiber

network

� Oxygen plasma treatment removes polymer-rich skin layer without 

damaging CNF

� Percolation Probability can be measured by Principle of Delesse analysis of 

conducting-tip AFM scans

� Microscopic analysis of CNF composite does not support tunneling

percolation model

� Percolation Probability critical exponent β not in agreement with lattice 
theory prediction of 0.4.

� Ohmic I-V indictate that tunneling is not the dominant transport 

mechanism in the material
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AFM Tip Convolution
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AFM-measured CNF radius 

can be over twice as large as 

actual value! 


