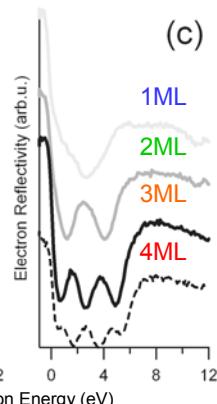
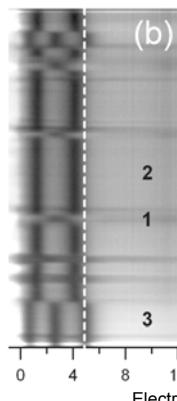
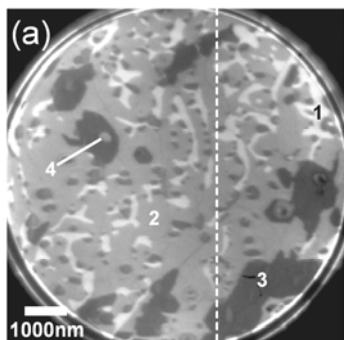


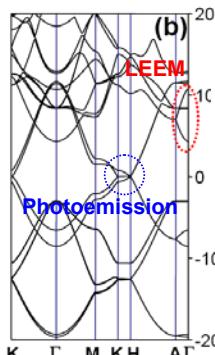
Epitaxial Graphene Layer on Silicon-Carbide

SAND2008-5715P

Taisuke Ohta¹, Gary L. Kellogg¹, Farid El Gabaly², Konstantin V. Emtsev³, Thomas Seyller³, Aaron Bostwick⁴, Jessica L. McChesney^{4,5}, Andreas K. Schmid⁴, Eli Rotenberg⁴, Karsten Horn⁵

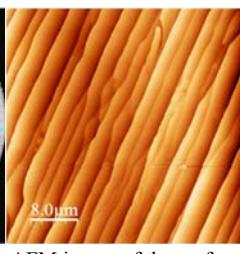
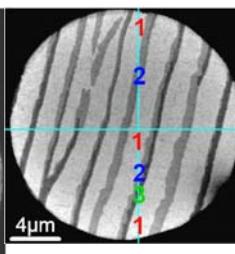
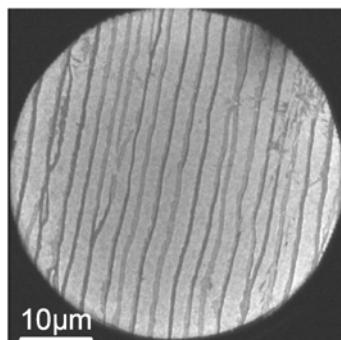



¹Sandia National Laboratories, Albuquerque, New Mexico, USA, ²Sandia National Laboratories, Livermore, California, USA,

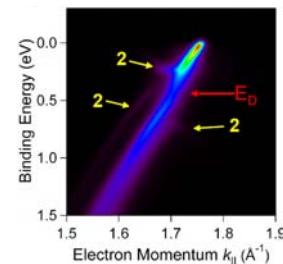
³Lehrstuhl für Technische Physik, Universität Erlangen-Nürnberg, Erlangen, Germany,


⁴Lawrence Berkeley National Laboratory, Berkeley, California, USA, ⁵Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany

E-mail: tohta@sandia.gov

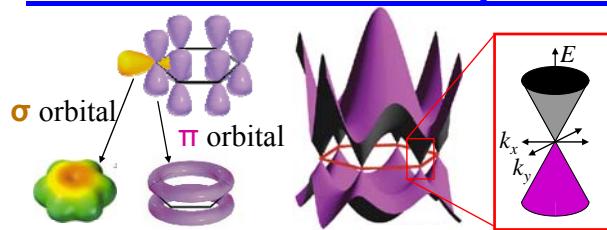
Film Characterization

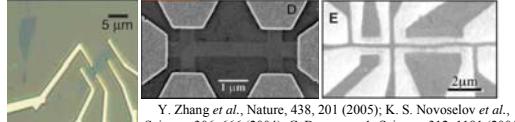



T. Ohta *et al.*, New J. Phys., 10, 023034 (2008).


Growth morphology, domain size and local thickness of graphene films prepared in ultrahigh vacuum (UHV) are studied using low energy electron microscopy (LEEM). Graphene layers of different thickness can be identified by electron reflectivity spectra. Our study demonstrates the importance of the interface carbon layer for the morphology of subsequent graphitization process.

Band structure from H. Hibino *et al.*, Phys. Rev. B 77, 075413 (2008)

Large-Area Graphene Film

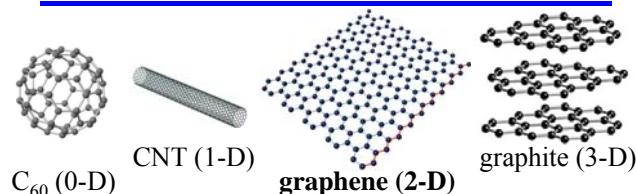

AFM image of the surface


Photoemission spectra of the π -band near Fermi-level

K. V. Emtsev, T. Ohta *et al.*, in preparation.

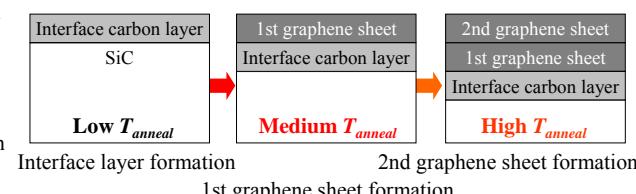
Unusual Electronic Properties

Potential graphene-based devices


Y. Zhang *et al.*, Nature, 438, 201 (2005); K. S. Novoselov *et al.*, Science, 306, 666 (2004); C. Berger *et al.*, Science, 312, 1191 (2006)

Technological advantages: high carrier mobility (25,000 cm²/V·sec) and long coherent length (> 1μm)

Potential applications: high-speed electronics, THz emitter, sensitive gas sensors etc.


Why Graphene?

Carbon-Based Nanomaterials

Graphene films are formed by thermal decomposition of SiC substrates; Si evaporates, and the surface become rich in carbon atoms. By low temperature annealing (>1100 C), a SiC surface is initially covered with an interface carbon layer. Higher temperature annealing converts this interface carbon layer to a graphene layer by forming a new interface carbon layer underneath.

Graphene Formation on SiC

Acknowledgments

Part of the work is supported by an LDRD program at Sandia Labs and part by the Office of Basic Energy Sciences, Division of Materials Science and Engineering. Photoemission spectroscopy work is conducted at Advanced Light Source at Lawrence Berkeley National Laboratory, supported by U.S. Department of Energy, Office of Basic Sciences under Contract No. DE-AC02-05CH11231. T.O., J.L.M. and K.H. are partially supported by Max Planck Society and European Science Foundation, EUROCORES SONS program.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

