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Carbon-Based Nanomaterials 
Why Graphene? 
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Graphene films are formed by thermal 
decomposition of SiC substrates; Si 
evaporates, and the surface become 
rich in carbon atoms. By low 
temperature annealing (>1100 C), a 
SiC surface is initially covered with an 
interface carbon layer. Higher 
temperature annealing converts this 
interface carbon layer to a graphene 
layer by forming a new interface 
carbon layer underneath. 

Potential graphene-based devices

Y. Zhang et al., Nature, 438, 201 (2005); K. S. Novoselov et al., 
Science, 306, 666 (2004); C. Berger et al., Science, 312, 1191 (2006)

Technological advantages: high carrier mobility (25,000 
cm2/V•sec) and long coherent length (> 1μm)
Potential applications: high-speed electronics, THz emitter, 
sensitive gas sensors etc. 
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Growth morphology, domain size and local thickness of 
graphene films prepared in ultrahigh vacuum (UHV) are 
studied using low energy electron microscopy (LEEM). 
Graphene layers of different thickness can be identified 
by electron reflectivity spectra. Our study demonstrates 
the importance of the interface carbon layer for the 
morphology of subsequent graphitization process. 

T. Ohta et al., New J. Phys., 
10, 023034 (2008).
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Unusual Electronic Properties

Large-area graphene films are produced by high 
temperature annealing in a background of Ar.  While the 
valence band and the interface structures are the same as 
UHV-prepared films, the domain size and the uniformity 
of the film are drastically improved (see figures above 
and left).  The kinetics of graphene formation is expected 
to be different in the presence of Ar, and is subject of 
future studies.  This newly developed synthesis opens the 
possibility of practical applications of epitaxial graphene 
to electronic and optical devices. 
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