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A vital goal in drug discovery is identifying novel compounds that can serve a 

starting point in drug discovery.  It is estimated that there are between 1060 -10100 [1, 2]

potential chemical compounds that have a molecular weight < 500 Dalton.  By 

comparison PubChem, the largest database of known chemicals, has a little > 19 million 

compounds to date[3], covering only a very small percentage of potential chemical space. 

Even combinatorial libraries, which can range in size up to billions of compounds, do not 

begin to fully sample the range of all possible compounds.  As the full compound space is 

too vast to search comprehensively, strategies have to be employed to search this space

efficiently for discovery of novel lead drug compounds. 

De novo design handles this challenge by building compounds from scratch to 

complement the target receptor.  The guiding principal in this approach is that small 

molecules that are complementary to the target receptor, both in shape and chemical 

properties, will have the most specific binding.  Resulting compounds also need to be 

“drug-like” and readily synthetically accessible. In theory any molecule of chemical 

space could be constructed using de novo approaches. To reduce the search through 

chemical space to a manageable problem, strong physical constraints must be taken into 

account at each step during the generation of the lead drug molecule, limiting the 

chemical space explored to those regions specifically complementary to the target 

receptor. The advantage of this approach over a virtual screening strategy to identify 

these compounds is that the search is directed to the relevant regions in chemical space 

with a far greater range and diversity of potential lead compounds that can be evaluated.

SAND2008-5893P



Also, since compounds are built within the shape constraints of the target receptor, the 

structures are generated with optimal conformational geometries for binding.  In most 

virtual screening algorithms these conformations must be sampled and can be missed. 

The main drawback is that the resulting compounds need to be experimentally 

synthesized and tested, rather than taken from an in-house inventory or ordered 

commercially. As our ability to predict binding affinities improves, the tradeoff between 

greater speed of screening and greater diversity of results may drive an increase in use of 

de novo design strategies.

De novo design is inherently combinatoric, as there are many choices are 

available at each step in molecule generation, leading to a NP-hard problem that cannot 

be provably solved to the global optimum.  Any solution to the problem is going to 

represent a local optima.  And so the success of this approach depends on well-chosen 

constraints for the problem and an efficient search strategy.  The primary constraints are 

the geometric and chemical constraints derived from the target receptor or target 

ligand(s), and internal constraints for the geometry and chemistry of the lead compound 

being constructed. The shape and chemical constraints include both positive and negative 

requirements.  For example receptor site-points or “hot-spots” of interaction must be 

matched with complementary functional groups in all candidate structures, whereas 

boundary constraints that define disallowed structural regions must be avoided.  These 

primary constraints are directly handled in the structure generation phase in de novo

design.  The secondary constraints include synthetic accessibility of the final compounds 

and their predicted ADMET (adsorption, distribution, metabolism, elimination and 

toxicity) properties. These constraints are handled both by heuristics employed during



structure generation and also as filters on the final set of compounds.  While the set of 

constraints are similar to all de novo design algorithms, strategies for generating

structures and for searching chemical space to fit these constraints vary considerably 

among the programs. 

One major distinction in de novo design programs are whether they are receptor-

based or ligand-based.  In receptor-based programs the three-dimensional structure of the 

target receptor is known and provides the primary constraints.  Ligand-based programs 

either generate a 3-D structural pharmacophore model to generate geometric and 

chemical constraints that are similar to the receptor-based constraints, or they use 

similarity to a known active ligand or QSAR model as the primary constraint.   The 

features in de novo design algorithms can be broken down into the following 

components, and choices at each of these components can distinguish one program from 

another:

i. Site points.  Site points represent “hot spots” of interaction with the target 

receptor.  They define the primary geometric and chemical constraints for the 

structure generation.    Some ligand-based de novo design programs use similarity 

to a molecule template instead of site points.

ii. Molecule building blocks.  These are the units for constructing the structure.  

They can be atoms, fragments, or templates (generic fragments).  

iii. Structure generation. The strategy chosen here is one way used to classify de 

novo design programs. Strategies include: (a) “grow” which starts from a seed 

point and grows a structure; (b) “fragment-link” where fragments are place in site 



points and linked together; and (c) sampling approaches, where molecules are

randomly grown. Implicit in each strategy is rules and geometric constraints to 

generate chemically reasonable structures.

iv. Search strategy.  The strategy used to search through the combinatoric set of 

possible (sub)structures, combined with the structure generation strategy, forms 

the core of the de novo design algorithm.  Common search strategies include 

breadth-first search, depth-first search, evolutionary algorithms, and Monte 

Carlo.

v. Structure Evaluation. Evaluates structures based on primary constraints –

geometry and chemistry for binding, or similarity to a known active ligand.  By 

evaluating substructures at every step during structure generation, the choices can 

be pruned during structure generation.  

vi. ADMET and synthetic accessibility. These are the secondary constraints that can 

be taken into consideration as a scoring function during structure-generation, as a 

post-filter after construction.  In addition some programs use heuristics during 

structure-generation to incorporate these constraints.

While there are many variations on the algorithms at each of these component 

steps, as described below, the this review will focus on the structure 

Historical approaches to de novo design

The first de novo design programs were receptor-based. The field began with programs 

being developed to describe the binding properties of a target receptor.  Initial programs 

[4-8] devised strategies to identify sites that represented “hot spots” of interaction within



a receptor, placed small molecule fragments or skeletons to interact at these sites and 

linked them together with generic spacer molecules. Initial ligand-based programs were 

variations of the receptor-based programs using pharmacophore-derived constraints[9, 

10].  Later ligand-based de novo programs were developed for cases without site points, 

and primarily used evolutionary methods to optimize molecules to a  QSAR model of 

activity[11], or by similarity to a known active molecule[12].   

Many choices and variations have been tried for each of the different components 

in de novo design as described below.

Identify Interaction Sites

In studying known inhibitors, it is found that there are certain ligand-receptor 

interactions, deemed “hot spots” that are important for binding and inhibition.  These 

interaction site-points can be generated from analyzing the 3-D coordinates of a target 

receptor, or from a three-dimensional pharmacophore model based on a superposition of 

bioactive ligands. These provide positive primary constraints that are positive (must be 

matched) during structure generation. The coordinates of the receptor, and excluded 

volume regions from a pharmacophore model, provide primary constraints that are 

negative (regions to be avoided) during structure generation. For cases where the three-

dimensional structure of the receptor is known, the interaction sites can be taken from a 

known pharmacophore for that protein, or predicted.  The first program to predict “hot 

spots” was the Goodford GRID[13] program, which created a grid inside a target receptor 

and calculated the energy of probe atoms placed at each point in the grid to create 

contours of interaction for different probe types.  The peak of which would represent an 



interaction site.  While several early de novo programs used GRID[7, 14, 15] to identify 

site points, the first approach to identify site points that was used in a de novo design 

program was HSITE[4], a rule-based method to search for hydrogen bonding sites based 

on ideal hydrogen bond geometries derived from crystal data.  Other early programs 

expanded the rule-based method by adding lipophilic regions[16].  HIPPO[17] was the 

first to add covalent bonds, metal binding sites, and complex hydrogen bonding patterns.  

MCSS[18] took a unique approach and used a modified molecular dynamics code to 

identify not spots by simulating probe molecules which simultaneously interacted with 

the protein but not with each other. The lowest energy probes are retained as starting 

fragments for de novo design.    Once the interaction sites are identified, most initial 

programs used a rule-based scheme to place small molecule fragments that interacted 

with the site points.  Other programs use docking codes on fragments to provide initial 

placements for initial placement of fragments[7, 19].     

Molecule Building Blocks

The first de novo design programs used molecule templates [5, 6] as the building 

blocks, along with programs still in current use[9, 20].   Templates are joined to create a 

3-D molecular graph, termed a skeleton, whose vertices are labeled by solely by 

hybridization state and edges by bond type.  This approach divides structure generation 

into two steps: primary structure generation of generating a skeleton that fits all 

geometric constraints, and secondary structure generation[21] of substituting atoms into 

the graph to fit the chemical constraints such as hydrophobicity and electrostatic 

properties.  This approach collapses the search space by looking at structures with the 



same geometry simultaneously.  In contrast, the atom-based approach starts with real 

atoms and builds up molecules.  It has the theoretical advantage that it allows more 

diversity in the results, with the corresponding challenge of finding efficient strategies to 

search through the larger chemical space.   Atom-based building blocks have been used 

successfully in early programs[8, 22] but are harder to constrain to reasonable, 

synthetically accessible and “drug-like” structures, and require larger combinatorial

sampling.  Atom-based building blocks have become less common in recent algorithms. 

Another development was to the choice of fragments and building rules to 

incorporate synthetic accessibility and “drug-like” heuristics into the structure generation.   

The first step in this approach was the RECAP[23] procedure, which broke down existing 

drugs from  the Derwent World Drug Index (WDI), according to common retrosynthetic 

pathways (i.e. to produce a library of reactants).   TOPAS[12, 24] was the first program 

to use a library generated in such a way, and incorporate the same reaction chemistry into 

the structure generation, creating 25,000 unique fragments from 11 retrosynthetic 

pathways.

Structure Generation and Search Strategies

Historically de novo design programs have been categorized by their search 

strategy.  The three main categories are (a) fragment-link (b) grow and (c) sampling.  

This section will briefly describe these algorithms as they are further elaborated in the 

below.  The first de novo programs used the fragment-link approach, where appropriate

fragments were placed at key interaction sites and linked together.  There were many 

strategies on how to link the fragments.  One was to join fragments with pre-defined 



linkers such as spacer skeletons[6] or fragments from a database[16, 25].  Another was to 

generate a lattice and perform either depth-first search or breadth-first search along the 

lattice from one fragment to the other to generate linker fragments. Regular diamond 

lattices[8], irregular lattices from docked fragments[7] or random lattices [19] were tried 

for this strategy.  Other programs employed an iterative build-up procedure, similar to the

grow strategy, until all site points were connected.  FlexNovo[26] uses a k-greedy search 

for its buildup procedure.  LigBuilder[27] used an evolutionary algorithm to guide the 

build-up procedure.

The grow strategy starts with a seed point or fragment and builds up a molecule.   

Two of the seminal programs employing the grow strategy was the GROW[28] program 

and LEGEND[22].  GROW generated peptides from amino acid fragments in multiple 

conformations using a tree-search pruned by predicted binding affinity at each step to 

guide the growth.  LEGEND took the opposite tack and used an atom-based growth 

strategy with random selection at every decision point (i.e. selection of growth point, 

selection of next atom, selection of join type) to guide the search process.   Many other

approaches have been tried to efficiently search combinatorial space during the build-up

procedure including: random selection combined with depth-first search[15, 29], 

Metropolis Monte Carlo[30], and various tree search strategies [9, 20, 31].

The last category for structure generation can be termed sampling approaches, 

which use sampling and optimization processes to control molecule generation, rather 

than using site points to direct them in a specific direction such as to grow outwards or to 

link fragments. Several strategies of this type have been tried including molecular 



dynamics [32], Monte Carlo [33], simulated annealing[21, 34], particle-swarm[35] and 

evolutionary algorithms (EA) [11, 24, 36-39], which is the most common algorithm in 

recent ligand-based programs.  Ligand-based programs that lack site points, such as those 

with a template molecule or QSAR as the primary constraint, all use a sampling-based 

method to generate structures.

Each of these strategies requires a connection scheme to join building blocks.  

With atoms the rules are usually defined by the individual atom valences.  Some atom-

based programs have linear chains in growing molecule or link between fragment, and 

look for rings either on the fly[29]  during structure generation, by opening, closing, 

expanding and contracting rings during sampling[40], or as a post-processing step after 

structure generation to search for rings[41].  With fragment-based methods building 

blocks can be joined together using a single bond, rings can be fused or spiro-joined.  

Recently, reaction-based connection rules have been used[24, 38], as a heuristic to 

incorporate synthetic accessibility into the structure generation stage.  Programs that use 

molecular templates as building graphs have an additional search step after generation of 

a molecular skeleton to replace vertices with atom type identities to match chemical 

constraints such as hydrophobicity and electrostatics[9, 21]

Structure evaluation

Receptor-based de novo programs use an estimation of binding energy for 

primary structure evaluation. However, predicting binding affinity accurately continues 

to be one of the biggest hurdles with de novo design programs.  Early programs focused 

mainly on steric constraints and hydrogen bonding[5, 7, 8].  LEGEND[22] was the first 



to use a molecular mechanics force-field for scoring. Force-field scores have many 

shortcomings due to the approximations in the force-field in applying it to ligands, and 

most notably in the neglect of desolvation and entropy terms, and can be computationally 

demanding.  LUDI[42, 43] developed the first empirical scoring function by defining a 

set of ligand-receptor interaction types such as hydrogen bonding electrostatic and 

lipophilic interactions, as well as penalty terms such as number of rotatable bonds.  It

derived weightings for these terms from a least squares regression on a series of ligands 

with known binding constants and crystal structures. The challenges here were the small 

size of the available data set at that time, which limits accuracy to proteins and ligands 

similar to those used in the regression set. Knowledge-based scoring, first implemented in 

SMoG[44, 45], uses atom-based ligand-receptor interaction terms with weights derived 

from a large statistical study of ligand-receptor complexes and the frequencies of various

ligand-receptor pairs in these complexes.  The advantage of this approach is that there are 

a larger number of ligand-receptor complexes than those with known binding energies, 

and so more diversity went into the set, resulting in a less biased scoring function.   A 

common problem with all receptor-based scoring schemes is that they only take into 

account a static protein.  Skelgen is the first program to handle receptor flexibility[46, 

47], which was shown to improve the diversity of results in conformational and chemical 

space, and activity of designed ligands.  Many programs that used a receptor-based 

scoring function also had features to score ligands based on the 3-D pharmacophore 

model[9, 10, 48, 49] either by deriving receptor-based constraints from the model 

directly, or by scoring by similarity to the model.  



Ligand-based de novo design programs that do not use a pharmacophore model 

have fundamentally different scoring functions than above.  One approach is to derive a 

scoring function from a QSAR model[11, 40, 50].  This has the disadvantage the scoring 

parameters have to be re-input for every receptor target.  Another common approach is to 

use the similarity to an active template [24, 37, 51, 52] as the scoring function.  This is 

easier to code up, but reduces the diversity of the resulting of molecules.

Synthetic accessibility and ADMET. 

Synthetic accessibility continues to be the second major hurdle with de novo drug 

design programs.  It is evaluated along with prediction of ADMET properties as part of 

the secondary scoring.  Initial de novo design programs performed this evaluation on the 

final set of structures.  CAESA[17] was the first program developed to predict synthetic 

accessibility, and was  based on retrospective analysis. SEEDS compares core 

substructures both to reaction databases for synthesis pathways and compound database 

to identify derivatives [53]. More recent approaches are based on similarity to available 

reactants and heuristics for molecular complexity[54].  A recent survey showed that these 

two latter approaches have superior success in predicting synthetic accessibility[55].  

Some programs include synthetic accessibility and ADMET as heuristics during 

structure generation. One way to do this is to include a user interaction step where an 

organic chemist evaluates structures during the build-up process, for example evaluating 

the initial fragments prior to linking[7, 19, 56], or as a scoring function during an 

evolutionary algorithm[7, 19, 56].  Another approach was to generate building blocks 

from fragmenting known drug molecules.  This has the heuristic that the building blocks 



are “drug-like” [24, 26, 37, 38].    In addition, if the fragmentation is based on 

retrosynthetic analysis, and regenerated using reaction-based joining rules, then this can 

also serve as a heuristic for synthetic accessibility, such as in TOPAS[12] and FLUX[37]. 

Similarly, SYNOPSIS[38] chose available molecules (i.e. reactants) as fragments and 

used a build-up based on synthetic reactions. Another type of heuristic is to use a 

substructure lookup during structure generation to filter out substructures that are not 

drug-like or are synthetically intractable.

Finally some programs include ADMET predictions in a scoring function.  For 

algorithms that build up a structure this score is usually performed after the set of 

structures has been generated. For algorithms that sample the chemical space of full-size 

structures, such as the evolutionary algorithms, it can be included in the scoring function 

during structure generation.  This score can range from simple filters using Lipinski’s 

rule of 5[57] for drug-like compounds, to more complicated of physicochemical 

properties, or predictions of hERG activity[58]. 

Several other drug-design methodologies have their roots in de novo design.  For 

example fragment-based design approaches are similar to the fragment-link de novo

strategies, except these take the extra step of validating the fragment positions 

experimentally prior to linking.  The first combinatorial Library design programs started 

from variations in de novo programs -  PRO_SELECT[31] evolved from  

PRO_LIGAND[10] and CombiBUILD[59] from BUILDER[19] (section 8.4).

Common Algorithms in de novo structure generation



De novo design algorithms are usually classified according to their structure 

generation strategy.  The three main strategies are: (1) grow (2) fragment-link and (3) 

sampling (see figure 1).

(1) GROW.  The grow strategy grows a molecule to complement the target receptor (or 

pharmacophore model) in a sequential build-up procedure.  It starts by identifying site 

interaction points in the target receptor.  A site point is chosen as a seed point to start the 

structure generation.  An initial building block is placed in the site to complement its 

chemical functionality (i.e. electrostatic properties, h-bonding, liophilicity). Growth 

points are identified on the initial building block.  From here, the molecule “grows” 

through a cycle of adding a building block to the growth points at the end of the partial 

structure according to connection rules, followed by scoring to evaluate whether to retain 

the new building block.  Growth continues until termination conditions are reached, such 

as if the molecule extends to all site points or exceeds maximum size.  How building 

blocks are added depends on the search strategy. 

(a) In the Metropolis Monte Carlo strategy the acceptance of new building blocks 

to the growing molecule are biased based on predicted binding affinity according to 

Boltzmann statistics.  A growth point and building block are randomly selected.  The new 

building block is scored by a measure of predicted binding affinity. The Boltzmann factor 

BF=exp(-affinity_score/RT) is calculated and a random number generated.  If BF is 

greater than the random number the building block is retained and growth points are 

updated to the newest building block, otherwise it is removed and a new growth point and 

building block are randomly selected. Note that the BF for building blocks with scores <= 



0 is always >= 1 (i.e. always retained).  This continues until termination conditions exist.  

The procedure is re-run from the starting seed until the desired number of structures have 

been generated.

a.  Scheme I: Pseudocode for grow strategy with a Metropolis Monte 
Carlo search
Input: receptor or pharmacophore, building block library 

assign sitepoints
WHILE (large number of structures to grow)DO

##generate a structure
place seed building block (b) in starting sitepoint
assign growth points to building block
WHILE (NOT (End=(all sitepoints fit? or > max # atoms?))) 
DO

randomly select a growth point (g) partial structure
randomly select a building block (b) and add to 

growth point using connection rules. 
Prune by primary and secondary constraints
IF (pruned)THEN CONTINUE
calculate binding affinity score S for (b,g)
select or discard according to metropolis search 

criteria
IF (selected)THEN update growth points to g2 on (g,b)

END DO
save structure(s) to list

END DO
evaluate final structures for predicted binding affinity
evaluate final structures for synthetic accessibility and ADMET
prioritize final structures

(i) Metopolis criteria
calculate Boltzman Factor BF=exp(-affinity_score/RT)
generate random number from 0 to 1
retain building block= TRUE IF BF > random 

(b) In the various tree-search strategies the inner WHILE loop above is replaced 

with a tree-search algorithm.  Building blocks are tried at each growth point, scored, and 

added as nodes on a search graph.  The nodes may be pruned using primary constraints 

(e.g. boundary violations) and secondary constraints (e.g. matching to a list of 

synthetically intractable substructures), and may be prioritized by a scheme such as score 

or distance to an interaction “hot spot”.  In depth-first search the top-scoring node in the 



graph is selected for expansion (i.e. to examine for growing) whereas in breadth-first 

search all nodes at each level are selected for expansion before going to the next level. In 

this way, Depth-first search completes a solution (ie generates a structure) before 

examining the next partial solution, whereas breadth-first search expands all the partial 

solutions simultaneously until all solutions are found.  Depth-first search may find a 

single solution faster, but may not be the best overall solution, whereas breath-first 

exhaustively searches for solutions.  Functions can be added to estimate the costs of 

continuing along a partial solution to prioritize nodes in “best-first” searches such as A*.

Programs in current use that implement grow

The grow algorithm is implemented in several de novo design programs in current 

use and that have had success in identifying lead compounds in prospective studies  (See 

table 1.a ). AlleGrow, the successor of GrowMol[60] uses the Metropolis Monte Carlo 

selection criteria. It is available commercially at http://bostondenovo.com/Allegrow.htm.

Legend[22] uses random selection at ever choice point.  SPROUT[9] takes the other 

approach and uses a tree-search algorithm, which can be run in a modified “best-search”

algorithm, or to completion. It directs growth by prioritizing growth points based on 

closeness to unsatisfied site points and pruning templates that prevent reaching site points 

by being too close but not satisfying site point.   SPROUT is commercially available at 

SimBioSys, Inc (http://www.simbiosys.ca/sprout/index.html). FlexNovo[26] uses FlexX 

to dock initial fragments and a build-up procedure based on a k-greedy algorithm.  It is 

commercially available at BioSolveIt (http://www.biosolveit.de/FlexNovo/).

Advantages, limitations, computational complexity?

http://www.biosolveit.de/FlexNovo/
http://www.simbiosys.ca/sprout/index.html
http://bostondenovo.com/Allegrow.htm


The tree-searches are deterministic algorithms.  Run to completion, they will find 

all solutions.  The time complexity for most tree searches is O(bd), where b=branching 

factor and d= depth, although proper heuristics in best-first search can greatly reduce this.

The branching factor in this case is a product of number of attachment points times 

number of building blocks, whereas depth is the number of building blocks in a final 

structure.  A quick back-of the hand comparison of atom-based versus fragment based 

approaches would have b for atom-based methods as ~12 atoms/functional groups X 2 

attachment points on each on average (3 for sp3 atoms, 2 for sp2, 1 for sp) for atom-

based and depth d (~50) leading to bd  = 2450 ≈1070, or roughly all of chemical space.  For 

fragment-based with a small fragment library b is 30 fragmentsX 4 average attachment 

points each (larger since rings included) and depth approximately 8 is bd =1208 ≈ 1016.   

We can see why smaller fragment libraries are usually chosen for tree-search methods, 

whereas Monte Carlo is chosen for both atom-based and fragment-based methods.  This 

also shows the advantage of using generic templates in tree-search approaches such as 

SPROUT, which reduces the complexity by greatly reducing size of the template library. 

Note that the diversity covered in this approach is far greater than 1016 because atom 

types are placed into the generic fragments, but it does not approach the full diversity 

from an atom-based approach.

Overall, the grow algorithms have been successful in finding new drug 

candidates. However, they tend to behave poorly in situations where the receptor site 

consists of 2 or more subpockets separated by a large gap, whereas the fragment-link 

(next section) performs better in these situations.



(2) Fragment-link.  The fragment-link strategy also starts out by identifying site-

points in a target receptor or pharmacophore model.  In this case complementary 

fragments are placed in all of these “hot-spots” to maximize interaction.  Results at this 

point can be pruned by visual inspection.  Linking groups are then generated or chosen 

from a link library and fit to the fragments. Linking groups that do not match the primary 

constraints (shape & chemistry) or make substructures that violate secondary constraints 

can be discarded.  The final structures are evaluated by predicted binding affinity and 

secondary scoring characteristics such as synthetic accessibility and ADMET, and 

prioritized. (see figure 1b and table 1b)

Scheme II.  Pseudocode for fragment-link strategy
Input: receptor or pharmacophore, library of initial building blocks, 
library of bridging building blocks 

assign sitepoints
place building block(s) in sitepoint(s) according to rules
prune by criteria (visual inspection and/or score)
WHILE (NOT all fragments joined) DO

identify 2 closest fragments
identify link points between fragments(closest atoms) 
place bridging group(s) to join at these points by matching 

distances and angles to bridge library.
END DO
evaluate final structures for binding affinity
evaluate final structures for synthetic accessibility and ADMET
prioritize final structures

Programs in current use that implement fragment-link

Several programs have successfully applied the fragment-link algorithm to 

identify lead compounds (see table 1.b.).  Best-known in is the Ludi[14, 16] program, 

available commercially at Accelrys (http://accelrys.com/).  The MCSS[61] program has 

been combined with several others for the bridging step including HOOK[25], 

Leapfrog[62], LUDI, and  by visual inspection.  Ligbuilder is a hybrid algorithm which 

http://accelrys.com/


includes grow and fragment-link, both using an evolutionary algorithm to generate 

structures.  Ligbuilder is freely available at 

(http://www.chem.ac.ru/Chemistry/Soft/LIGBUILD.en.html) .

Advantages, limitations, computational complexity?

This approach has the advantage in that it maximizes interactions in the key 

interaction sites in the target protein.  It has the computational advantage that the search 

for bridge points is an O(n) lookup through a fragment database.  The challenge is 

identifying linking groups of the proper chemistry and geometry that do not greatly alter 

the orientation of the fragments binding to these sites, and which do not have artificially 

strained bonds, angles and torsions.  In terms of amount of chemical space sampled, it 

covers roughly the same chemical space as other fragment-based methods using the grow

strategy.  

(3) Sampling strategies

Sampling strategies differ from grow and fragment-link in that they sample 

structures without directing generation in a particular direction (outward or explicitly 

linking interaction sites).  Evolutionary algorithms (EA) are the most common chosen for 

this purpose.   There are many types of EAs: genetic algorithms (GA) which encode the 

molecular structure in a “chromosome” of fixed length that is operated on and 

transformed into the molecular structure for fitness evaluations; genetic programming, 

where the chromosomes are trees to allow them to have variable length; and evolutionary 

strategies which operate directly on the phenotype, which is the molecular structure. A 

basic evolutionary strategy (μ, λ) is shown below[63], where λ is size of the child 

population and μ is the size of the parent population in each generation.

http://www.chem.ac.ru/Chemistry/Soft/LIGBUILD.en.html


The algorithm starts with a population of λ chemical structures (the initial child 

population) generated from putting a random selection of building blocks together 

according to the building rules for the building blocks.  Each structure in this population 

is evaluated for “fitness”.  The fitness is the scoring function that can combine primary 

and secondary constraints. In receptor-based de novo methods the primary score may be

the interaction score such as from a docking calculation[64], minus any boundary 

violations.  For ligand-based employing a single template ligand, the primary score may 

be a similarity score.  Secondary scoring considerations, such as requirements for 

Lipinski’s[57] rules, or other ADMET considerations, can be added to the fitness 

function here, along with other molecule properties such as surface area or radius of 

gyration. The most fit μ structures are selected to be parents for the next generation. 

Mutation and crossover operators can be performed on the parents.  Mutation in this case 

is to take a parent structure and remove a building block and replace it according to the 

joining rules.  Crossover is to remove building blocks from each parent and swap them 

again according to joining rules.  Some algorithms have only mutation[24] or only 

crossover[52].  A total of λ child structures are generated.  This cycle is repeated until it 

reaches a maximum generation of children or a termination condition is reached such as 

convergence. One feature found with this algorithm was that since building blocks could 

vary greatly in size, the parent p could grow and shrink as well, while still retaining the 

same number of building blocks.

Scheme III.  Pseudocode for a basic ES (μ, λ)
Generate λ random structures Sc
DO

Evaluate fitness Fc of each structure Sc in population
Choose μ most fit (Fc) structures as parents Sp
Mutate and Crossover of parents Sp to generate population λ 

children Sc
UNTIL (> maximum generations or termination condition)



Programs in current use that implement EA

Evolutionary algorithms are especially common in ligand-based design programs, 

although several receptor-based programs also employ this approach. See Table 1.c for 

some examples of lead compounds identified using EA.  One successful implementation 

of this algorithm is in the TOPAS [24] ligand-based de novo program, which uses 

pairwise similarity to a molecular template as the fitness function.  It sets λ = 100 and μ 

=1 (i.e. 1 parent) with no crossover operation, so all variation is through mutation.  It uses 

25,000 fragments from the WDI using 11 retrosynthetic pathways.  The variance in each 

new child structure can be controlled by how similar a new building block is to the 

original building block being mutated, and is controlled by a parameter(“step-size”) that 

is a Gaussian distribution of random numbers, resulting a child population that is bell-

shaped distribution of variations with the parent at the center.  It was found 100 

generations was sufficient to explore chemical space in this program.  TOPAS is at 

Hoffmann-La Roche and is not generally available.  

Flux[37] was developed based on TOPAS.  It finds optimal results with a 50:50 

ratio between crossover and mutation, and typically sets maximum generations to 75 (50 

was found to converge in most cases).  The other main difference from TOPAS is a 

modified similarity descriptor that is weighted. It is being used at the Goethe University 

in Germany but is currently not generally available.

LEA3D uses fragments as building blocks generating from fragmenting “drug-

like” database of over 8000 fragments into single rings, single rings, fused rings, and 

acyclic parts.  It allows both 1 and 2 point crossover and mutation.  It is not generally 



available but an in-house version is in use at the Centre De Biochimie Structurale, 

Montepelier, France.  

De novo programs incorporating EA that are commercially available include 

AutoLudi and LeapFrog[48] and the Molecule Evoluator[56, 65].  AutoLudi is en 

extension of LUDI that uses EA to modify an existing lead compound by adding on small 

fragments.  LeapFrog commercially available at Tripos (http://www.tripos.com), which 

evolves a population of molecules in an atom-based method.  The Molecular 

Evoluator[56] uses an unusual fitness function - the user working interactively with the 

program.  It is available at Cidrux Pharmaceuticals [66]

Advantages, limitations, computational complexity?

A general challenge for EAs is the molecule representation.  SMILES strings such 

as in LEA[11] have the problem that invalid molecules result during crossover and 

mutation, and also more steps are required to build up a molecule. TreeSmiles, a variation 

of SMILES with all hydrogens explicitly shown, helps avoid unreasonable structures[56].  

The LEA3D successor of LEA uses fragments instead of atoms as the building block, 

with numbers representing fragments for genetic operations[67].  Other approaches 

operate directly on the 3-D structures leading to additional translational and rotational 

operators[36].  

The theoretical chemical space available for a fragment-based approach is (nb)ns, 

where nb=number of building blocks in fragment library, and ns is average number of 

building blocks is the final structure.   For TOPAS which has 25,000 building blocks and 

approximately 4 building blocks in a final structure the total is (25000)4 ≈ 1018.   For an 

atom-based method this would approach all of chemical space (≈1060).  However, the 



number of structures actually evaluated in an EA run is much smaller as it is given by the 

function λ X ng, where λ the population each generation and ng the number of 

generations.  For example, TOPAS has population size 100 X 100 generations ≈ 104. 

Similarly, LEA3D has a population size of 40 X 100 generations is 4000. In practice this 

seems to be sufficient to generate enough reasonable solutions to find interesting leads.

Compared to the grow and fragment-link EA algorithms have the advantage that, since 

they do not target interaction site points,  the output structures are not strained (ie have 

low intramolecular energies).  The corresponding disadvantage is they may not bind to 

known important interaction sites.  

Summary

In examining all grow, fragment-link, and sampling-based algorithms, one aspect 

in common is the use of a random operator of some sort during the structure generation 

process.  This is important for two reasons: first because the scoring functions are not 

perfect the best-scoring atom or fragment may not represent the best binder. Second, and 

more importantly, because the path to construct a de novo structure is not a linear 

function of the scoring function (i.e. higher scoring final structures are not a linear result 

of the highest scoring pre-cursors, a structure often needs to go through a lower energy 

construction pathway to get to the final structure).

Ligand-based programs that use similarity to a molecular template or QSAR for 

scoring require a sampling approach, and EA is the most commonly chosen one for these 

programs for its simplicity to program up and its effectiveness in these cases.  With 

receptor-based approaches, the grow and fragment-link algorithms, which include 

pharmacophore data in the form of site points, are historically favored.   Pure sampling 



approaches are most commonly seen as lead-optimization once a core has been designed 

using a grow or fragment-link approach.

The major hurdles for  de novo design to overcome to be an effective tool in drug 

discovery are the same today as when the field began: how to accurately predicting

receptor-based affinity and predict synthetic accessibility.  Without these, it could be a 

costly effort to synthesize complex molecules which may not even bind to the target 

receptor.  Newer heuristics for synthetic accessibility, using reaction-based fragment 

libraries, and heuristics based on molecular complexity, have improved the quality of 

structures resulting from de novo design.  Several de novo design strategies have now 

been shown to be successful in prospective studies.



Table 1  De novo design programs with recent results.  See review articles[68, 69] for a 
more comprehensive list of de novo design programs using (a) Grow strategy (b) 
fragment-link (c) sampling.

a. Grow strategy
Name Ligand or

Receptor
sites

Building 
blocks

Search 
type*

Scoring 
type*

Prospective studies

AlleGrow
(GrowMol[30])

Receptor Atoms/
fragments

MC Empirical Aspartic protease[60]
xWNT8 & hWNT8 [70];

Legend[71] Receptor Atom Random FF CDK4 inhibitors[53]
Aldose reductase[72]

Sprout[9, 20, 
54]

Receptor Skeleton/
fragments

A* or 
Exhaus-
tive[54]

Empirical dihydroorotate 
dehydrogenase[73, 74]
Nk(2) antagonists[73, 74]

b. Fragment-Link
Name Ligand or 

Receptor
sites

Building 
blocks

Search 
type*

Scoring 
type

Prospective studies

Ludi[16, 43] Receptor Fragments Empirical CYP51(w/ MCSS)[75]
Leucine 
aminopeptidase[76, 77]

MCSS[61] Receptor Fragments MD FF CYP51(w/LUDI) [75]
PPARγ (w/LeapFrog) [62]

c. Sampling
Name Ligand or 

Receptor
sites

Building 
blocks

Search 
type*

Scoring 
type

Prospective studies

LEA3D[11, 67] Receptor/
Ligand

Fragments EA Empirical thymidine monophosphate 
kinase[67]

TOPAS[12, 24] Ligand Fragments EA similarity cannabinoid-1 receptor
[78, 79]
Kv1.5 [12]

SkelGen[80] Receptor/
Ligand

Fragments Simulated
annealing

empirical cannabinoid-1 receptor
[78, 79]
Kv1.5 [12]

Flux1/
Flux2[37, 81]

Ligand Frag/recap EA similarity TAR RNA[82]

LeapFrog[48]** Both Fragments EA Empirical PPARγ (w/MCSS) [62]
Link-function only

SYNOPSIS[38] Receptor Frag EA Target-
specific

HIV protease[38]

*FF=force-field,EA=evolutionary algorithm,BFS=breadth-first search,MC=monte carlo.



Figure 1.  Comparison of 3 different categories of structure generation 
algorithms.   All start with identifying site points in the target 
receptor. (a) Grow strategy – an initial fragment is placed at one site 
point and grown sequentially(magenta,green, then black fragment). (b) 
fragments are placed in all site points (magenta) and linked together 
(black).  (c) complete initial structure (magenta) is mutated in random 
locations (green then black).
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