

Secure and Reliable Wireless Networks for Critical Infrastructure Facilities

Wednesday, September 10th, 2008

SRI International, Washington D.C.

Bryan T. Richardson, Sandia National Laboratories

Denis Foo Kune, Honeywell International

Project Description

– Need:

- Wireless network systems becoming more widely used in control systems due to lower cost and ease of implementation
- Critical infrastructures need more security since they provide a means of controlling physical processes
- Robustness is needed to provide 99.99999% availability demanded by control systems
- Capability for emergency first responders to gain access to pertinent situational awareness data during emergencies

– Approach:

- Leverage existing authentication and encryption technologies and techniques to provide pairwise link encryption between mesh devices
- Research and implement robust multipath routing schemes tailored for control systems
- Research and implement Quality of Service techniques that prioritize data for particular situations and from particular devices
- Design and implement keying and triggering system for first responder devices

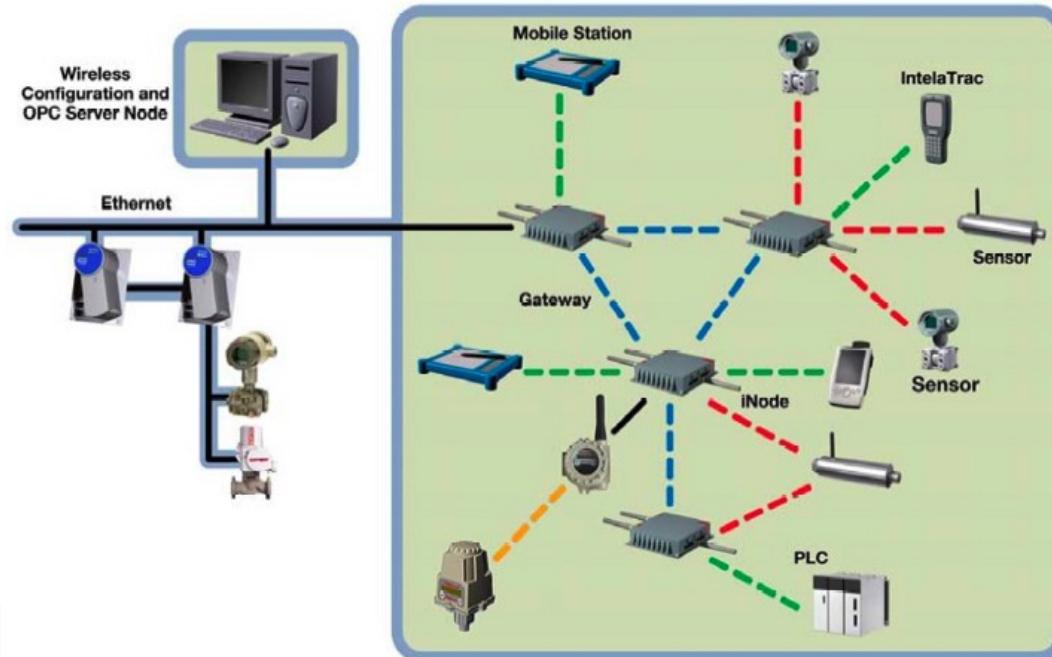
– Benefits:

- Having a compromised link will no longer lead to the entire system being compromised
- Losing an interior mesh node (i.e. DoS) no longer causes interruption of data acquisition
- First responders no longer have to fumble with security yet communication is still secure
- QoS keeps first responder devices from having to compete with normal control system devices for situational awareness data

– Competition:

- Wireless mesh network systems exist at a basic level of security with no consideration for first responder access
- Industrial standards bodies currently developing standards for industrial wireless mesh networks (want to help drive this)

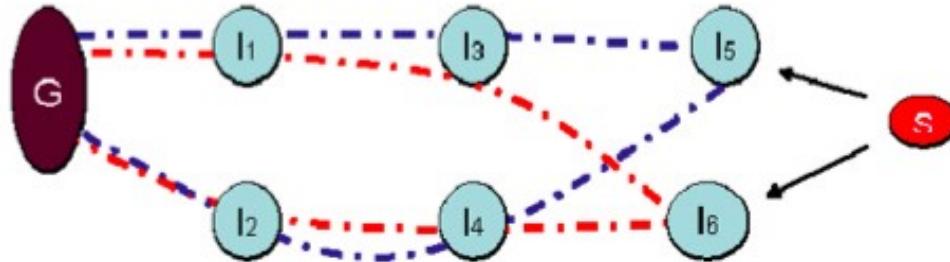
Technical Accomplishments


- Enhanced Security
 - Cryptographic protocol for registration of mesh nodes with certificate authority (CA) and key exchange between pairs of nodes has been outlined
 - State diagram of states, events, and actions to represent the key management system is in development
 - Determination of all cryptographic functionality required (algorithms, random number generation, etc) is currently in process
 - Protocol descriptions for node registration, key exchange, and node removal are in development

Technical Accomplishments

- Multi-functional Plant Communication Network
 - Protocol description for first responder credentialing is in development
 - The accounting feature of RADIUS will be used to enforce the length of time a first responder can access the network

Technical Accomplishments


- User Interaction and HMIs
 - Interacted with industry first responders to get a feel for the best approach to providing them with data in the event of an emergency.
 - Our initial approach assumed hand-held PDAs could be used by first responders to provide them with situational awareness data.
 - Our preliminary conversations suggest that, due to typical hazmat suits, in the short term a mobile command and control center should be given access to the wireless network, and in the long term head's-up displays (HUDs) should be considered.
 - CONOPS under consideration
 - Plant emergencies
 - Railcar derailment with HAZMAT cargo

Technical Accomplishments

- Robust and Reliable Communications
 - Leveraging emerging 802.11s standard to provide multiple node-disjoint paths between network nodes, which recommends AODV and OLSR
 - Considering enhancing AODV to support multi-path routing

Milestones and Deliverables

- **Enhanced Security (end of Nov 08)**
 - Automatic node authentication
 - Unique cryptographic material per link
- **Multi-functional Plant Communication Network (end of Dec 08)**
 - Easy and fast deployment of time-limited credentials to emergency responders
- **User Interaction and HMIs (end of Dec 08)**
 - Access to data from the site
 - Condensed using predefined filters
 - Simple and easy to understand
- **Enhanced Robustness (end of March 09)**
 - Dual redundant non-overlapping routes
- **Quality of Service (end of March 09)**
 - Optimized message priority depending on current situation
- **Testing and Demonstration (Stage 1: mid Feb 09, Stage 2: mid May 09)**
 - OneWireless and generic (Linksys) mesh networks
 - Integration with Wonderware SCADA system
- **Final Report (end of June 09)**
 - Technical Performance Report
 - Commercialization Plan
 - Standardization Plan

Demonstrations

- **Stage 1: Mid Feb 09**

- Enhanced Security
 - Show node registration via signing of public key by trusted third party
 - Contrast with current deployment
 - Show node revocation
- Multi-functional Plant Communication Network
 - First responder credential is time dependent, but extensible
 - Credential deployment (under discussion)
- User Interaction and HMIs
 - Mobile command unit has access to plant network and can securely obtain info on hazardous areas

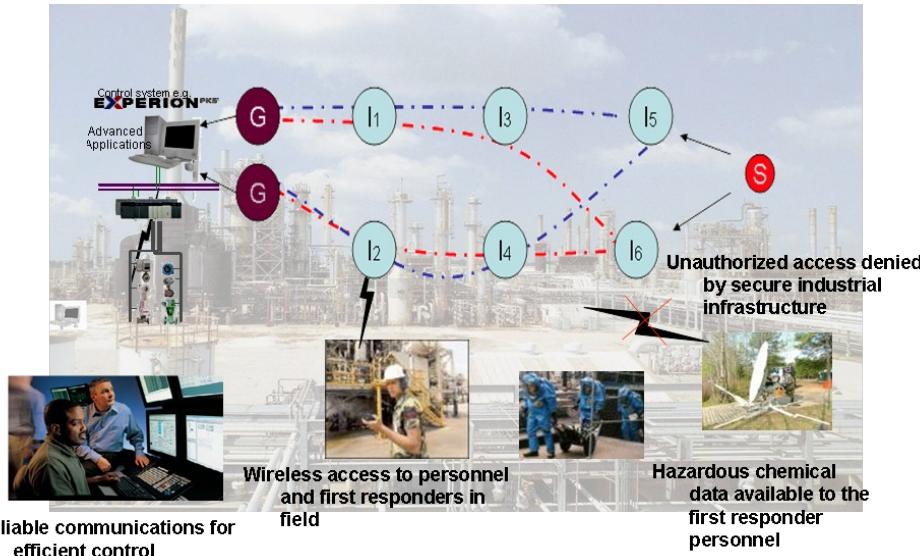
- **Stage 2: Mid May 09**

- Enhanced Robustness
 - Live mesh and killing nodes
 - Visualize with network route
- Quality of Service
 - Show priority given to sensor data during normal operations
 - Switch to 802.11 data during emergency
 - Use UDP and VoIP to demonstrate

Public Relation Activities

- **Recent:** None
- **Planned:** CATCH conference March 3-4 09
 - At least abstract and poster
 - Demonstration likely but not certain

Planned Transition



- **Commercialization**

- Honeywell OneWireless is a success story with the U.S. DoE
 - www.honeywell.com/ps/wireless
 - Enhancements developed as part of this project will be proposed for the next generation of OneWireless products

- **Standards**

- Applicable technologies will be offered to standardization bodies
 - IEEE 802.11, IEEE 802.15.4, ISA 100.11a

Operational Capability:

- Network to be robust to any single point of failure.
- Secure node registration and secure isolated pair-wise communication.
- Extensive safety and productivity improvements, as well as seamless bridging and inclusion of first responder devices.
- Quality of Service (QoS) provided for different data as well as for different situations.
- Useful, easy to read data displays available to mobile workers as well as situational awareness (SA) data available to first responders.
- Additional cost of ownership of a OneWireless system for our proposed reliability and security enhancements are expected to be negligible.
- Technical approaches outlined will provide rapid, secure, relevant SA data to first responders as they respond to emergency situations.
- OneWireless was developed as part of an 8 million dollar cost share with DoE and is a commercially available product for critical infrastructure systems.
- OneWireless is designed to be ISA100 compliant and can be integrated with other SCADA systems.

Technical Approach:

The Sandia-Honeywell team will deploy and test a hybrid mesh network for secure and reliable communications in industrial control systems with the following features:

- *Robust and reliable communication of field device data to the control system*
- *Enhanced security using single or multiple keys*
- *Multifunctional plant communication network that provides extensive safety and productivity improvements*
- *Quality of Service mechanisms for different types of data*
- *User interaction and human-machine interfaces available to mobile field workers and emergency first responders*

Milestones, Deliverables, and Contact Info:

Milestones:

- Use case scenario definition and requirement gathering
- Implementation and functional testing based on voice of customer inputs
- System integration, deployment, and testing utilizing Sandia's existing Honeywell Experion PKS system
- Enhanced system demonstration

Period of Performance: *12 Months (total)*

Deliverables: Network demonstration and final report describing reliability and cyber security enhancements, as well as a commercialization path and standardization path, related to hybrid wireless industrial process control system networks for critical infrastructure.

Offeror: Sandia National Laboratories, CA HSD Business Office, PO Box 969, MS9912, Livermore, CA 94551-0969

Contact Info: Bryan T. Richardson, (505) 845-2386, btricha@sandia.gov