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AGENDA
NMED, DOE, and SNL/NM MEETING
SEPT 18, 2008

Agenda ltem 1: TA-V Groundwater Characterization

Topic Handouts
Per the NOD Comments, the + Table with well measuring point
well network has been , elevations (old and new).
resurveyed. + Site-specific potentiometric

surface map with recent water
level measurements and revised
elevations).

+ Subregional potentiometric
surface map.

+ Water levels versus time for select
wells (uncorrected for new
measuring point elevations).

TCE concentrations as of July + TCE 2003 distribution map.

2008. + TCE 2008 distribution map.

+ TCE versus time plot for wells with
detectable concentrations.

+ Draft of the most recent numerical
model (prepared in 2006 in
support of an internal draft of the
CMIP as Appendix C).

Nitrate concentrations as of + Nitrate 2008 distribution map.
July 2008. + Nitrate versus time plot for LWDS-
MW1.

Agenda ltem 2: Proceeding Towards Completing
Characterization and Implementing the Corrective
Measure
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LWDS-MW1 Groundwater Elevations
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TAV-MW6 Groundwater Elevations
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TAV-MW3 Groundwater Elevations
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North Wind, Inc.
Idaho Falls, Idaho

Abstract

This Corrective Measures Implementation Plan identifies the approach and requirements for
implementing monitored natural attenuation (MNA) as the corrective measure for remediation of
trichloroethene, tetrachloroethene, and nitrate in groundwater at Technical Area-V at Sandia
National Laboratories/New Mexico. This plan was prepared as directed by a Compliance Order
on Consent issued by the New Mexico Environment Department to outline the strategy,
operations and maintenance requirements, evaluation and reporting requirements, project team
qualifications, and schedule for implementing the MNA remedy. This document also provides
information supporting the implementation of the MNA remedy, and the MNA remedy goals and
objectives.
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Groundwater Flow and TCE Transport Model for
Technical Area-V and Vicinity
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Abstract

Numerical modeling was performed to support implementation of the monitored natural
attenuation corrective measure for Technical Area-V groundwater. This modeling activity
provides a local-scale simulation of groundwater flow and trichloroethene transport and
attenuation in the upper region of the aquifer where trichloroethene contamination is present.
The numerical model is based on the current conceptual model of groundwater flow and
contaminant transport and incorporates local heterogeneities in hydrogeologic properties,
advection, dispersion, and biological degradation. The model results illustrate that, during
implementation of the remedy, plume dynamics will be governed by local heterogeneities, which
result in radial groundwater flow at velocities that are slower than subregional flow. Natural
attenuation processes, such as biological degradation and dispersion, will act to decrease
concentrations before significant migration of trichloroethene away from monitoring wells
occurs. Natural attenuation processes are expected to reduce trichloroethene concentrations to
below cleanup goals by the year 2049, with a 95% confidence interval corresponding to the years
2032 and 2120.
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Acronyms and Abbreviations

amsl
ARG
CME
CMI
COA
COC
EPA

ft

GMS
KAFB
LWDS
MCL
mi’
MNA
MODFLOW
PCE
PEST
SNL/NM
TA

TCE

ng/L

above mean sea level : 4 o
ancestral Rio Grande T
Corrective Measures Evaluation
Corrective Measures Implementation
City (;f A;lbuquerque

contaminant of concern

U.S. Environmental Protection Agency
feet

Groundwater Modeling System
Kirtland Air Force Base |

liquid waste disposal system
maximum contaminant level

square miles

monitored natural attenuation

Modular Three Dimensional Groundwater Flow Model
tetrachloroethene

parameter estimation

Sandia National Laboratories/New Mexico

technical area

trichloroethene

micrograms per liter
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' C-1. PURPOSE

Numerical modeling was performed to support implementation of the monitored natural
attenuation (MNA) corrective measure for Technical Area-V (TA-V) groundwater. The model
builds on earlier numerical modeling activities (summarized in Section C-1.1) that supported the
Corrective Measures Evaluation (CME), as described in the “Corrective Measures Evaluation
Report for Technical Area-V Groundwater” (SNL/NM 2005). The CME numerical modeling
activity provided a conservative estimate of the potential for contaminant migration to receptors on
a sub-regional scale. The Corrective Measures Implementation (CMI) model incorporates a local
groundwater flow model with heterogeneities, advection, dispersion, and biological degradation
into a simulation of trichloroethene (TCE) transport and natural attenuation processes.

The CMI model was performed to support implementation of the MNA remedy by providing a
local-scale simulation of groundwater flow and TCE transport and attenuation in the upper
region of the aquifer where TCE contamination is prevalent. TCE has been detected in several
TA-V monitoring wells, as presented in Attachment A. The CMI model primarily applies to
TCE, which is one of three contaminants of concern (COCs) at the site. Tetrachloroethene
(PCE) and nitrate have been detected in some wells at the site, and are less widely distributed
than TCE. The numerical modeling provided useful information for CMI in regards to TCE
because of the distribution of TCE and nature of the degradation mechanism. Application of
MNA for all three COCs can be protective and meet cleanup goals based on the information
presented in the CME report (SNL/NM 2005).

C-1.1  Summary of CME Modeling

Numerical modeling activities were performed to support evaluation of corrective measures for
TA-V, as described in the TA-V CME Report (SNL/NM 2005). A United States Geological
Survey regional numerical model of groundwater flow was initially adapted to evaluate
contaminant dilution in groundwater downgradient from TA-V (Written Communication, Greg
Ruskauf, INTERA Inc., November 10, 2004). The objective of this analysis was to determine
the reduction in dissolved concentration of contaminants (i.e., TCE) derived from TA-V sources
as those contaminants migrate in groundwater that is drawn toward the capture zone of City of
Albuquerque (COA) municipal well fields. Analysis of these regional numerical model results
showed that the discretization of the regional model was too large for the scale of the TA-V
contaminant dilution problem. A simplified cross-sectional analysis was developed to refine
estimates of downgradient dilution of a conservative contaminant.

The objective of the cross-sectional analysis was to conservatively evaluate the potential for
transport of contaminants to production wells, which in the case of the COA’s Ridgecrest water
supply wells, are located approximately six miles downgradient of TA-V. Production wells
considered included existing wells operated by the COA and Kirtland Air Force Base (KAFB)
and a hypothetical production well, which was included in order to evaluate the potential for
transport of contaminants to the proposed Mesa del Sol wells. Although this hypothetical
production well was considered, the proposed Mesa del Sol production wells are not expected to
be receptors of contamination originating from TA-V, as explained in the CME Report
(SNL/NM 2005).

The results of the CME modeling activity support the decision to apply MNA for TA-V
groundwater. Contaminant concentrations were predicted to decline almost four orders of

C-9
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magnitude before reaching pro n wells, and to be far below the maximum concentration
allowed in drinking water (i.e., maximum contaminant levels [MCLs]). The model also
predicted a travel time of at least 230 years before contaminants would reach the Ridgecrest

wells at reduced concentrations.

Anomalously low hydraulic conductivity in the vicinity of TA-V and the effects of biological
degradation, sorption, decay, and lateral dispersion were intentionally neglected in the CME
model to provide a conservative overestimation of contaminant concentrations and rate of
contaminant migration to production wells. The scale of the groundwater model (several miles)
and intentional neglect of some processes that would further reduce contaminant concentrations
provided a conservative evaluation of the potential for migration of contaminants to production
wells. However, the CME model does not provide a sufficiently accurate representation of
contaminant transport for the CMI because it was not intended to represent distribution of
contaminants on the smaller scale representative of TA-V and its vicinity. The CME model also
did not account for biological degradation of TCE. The more refined model for the TA-V area
described here was developed to predict TCE degradation and transport near TA-V to support
development of the CMI Plan.

The results of both the CME and CMI modeling activities were used to devise the MNA
implementation strategy. The results of the CME numerical modeling activity were used to
devise action levels, which are performance metrics (as described in Section 2-4 of the CMI
Plan). The results of this CMI numerical modeling activity are used to develop the groundwater
monitoring strategy and provide an estimate of the remedy implementation timeframe.

C-2 CMI MODEL DESCRIPTION

A numerical model was created to represent groundwater flow and TCE transport in the
subsurface at and near TA-V. The model utilized the Department of Defense Groundwater
Modeling System (GMS), employing the Modular Three Dimensional Groundwater Flow Model
(MODFLOW) groundwater flow simulator (Harbaugh et al. 2000) and the MT3DMS transport
simulator (Zheng and Wang 1999) with GMS pre- and post-processors (BYU 2003).

The conceptual basis for the development of this numerical model is described in the “Current
Conceptual Model of Groundwater Flow and Contaminant Transport at Sandia National
Laboratories/New Mexico Technical Area-V” (SNL/NM 2004). In addition, assumptions and
input values from previous numerical models of this groundwater system were used. These
included work described in the TA-V CME Report (SNL/NM 2005) and the following
documents: :

e “Simulated Effects of Ground-Water Management Scenarios on the Santa Fe Group
Aquifer System, Middle Rio Grande Basin, New Mexico, 2001-40” (Bexfield and
MacAda 2003), and

e “SNL/NM Environmental Restoration Project Long-Term Monitoring Strategy for
Groundwater” (SNL/NM 2001).

Table C-1 lists physical observations and conceptual model elements and presents how each of
these elements was incorporated into the numerical simulation by input of parameter values and
assumptions. Additional detail provided in this section includes a description of the model
domain (Section C-2.1) and calibration methods (Section C-2.2).

C-10
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C-2.1 Model Domain

The model domain represents an area larger than TA-V in order to establish a subregional flow
field through the alluvial fan deposits (Figure C-1) within which the local area of TA-V could be
refined. The model grid is refined within TA-V in order to increase resolution in that area. Grid
boundaries were specified head and no-flow boundaries based on observed water levels in four
wells. The grid encompasses a total of approximately 6 mi” and consists of 94 rows and

74 columns. Cell sizes vary from approximately 50 ft on a side within TA-V to approximately
500 ft on a side at more distant areas (Figure C-1). A single layer represents the uppermost 50 ft

of the groundwater system and is oriented parallel to the potentiometric surface at the beginning

of the flow simulation (1993).
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Figure C-1. Model grid illustrating model boundaries and discretization

C-16



DRAFT

C-2.2 Model Calibration
Two data sets were used to calibrate the groundwater flow and transport model, as follows:
1. Measured water levels in 15 groundwater monitoring wells from 1993 to 2006, and

2. TCE concentration data, as measured using conventional sampling methods from 2001 to
2005.

Two numerical simulations were run for calibration. The first simulation began in 1993 and was
used exclusively to calibrate the flow model to the observed water levels, and the second
simulated TCE transport into the future using the calibrated flow model.

An automated parameter estimation approach was used to calibrate the flow model to observed
water levels by varying the horizontal hydraulic conductivity, which was restricted to a range of
0.01 to 35 ft/day based on the conceptual model described in Table C-1. The resulting horizontal
hydraulic conductivity distribution is illustrated in Figure C-2. This distribution reflects a
relatively low hydraulic conductivity zone at TA-V. Appendix A contains plots of observed
hydraulic head in the 15 wells located in the model domain. These wells and the simulated
potentiometric surface are shown on Figure C-3. Potentiometric surface and water levels are
expressed in feet above mean sea level (ft-amsl). Simulated water levels in all of these wells
were generally within 1 ft of the observed water level over the simulated time period. Those few
measured water levels that differ from simulated water levels by more than 1 ft do not appear to
follow the general trend of the measured water levels over time and are considered anomalous.

The calibrated flow model was then used as the basis for simulating TCE transport using
MT3DMS. Transport parameter input and assumptions are described in Table C-1. Calibration
of the transport model to observed TCE concentrations in the period from 2001 to 2005 was
performed by manually varying the initial TCE concentrations assigned based on the location of
historical sources and measured concentrations in 2001. The resulting simulated concentrations
were then compared to observed concentration data, and the starting concentrations were
iteratively modified to arrive at a reasonable simulation of the observed concentration trends.
Observed and final predicted TCE concentrations in six wells are shown in Appendix B. The
flow and transport simulation ends in the year 2050 when water levels are predicted to fall below
the bottom of the simulation layer in some cells as a result of regional water level declines
caused by continued groundwater extraction for municipal supply.
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Shading represents
horizontal hydraulic
conductivity according to the
following scale:

Limit is 35 ft/day

30 ft/day

20 ft/day

10 ft/day

Limit is 0.01 ft/day

Figure C-2. Simulated hydraulic conductivity distribution.
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C-3 RESULTS AND INTERPRETATION

The calibrated flow and transport model was used to simulate flow and transport under three
scenarios using the average degradation rate constant as well as the upper and lower 95%
confidence limits. The results are included in Appendix B and presented in this section.

C-3.1 Local Groundwater Flow Characteristics

The rate and direction of groundwater flow within and near TA-V will control changes in plume
contours and plume migration during the implementation of the MNA remedy. It is important
to understand both regional and local groundwater flow patterns in order to understand the
potential for plume migration and plume contour dynamics.

The numerical model simulated flow through the alluvial fan/piedmont deposits within and
around TA-V incorporating the effects of mountain front recharge and municipal groundwater
withdrawal. This groundwater flowed to the west at a rate similar to the rate simulated in
previous regional modeling activities (Section C-2). As previously stated, this system is
characterized by declining water levels.

The model grid was more finely discretized in the TA-V area to provide resolution in simulated
groundwater flow and transport in that area. The aquifer at TA-V has lower hydraulic
conductivity than in much of the surrounding area. Groundwater flow at TA-V is primarily
governed by a local low hydraulic conductivity zone. As regional water levels decline
(effectively draining the alluvial fan deposits), the local low hydraulic conductivity zone at
TA-V drains more slowly than surrounding areas. This results in a residual groundwater mound
and local flow lines that are often in a direction counter to the subregional direction. This effect
is shown in simulated flow vectors from the year 2001, as shown on Figure C-4. The low
hydraulic conductivity zone around TA-V will also result in groundwater flow velocities that
are slower at TA-V than in the surrounding aquifer.

The predicted result of this local flow pattern is contaminant transport in several directions at a
much slower rate than under the subregional flow conditions. Based on this flow model, the
future TCE plume dynamics were predicted as described in Section C-3.2. It is anticipated that
TCE plume migration or expansion will be limited by degradation.
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Figure C-4. Simulated groundwater flow vectors near TA-V (2001).

C-3.2 Future TCE Plume Dynamics

Figures C-5 through C-7 are simulated TCE concentration isopleths for the average and two 95%
confidence limits of the degradation rate constant. Each of these figures shows simulated TCE
concentrations corresponding to three time periods. These three time periods correspond to:

1. Current conditions—the current simulated plume distribution (2006),

2. The highest simulated concentrations in selected wells—an intermediate time period
during which the maximum concentration of TCE occurred in wells TAV-MW6 and

TAV-MWI1, and

3. Simulated result of natural attenuation—In the case of the average and the fastest
degradation rate (the upper 95% confidence limit of the degradation rate constant), the third
time period is the year after which TCE concentrations were predicted to be below 5 pg/L;
this occurred in the years 2049 and 2032, respectively. In the case of the slowest
degradation rate (the lower 95% confidence limit of the degradation rate constant), the
simulation was run until 2050, at which time some TCE concentrations remained above
5 pg/L at the end of the simulation. In the year 2050, the simulation was halted due to
regionally declining water levels and subsequent dewatering of the model domain.
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Figure C-5. Simulated TCE concentration contours using the average degradation rate

constant.
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Figure C-6. Simulated TCE concentration contours using the upper 95% confidence
interval of the degradation rate constant.
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some wells, while overall,
concentrations decrease within the
plume. The peak concentration
occurs around 2031 in wells TAV-
MW6 and TAV-MW1.

2050. The simulation ran until
2050, and was terminated due to
cell drying. Plume concentrations
decrease, but a greater than 5 pg/L
plume remains.

Shading represents
simulated TCE
concentration
according to the
following scale:

30 pg/L

Figure C-7. Simulated TCE concentration contours using the lower 95% confidence
interval of the degradation rate constant.
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Observations and interpretation from the model output are as follows:

e The direction and rate of TCE migration are strongly influenced by the local radial flow
pattern caused by the relatively low hydraulic conductivity at TA-V, and therefore some
TCE migration does not coincide with the westerly subregional groundwater flow
direction. '

e TCE concentrations will decline over time throughout the plume as a whole due to
dispersion and degradation (Figures C-5 through C-7). Nevertheless, TCE concentrations
at some wells are predicted to increase over the next several years (Appendix B) as
groundwater with higher TCE concentrations migrates from upgradient of these wells.
For example, peak TCE concentrations at TAV-MWI1 and TAV-MW6 (simulated using
the average rate constant) are predicted to occur in the year 2020 followed by a decrease
in TCE concentrations.

e Over the course of the model simulation, the highest TCE concentrations remained within
the area sampled by the TA-V monitoring well network.

The CMI model is based on several assumptions. For instance, it was assumed that the
maximum concentration of TCE in TA-V groundwater is less than 30 pg/L. This is reasonable
given the historical maximum concentration; nevertheless, it is an assumption in regards to
regions between monitoring wells. Therefore, the model should not be used exclusively to
predict concentrations at specific wells and times without considering the uncertainty associated
with this assumed starting concentration. The model is intended to illustrate the general trends of
the TCE plume at TA-V, including dynamics of plume contours, potential for migration, and the
effects of natural attenuation.

C-3.3 Achieving Cleanup Goals

As stated in Section 3.2 of the CMI Plan, one of the compliance objectives for the MNA remedy
is to reduce COC concentrations throughout the plume to below cleanup goals (MCLs) for eight
consecutive quarters. An estimate of when this goal will be achieved is provided here using the
modeling results. This estimate is provided in keeping with United States Environmental
Protection Agency (EPA) guidance (EPA 2004), which states that the EPA:

“...recognizes the uncertainties associated with the cleanup may make it
impossible to specify with a high level of confidence when a remedy will achieve
final cleanup goals . . . facilities should generally still attempt to predict the time
needed to achieve final cleanup goals, but stakeholders should recognize that such

~ predictions are best considered in a relative sense for comparing one cleanup
option to another. EPA recommends that cleanup timeframes primarily focus on
the schedules associated with implementing the remedy.”
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The uncertainties associated with this estimation must be considered when applying the results to
the CML.

The estimated time needed to achieve cleanup goals is primarily governed by the reduction in
TCE concentration by natural attenuation processes until TCE concentrations are below 5 pg/L.
Natural attenuation processes simulated in the numerical model include dispersion and biological
degradation. As described, three simulations were run corresponding to the average and the
upper and lower 95% confidence limits of the degradation rate constant.

The times presented here correspond to the predicted time at which all simulated TCE
concentrations are below the cleanup goal of 5 ug/L.. This cleanup goal is estimated to be
reached in the year 2049 using the average degradation rate constant. The cleanup goal is
estimated to be reached in the year 2032 using the upper 95% confidence limit of the degradation
rate constant.

However, at the end of the simulation (2050), some TCE concentrations remained above the
cleanup goal in the simulation using the lower 95% confidence limit of the degradation rate
constant. The year in which the cleanup goal will be achieved according to the lower 95%
confidence limit was predicted by extrapolation. The maximum TCE concentration observed in
any of the model cells at the end of the simulation was 13.1 pg/L. The estimated additional time
until TCE concentrations fell to 5 pg/L by degradation was calculated using the first-order
degradation rate equation solved for time (t), as follows:

In(-=)
= Co
-k,

where

t = time (days) required for concentration to decline from C, (13.1 pg/L) to

C (5 ng/L),

C = target concentration of 5 pg/L,

Co = maximum concentration at the end of the model run (13.1 pg/L), and

ki = the lower 95% confidence limit of the first-order degradation rate

constant, which is the average rate plus the 95% confidence interval.

The estimated additional time (70 years) was added to the length of model run (2050) to arrive at
the estimated cleanup date for the lower 95% confidence (2120). This approach does not take
dispersion into account, which would cause concentrations to decline more rapidly.
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C-4. IMPLICATIONS FOR CORRECTIVE MEASURES
IMPLEMENTATION

The CMI model provides a representation of future TCE plume dynamics at TA-V on a local
scale in support of the MNA implementation strategy. The simulation provides a general
representation of natural attenuation processes with several implications that have guided the
development of the MNA implementation strategy. These implications include:

Action levels developed using the CME modeling results are conservative. The CME
model intentionally neglected some contaminant reducing processes, which include
degradation and dispersion, in order to be conservative. These contaminant reducing
processes were not neglected in the local-scale CMI model. The results of the less
conservative CMI model suggest that TCE concentrations will be reduced more quickly
and that the action level is conservative.

TCE plume dynamics will include a short-term concentration increase in some wells
followed by a decrease in concentrations in all wells. The modeling results illustrate
that over the short term (i.e., approximately 8 to 25 years) concentrations in some wells
may increase. This increase may occur in directions that are counter to the regional flow
lines due to local heterogeneities. Eventually, concentrations will decline as natural
attenuation processes decrease the overall concentration of TCE within the plume. The
results illustrate that the overall TCE mass within TA-V groundwater is decreasing due to
intrinsic degradation. Eventually, TCE concentrations, as observed in samples from all
wells, will decrease until cleanup goals are achieved.

The TCE plume is not predicted to move beyond the monitoring well network. The
TCE plume will not migrate away from the current monitoring wells and will not migrate
to production wells. In general, natural attenuation processes will act to decrease TCE
concentrations before significant migration can occur. Locally at TA-V, groundwater
flow rates are slow relative to the subregional flow field. Water levels in TA-V
monitoring wells should be measured to monitor potential changes in hydraulic
conditions as water levels within the aquifer decline.

Cleanup goals will be achieved within a reasonable timeframe. The timeframe of
remedy implementation is governed by natural attenuation processes that decrease the
concentration of TCE. The numerical modeling results suggest that the natural
attenuation processes will decrease TCE concentrations to below cleanup goals sometime
between the years 2032 and 2120. This timeframe is reasonable considering the plume
dynamics simulated in the CMI model and the conservatively estimated travel time to
potential receptors (SNL/NM 2005).

Cc-27



N DRAF ;

C-5. REFERENCES

ASTM, 1995, "Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release
Sites," ASTM E-1739-95, American Society for Testing and Materials, Philadelphia,
PA.

Bexfield, L.M., and D.P. McAda, 2003, “Simulated effects of ground-water management
scenarios on the Santa Fe Group Aquifer System, Middle Rio Grande Basin, New
Mexico, 2001-40,” U.S. Geological Survey Water-Resources Investigations Report
03-4040, 39 p.

BYU, 2003, “Department of Defense Groundwater Modeling System, Version 4.0,” developed
by the Environmental Modeling Research Laboratory at Brigham Young University for
the U.S. Department of Defense, Army Corps of Engineers Waterways Experiment
Station, Vicksburg, Mississippi. See http://chl.wes.army.mil/software/gms and
http://www.emrl.byu.edu/gms.htm.

EPA, 2004, “Handbook of Groundwater Protection and Cleanup Policies for RCRA Corrective
Action,” EPA530-R-04-030, April 2004, http://wwwepa.gov/correctiveaction,
U.S. Environmental Protection Agency, Solid Waste and Emergency Response

(5303W). |

Harbaugh, A.W., E.R. Banta, M.C. Hill, and M.G. McDonald, 2000, MODFLOW-2000, the U.S.
Geological Survey Modular Ground-Water Model—User guide to modularization
concepts and the ground-water flow process, Open-File Report 00-92, U.S. Geological
Survey, Branch of Information Services, Box 25286, Denver, CO 80225-0425 or
http://water.usgs.gov/software/ground_water.html/.

Ruskauff, Greg, 2004, “Modifications to and use of the Middle Rio Grande Model (WRIR 02-
4200) for mixing analysis,” Technical Memorandum to Sue Collins written November
10, 2004.

SNL/NM, 2001, “SNL/NM Environmental Restoration Project Long-Term Monitoring Strategy for
Groundwater,” Environmental Restoration Project, U.S. Department of Energy, Albuquerque
Operations Office, Sandia National Laboratories/New Mexico, February 2001.

SNL/NM, 2004, “Current Conceptual Model of Groundwater Flow and Contaminant Transport
at Sandia National Laboratories/New Mexico Technical Area-V,” Sandia Report
SAND2004-1470, April 2004.

SNL/NM, 2005, “Corrective Measures Evaluation Report for Technical Area-V Groundwater,”
Sandia Report SAND2005-5297.

Xu, M., and Eckstein, Y. 1995, “Use of weighted least-squares method in evaluation of the
relationship between dispersivity and scale,” Groundwater, 33(6), 905-908.

Zheng, C., and P.P. Wang, 1999, “MT3DMS, A Modular Three-Dimensional Multispecies
Transport Model,” U.S. Army Corps of Engineers, Strategic Environmental Research and
Development Program (SERDP).

C-28



DRAR;

.

APPENDIX A
SIMULATED AND OBSERVED HEAD AT SELECTED WELLS
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Figure A-2. Simulated and observed head in well TAV-MW3.
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Figure A-4. Simulated and observed head in well TAV-MW2.
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Figure A-6. Simulated and observed head in well TAV-MW6.
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Figure A-7. Simulated and observed head in well TAV-MW1.
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Figure A-9. Simulated and observed head in well TAV-MWS8.
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APPENDIX B

SIMULATED AND OBSERVED TCE CONCENTRATIONS AT SELECTED
WELLS
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Figure B-1. Simulated and observed concentrations from well LWDS-MW1.

20
X  Observed concentrations using conventional sampling methods
18 | = Simulated concentration using average degradation rate
= = = Simulated concentration using +/- 95% confidence interval of degradation rate

16 1

14
]
@
a
3
o
g
€
[
o
13
]
o
8
-

0] —r T -

N o o ) S © ) & o o &
U & S S S S 0y S & rf? o5

Figure B-2. Simulated and observed concentrations from well TAV-MW1.
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Figure B-3. Simulated and observed concentrations from well TAV-MW2.
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Figure B-4. Simulated and observed concentrations from well TAV-MW4.
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Figure B-5. Simulated and observed concentrations from well TAV-MW6.
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Figure B-6. Simulated and observed concentrations from well TAV-MWS8.
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NPN and Nitrate Concentrations in LWDS-MW1
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